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Abstract: Over the years, oil prices and financial stock markets have always had a complex relation-
ship. This paper analyzes the interactions and co-movements between the oil market (WTI crude
oil) and two major stock markets in Europe and the US (the Euro Stoxx 50 and the SP500) for the
period from 1990 to 2023. For that, I use both the time-varying and the Markov copula models.
The latter one represents an extension of the former one, where the constant term of the dynamic
dependence parameter is driven by a hidden two-state first-order Markov chain. It is also called the
dynamic regime-switching (RS) copula model. To estimate the model, I use the inference function for
margins (IFM) method together with Kim’s filter for the Markov switching process. The marginals
of the returns are modeled by the GARCH and GAS models. Empirical results show that the RS
copula model seems adequate to measure and evaluate the time-varying and non-linear dependence
structure. Two persistent regimes of high and low dependency have been detected. There was a jump
in the co-movements of both pairs during high regimes associated with instability and crises. In
addition, the extreme dependence between crude oil and US/European stock markets is time-varying
but also asