
HAL Id: hal-04678708
https://hal.science/hal-04678708v1

Submitted on 27 Aug 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Minimal port-Hamiltonian modeling of voice
production: choices of fluid flow hypotheses, resulting

structure and comparison
Thomas Risse, Thomas Hélie, Fabrice Silva, Antoine Falaize

To cite this version:
Thomas Risse, Thomas Hélie, Fabrice Silva, Antoine Falaize. Minimal port-Hamiltonian modeling
of voice production: choices of fluid flow hypotheses, resulting structure and comparison. 8th IFAC
Workshop on Lagrangian and Hamiltonian Methods for Non Linear Control, Jun 2024, Besancon,
France. �hal-04678708�

https://hal.science/hal-04678708v1
https://hal.archives-ouvertes.fr


Minimal port-Hamiltonian modeling of voice production:

choices of fluid flow hypotheses, resulting
structure and comparison

Thomas Risse ∗ Thomas Hélie ∗ Fabrice Silva ∗∗
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Abstract: Voice production results from the interaction between expelled airflow and soft
tissues in the larynx and the vocal tract. Among the large literature on this topic over the last
fifty years, a few nonlinear fluid-structure interaction models have been proposed in the port-
Hamiltonian framework for passivity purposes. In this paper, we examine, compare and discuss
two lumped-element port-Hamiltonian models from the literature, both derived from distributed
parameter descriptions and simplifying assumptions chosen to integrate the minimal relevant
phenomena involved in the larynx (for self-oscillations) or the vocal tract (during articulation).
These models are recalled and reformulated using common terminology and notations. This leads
to equivalent circuit representations, the components and the structure of which allow direct
comparison (about causality, dimension, nonlinear laws, coupling) and physical interpretation.
These results highlight important properties to consider and provide guidelines for future
modelling improvement to be used in simulation.

Keywords: Modelling, Port-Hamiltonian systems, Distributed parameter systems,
Fluid-structure interaction, Vocal apparatus

1. INTRODUCTION

A number of classical 1D lumped-element models (Ishizaka
and Flanagan (1972), Story and Titze (1994)) of the larynx
are built considering that the glottal flow is incompress-
ible, quasi-steady (negligible inertial forces), in a quasi-
static domain (negligible fluid transverse velocity). These
assumptions allow the derivation of the flow equation using
modified Bernoulli laws. They have been discussed theo-
retically and tested experimentally by a number of authors
for different vocal folds geometries and frequency ranges
(see Wang et al. (2023) and the many studies of Hirshberg,
Pelorson and van Hirtum 1 ). These assumptions appear
to be mostly valid, only provided that the larynx is not
acoustically loaded by a vocal tract and vibrates at a low
frequency.

Models accounting for fluid inertia and structure induced
flow are mostly based on fluid flow solvers of high dimen-
sions (e.g. De Vries et al. (2002)). For the last 10 years,
efforts have been made in the port-Hamiltonian (pH) for-
malism to develop low dimensional power-balanced models
of the glottal flow and more generally of the vocal appa-
ratus. First, Encina et al. (2015) proposed a pH model of
the vocal folds based on the so-called body-cover model of
Story and Titze (1994). Hélie and Silva (2017) developed
a first self-oscillating assembly, which incorporates an in-
compressible flow between two parallel moving plates and

1 see e.g. Ruty et al. (2007).

considers the power exchange at fluid-structure interfaces
(extending the work of Lopes and Hélie (2016)). Mora et al.
(2018) proposed a lumped incompressible fluid flow model
for connection to the mechanical part of the body-cover
model. However, their approach is not scalable.

More recently, Mora et al. (2021b) and Wetzel (2021) pro-
posed two scalable power-balanced lumped-element mod-
els for compressible fluid in tube with moving boundaries,
aimed at voice production modeling. This paper aims to
examine, compare and discuss these models, highlighting
relevant properties (model dimension, input causality, na-
ture of the exchanged power at Fluid-Structure interfaces)
and providing guidelines for future model improvement.

The paper is structured as follows. Section 2 reviews the
general setting (geometry, starting fluid equations) and
hypotheses common to both models. Sections 3 and 4
respectively detail the pH models proposed by Mora et al.
(2021b) and by Wetzel (2021). To prepare comparison, a
particular attention is paid to consider energy variables
(and so, flows/effort) of the same nature for both models,
chosen to yield canonical Dirac structures. Both models
are presented in the form of equivalent electrical circuits.
These resulting structures allows direct comparison and
interpretation, leading to discussion in section 5. Section 6
concludes this discussion with guidelines for improving
future models to be used in simulation.



2. GENERAL SETTING

Both approaches in Mora et al. (2021b) and Wetzel (2021)
aim at proposing simplified pH descriptions of a compress-
ible fluid in a pipe with time-varying cross sections.

The time-varying domain Ω(t) is composed of segments
with same length l0, each of them having time varying
height hj(t) and volume Vj(hj) = S0 hj , j = 1, . . . , N ,
where S0 denotes the area of the (upper) fluid-structure
interface (see Fig. 1). Note that, as detailed below, Mora
et al. additionally introduce interleaved domains and half-
segments built on the geometry of Fig. 1 (see Fig. 2).

Fig. 1. (Time-varying) geometry parametrisation.

The domain Ω(t) is occupied by a compressible, isentropic,
viscous fluid in irrotational flow. The associated governing
equations are 2 :

∂ρ

∂t
= −div (ρv), (1a)

∂v

∂t
= −grad

(
1

2
|v|2

)
− 1

ρ
grad p− 1

ρ
div τ, (1b)

with ρ the fluid density, v the fluid velocity, p the thermo-
dynamic pressure and τ the viscosity tensor. The system is
closed by defining the fluid specific internal energy density
u(ρ). The total energy is given by

E(t)=

∫
Ω(t)

(
1

2
ρ(r, t)v(r, t)2+ρ(r, t)u

(
ρ(r, t)

))
dΩ(r). (2)

Both models use (1) as a basis to derive quasi-1D systems.

3. FLUID MODEL OF Mora et al. (2021b)

3.1 Original model description

The model uses a staggered grid finite difference discreti-
sation (see Trenchant et al. (2018)) of the axial velocity
and density averaged over a cross section. The dynamics
of the transverse velocity is ignored. For these choices, the
dynamics appears to be governed by a 1D PDE system.

The chosen state variables are 3 xo = [v⊺, ρ̃⊺], with
v = [v1, .., vN ]⊺ the mean axial velocities in domains
Ωj(t) of volume Vj(hj) and ρ̃ = [ρ̃1, . . . , ρ̃N−1]

⊺ the mean

densities in the corresponding staggered domains Ω̃j(t)

of volume Ṽj(hj−1, hj), see Fig. 2. While a geometry
state is needed to write the Hamiltonian of the system,
in Mora et al. (2021b) it is chosen to deduce this state

2 For a port-Hamiltonian description of infinite dimensional fluid
equations, see Mora et al. (2021a).
3 The superscript o in xo and other variables accounts for ”original
model”, with the notations used in Mora et al. (2021b).

from the tissue configuration once the connected model
is built. For comparison purposes and for completeness
of the stand-alone fluid system, we choose to add back
h = [hi, h1, .., hN ]⊺, the heights of duct segments to the
state, leading to the new state

xo
h = [v⊺, ρ̃⊺,h⊺]. (3)

Fig. 2. Mora’s model spatial discretisation of fluid variables
for original and modified state. Recall that the divi-
sion into segments Ωj(t) (top) is related to an average

velocity and Ω̃j(t) (down) to an average mass density.

Finally, the control causality at the duct extremities can
be changed by using half segments. Here, we stick to
the configuration chosen by Mora et al. (2021b): a half-
segment at left and a full segment at right. The resulting
pH system admits the following inputs and outputs :

uo =[ψo, qi,v
⊺
c ]

⊺, (input) (4a)

yo =[−qo,−ψi,−F ⊺
c ]

⊺, (output) (4b)

which embeds the set of contact surfaces velocities
vc = [vci, vc1, .., vcN ]⊺ and forces Fc = [Fci, Fc1, ..., FcN ]⊺,
the upstream mass flow qi (at x = x̃0) and enthalpy ψi and
the downstream total enthalpy ψo (at x = xN ) and mass
flow qo, as represented in Fig. 2.

3.2 Modified model using a change of variable

The pH models based either on xo or on xo
h appear to

have an interconnection modulated by the state variables.
To ease comparison and interpretation, we propose the fol-
lowing change of state that restores a canonical structure:

(vj , ρ̃j , hj) → (νj , m̃j , hj) for j ∈ [1, N ], (5)

with νj = l0vj and m̃j = ρ̃j Ṽj(hj−1, hj) the fluid mass

within Ω̃j(t). Additionally, we define the corresponding

quantities νi =
l0
2 vi and m̃o = ρ̃o

VN (hN )
2 at the boundaries.

Using the modified state

xm = [νi,ν
⊺, m̃⊺, m̃o,h

⊺]⊺, (6a)

the Hamiltonian writes

Hm(xm) = Hk(x
m) +Hp(m̃,h, m̃o), (6b)

with kinetic energy

Hk(x
m) =

N−1∑
j=1

1

2l20
hj

(
m̃j

hj−1 + hj
+

m̃j+1

hj + hj+1

)
ν2j

+
1

2
m̃1

V0

Ṽ1

(
νi
2l0

)2

+
1

2l20

(
hNm̃N

hN−1 + hN
+ m̃o

)
ν2N , (6c)



and potential energy

Hp(m̃,h,mo) =

N∑
j=1

m̃j u(ρ̃j) + m̃o u(ρ̃o), (6d)

where ρ̃j : (m̃,h) 7→ ρ̃j(m̃,h) =
m̃j

Ṽj(hj−1, hj)
gives the

mean density in the domain Ω̃j(t).

Remark 1. (variables νi, ρo). The total energy depends on
variables νi andmo defined at extremities. In the following,
we include these variables in the state to consider their
associated efforts and flows inside the end half-segments,
while the original work consider them as input variables in
the power balance (Mora et al., 2021b, equation (3.34)).
Note that for the interpretation into equivalent electric
circuit in Table 1, we will focus only on the internal
segments, which are not impacted by this choice. However,
this modification reverses the causality of the control at
the open boundaries.

From this definitions, we can derive and identify the
associated efforts ∇Hm(xm). Gradient with respect to νj
regenerates the mean mass flow qj in Ωj(t), considered
equal to the mass flow at point x̃j

∂νj
Hm =

1

l20
hj

(
m̃j

hj−1 + hj
+

m̃j+1

hj + hj+1

)
νj

= L0hj

(
ρ̃j + ρ̃j+1

2

)
vj

= qj(x
m) = q|x̃j

(x).

(7a)

Gradient with respect to m̃j is

∂m̃j
Hm =

1

2l20

(
hj−1ν

2
j−1 + hjν

2
j

hj−1 + hj

)
+ u(ρ̃j) + ρ̃ju

′(ρ̃j)︸ ︷︷ ︸
ẽj(x)

= ψ̃j(x),

(7b)

with ẽj(x) the mean specific enthalpy in Ω̃j(t) and ψ̃j(x)

the mean total enthalpy in Ω̃j(t). Finally, the gradient with
respect to hj regenerates the effective force Fcj received by
the fluid at the contact surface of Ωj(t)

∂hjH
m =− l0L0

(
ρ̃2ju

′(ρ̃j) + ρ̃2j+1u
′(ρ̃j+1)

2

)

− l0L0

4

(
ρ̃j ṽ

2
j + ρ̃j+1ṽ

2
j+1 −

(ρ̃j + ρ̃j+1)ν
2
j

l20

)
= Fcj ,

(7c)

introducing function ṽ2j : (h,ν) 7→
hj−1(

νj−1

l0
)2 + hj(

νj

l0
)2

hj−1 + hj
that evaluates the average squared velocity on Ω̃j(t).

From these definitions, we get the following modified
system of equations for the inner segments :

ν̇j = ∂m̃jH
m − ∂m̃j+1H

m − ϕj , (8)

˙̃mj = ∂νj−1
Hm − ∂νj

Hm, (9)

ḣj = vcj , (10)

where ϕj : (x
m) 7→ ϕj(x

m) gives the average velocity drop
due to energy losses in the j-th velocity section, defined as
in the original publication. Finally, at the left-hand side of
the duct we have

ν̇i = ψi − ∂m̃1
Hm − ϕi, (11)

and at the right-hand side

ṁo = ∂νN
Hm − qo. (12)

Using state xm and input/output variables um =
[ψi, q0,v

⊺
c ], y

m = [−qi,−ψo,−F ⊺
c ], the following modified

dissipative port-Hamiltonian system can finally be built

ẋm = [Jm −Rm(xm)]∇Hm(xm) +Gmum, (13)

ym = −Gm⊺∇Hm(xm). (14)

The system matrices are

Jm =

[
0 V 0

−V ⊺ 0 0
0 0 0

]
, Gm =

[−gν 0 0
0 gm 0
0 0 IN+1

]
,

Rm(xm) =

[
Rν(x

m) 0 0
0 0 0
0 0 0

]
,

(15)

with

V =



−1 0 · · · · · · · · · 0

1 −1 0
...

...
. . .

. . .
...

...
. . .

. . .
...

... 1 −1 0
0 · · · · · · · · · 1 −1


, gν =


1
0
...
0

 , gm =


0
...
0
1

 ,

(16)

Rν(x
m) = l20

dfj(x
m) · · · 0

...
. . .

...
0 · · · dfn(xm)

 . (17)

Functions dfj are defined in Mora et al. (2021b), page 11.

3.3 Equivalent electrical circuit

The reformulated model with a canonical matrix J is used
to construct a simple equivalent electronic circuit 4 of a
single segment of Mora et al. (2021b) fluid model, as
shown in table 1.a. This circuit highlights the connections
between the lumped elements of the system and clearly
exhibits two sub-circuits. The first has the structure of a
classical transmission line, which is found e.g. in modeling
of acoustic waves in tubes with time independent geom-
etry. The second sub-circuit encodes geometry variations
and fluid structure interaction.

Although the two sub-circuits are not structurally related,
they are in fact coupled by the not-separable Hamiltonian
Hm(xm) defined by (6b). While the equivalent circuit
representation allows to identify a common structure,
the Hamiltonian makes it dependent on the chosen state
vector. In fact, using the original state xo, the equivalent
circuit is modified so that both sub-circuits are structurally
coupled through a transformer.
4 The convention used is to represent mass flows and contact surface
velocities as currents, and total specific enthalpy and forces as
potentials.



4. FLUID MODEL OF Wetzel (2021)

Wetzel’s model is built using a different approach : a first
dynamical system is derived for a single fluid cell as shown
Fig. 3. Several of these cells are then used as building
blocks and connected together to form the full model.

Fig. 3. Single fluid cell of Wetzel’s model

4.1 Single fluid cell

In each cell Ωj(t), the fluid is described by its mean density
and by a three d.o.f approximation of the velocity field.
The axial velocity field is considered linear with coordinate
x and independent of y. The transverse velocity field is
linear with y and independent of x. The dynamics of each
macroscopic field can be derived by injecting these fields
into the conservation equations (1) and integrating them.
Wetzel’s thesis provides a set of state variables

xj = [νlj , νrj , πyj ,mj , hj ]
⊺, (18)

leading to a canonical representation of the dynamics in
the fluid cell. νlj and νrj are axial kinematic variables,
πyj is a transverse kinematic variable, mj is the mass of
fluid in the cell and hj the height of the cell. For more
details about definitions of the kinematic variables, refer
to (Wetzel, 2021, chapter 3).The Hamiltonian of the fluid
cell is

Hj(xj) =
2m

l20
(ν2lj + ν2rj − νljνrj)︸ ︷︷ ︸

axial kinetic

+
3π2

yj

2mj︸ ︷︷ ︸
transverse kinetic

+ mju

(
mj

S0hj

)
︸ ︷︷ ︸
internal/potential

,
(19)

where u(ρ) is the chosen internal energy density. By design
of xj , the effort vector reads

∇Hj(xj) =


∂νlj

Hj = qlj
∂νrj

Hj = qrj
∂πyjHj = vcj
∂νmj

Hj = ψj

∂νhj
Hj = −pjS0

 , (20)

with ql the mass flow at the left interface, qr the mass flow
at the right interface, vcj = ḣj the fluid-structure interface
velocity, ψj the volume-averaged total specific enthalpy
and pj the volume-averaged thermodynamic pressure.

Using uj = [ψlj , ψrj , Fcj ]
⊺ as input vector, with ψlj

the total specific enthalpy at the left interface, ψrj total
specific enthalpy at the left interface and Fcj the force
applied by the structure on the fluid, the port-Hamiltonian
formulation reads


ẋj

wj

−yj

 =


A0 B0 G0

−B⊺
0 0 0

−G⊺
0 0 0



∇Hj(xj)

zj(wj ,xj)

uj

 , (21)

with yj = [−qlj , qrj ,−vcj ] the associated output vector.

Interconnection matrices are

A0 =


0 0 0 −1 0
0 0 0 1 0
0 0 0 0 −1
1 −1 0 0 0
0 0 1 0 0

, B0 =


−1 0
0 1
0 −1
0 0
0 0

 , G0 =


1 0 0
0 −1 0
0 0 1
0 0 0
0 0 0

 .
(22)

Note that wj ≡ [ṁj , vcj ]
⊺ and the associated laws

zj(wj ,xj) =

[
vcj

πyj
mj

,−πyj
mj

ṁj

]⊺
, (23)

form a conservative gyrator, modulating the efforts by
πyj

mj
.

They are necessary to obtain a canonical interconnection
matrix.

4.2 Assembled fluid system

Assembly of the full fluid domain is done by imposing mass
flow continuity at interfaces between individual cells. This
condition writes

qrj−1 = qlj . (24)

As both qrj−1 and qlj are outputs of the cell’s pH rep-
resentation, the condition transcribes as effort constraints
on the assembled pH system.

The full state

xf = [ν⊺
l ,ν

⊺
r ,π

⊺
y ,m

⊺,h⊺]⊺, (25)

is defined, with

νl = [νl1, .., νlN ]⊺, νr = [νr1, .., νrN ]⊺,

πy = [πy1, .., πyN ]⊺, m = [m1, ..,mN ]⊺,

h = [h1, .., hN ]⊺.

(26)

Using the same procedure, the vector wf = [ṁ⊺,vc]
and corresponding function zf (wf ,xf ), as well as the
complete input uf = [ψl0, ψrN ,Fc]

⊺ and output yf =
[−ql1, qrN ,−vc]

⊺ vectors are built. The Hamiltonian as-
sociated with the assembly reads

Hf (xf ) =

N∑
j=1

Hj(xj). (27)

Finally, the assembled pH model is

ẋf

wf

0

−yf


=



A B −C⊺ G

−B⊺ 0 0 0

C 0 0 0

−G⊺ 0 0 0





∇Hf (xf )

zf (wf ,xf )

λf

uf


, (28)

with yf = [−ql0, qrN ,−vc]
⊺ the full output vector and

where λf is a set of Lagrange multipliers related to con-
straints equations (24). Matrices A and B are respectively
given by expressions for A0 and B0 in equation (22),



replacing the scalar 0 by matrices of zeros 0N,N and the
scalar 1 by identity matrices IN . The matrix C given by

C = [0N−1,1 IN−1 −IN−1 0N−1,1 0N−1,3N ] , (29)

encodes the N − 1 constraints equations and matrix G is
given by

G =

[
[1, 0, .., 0] 01,N 01,N 01,N 01,N

01,N [0, .., 0,−1] 01,N 01,N 01,N

0N,N 0N,N IN 0N,N 0N,N

]⊺
. (30)

Note that the fluid system is fully conservative. Wetzel
(2021) proposed to add lumped dissipation between each
segments when building the assembled system, which we
omitted here for simplicity.

4.3 Equivalent electrical circuit

Table 1.b shows the equivalent circuit of a single cell
of Wetzel (2021)’s model. It exhibits a transmission line
structure on the axial velocity dynamics coupled with
the transverse flow through a gyrator. The assembly of
multiple cells leads to (electrical) masses of state νrj−1

and νlj connected in series, responsible for the constraint
equations. Note that one could pre-solve the constraints
thus building equivalent masses at each junctions. How-
ever, and because of the coupling between νlj and νrj in
the Hamiltonian of a single cell, this process is not straight-
forward for the connection of more than two cells. More-
over, it would result in a modified dense interconnection
matrix, making the structural analysis difficult.

5. COMPARISON AND DISCUSSION

5.1 Fluid systems structural comparison

In summary, both models have a similar structure that
corresponds to axial velocity and mass accumulation. This
structure takes the form of a canonical transmission line
when the state is chosen so that the efforts are mass flows
and enthalpy. When focusing on a segment, Mora’s axial
structure has a Π shape while Wetzel’s axial structure
has a T shape. This difference is due to the choice of
discretisation: in the first case, masses are defined at
junctions and velocities in the segments whereas in the
second case, the opposite choice is made.

The addition of a transverse velocity component πyj in
Wetzel’s model induces a change in input causality at
the fluid-structure interface from velocity-controlled to
force-controlled and results in structural coupling between
the axial dynamics and the fluid-structure interface. Note
that the fluid-structure coupling force fcj of both models
deserves a detailed physical interpretation or numerical
investigation to understand and quantify the role played
by the transverse velocity component of Wetzel’s model.
As a first step, note that the cancellation of this transverse
component (by imposing πyj = 0, π̇yj = 0 in the dynamics
of (21)) causes a constraint to appear instead of ∂πyj

Hj

and removes the gyrator of coefficient −πyj

mj
. However,

this constraint is naturally solved by choosing the same
generator as in the Mora’s circuit (velocity source). This
results in the same decoupled structure as Mora’s circuit,
which then interprets as an asymptotic case (πyj → 0)
of Wetzel’s coupling. At the same time, this modification
reduces the number of dof in the model to 3N.

5.2 Connection to deformable tissues

Both work use simple lumped parameters representations
of the tissues built as assemblies of spring, damper and
masses. The fundamental difference comes form the causal-
ity of the fluid-structure connection. Mora’s fluid model
accepts a causal connection with masses-like components
while Wetzel’s model is causal when connected to spring-
like components. Classical vocal folds model such as the
body-cover model from Story and Titze (1994) (inter-
preted as a pH system in Encina et al. (2015)), present
masses at the fluid-structure interface thus making them
easier to connect to Mora’s model. It should be noted
that Mora proposed to connect multiple fluid sections
to single solid masses. This allows an arbitrary spatial
resolution for the fluid, independent of the chosen tissue
model complexity.

Both models become ill-conditioned when approaching
contact, as division by hj occurs in the dynamic equations

and stiffen the equations on ḣj . Mora proposes a method
for handling contact during simulation. It consists of
disconnecting the fluid from the structure and resetting
the fluid state when the height hj of a segment becomes
smaller than a threshold. Contact springs added to the
tissue model handle the collision between vocal folds.

6. CONCLUSION AND PERSPECTIVES

Our study theoretically compared two existing models of
fluid flow in pipes with moving boundaries, from the works
of Mora et al. (2021b) and Wetzel (2021). By examin-
ing the equivalent electrical circuits derived from these
models, we identified structural similarities, particularly
the presence of a canonical transmission line structure
responsible for the axial dynamics of both models. It ap-
pears that when the transverse kinetic energy is neglected,
this transmission line is structurally disconnected from
the fluid-structure interface. Regarding the connection to
deformable fluids, both models use simple lumped param-
eter representations of tissues as assemblies of springs,
dampers, and masses. The key difference lies in the causal-
ity of the fluid-structure connection, which is dependent
on the presence (or not) of transverse flow dynamics. A
method proposed by Mora et al. (2021b) for handling
channel closing and based on switch variables, could be
applied to both models.

The future trajectory of this research involves several key
aspects, including the generalization of Wetzel (2021)’s
work through the incorporation of finite-element-like
methods with a focus on eliminating constraint equations.
Further efforts will be directed towards gaining a compre-
hensive understanding of fluid-structure interface forces in
both models.
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1.a Model of Mora et al. (2021b) 1.b Model of Wetzel (2021)

Geometry Assembly of rectangular ducts with moving heights

Energy
Axial kinetic energy

Internal energy

Axial kinetic energy
Transverse kinetic energy

Internal energy

Discretization
Piecewise constant axial velocity

Piecewise constant density on a staggered grid

Piecewise linear axial mass flow
Piecewise constant density

Piecewise linear transverse velocity

Assembled system size (3N) states
(5N) states

(N − 1) algebraic constraints

Fluid-structure
interface

Velocity controlled Force controlled

Open boundaries Enthalpy or mass flow controlled Enthalpy controlled

State xm = [νi,ν
⊺, m̃⊺,mo,h⊺]⊺, xf = [ν⊺

l
,ν⊺

r ,π
⊺
y ,m

⊺,h⊺]⊺,
Hamiltonian Hm(xm) defined by (6) Hf (xf ) defined by (27)

Equivalent circuit
of inner segments

Table 1. Summary of fluid model differences.
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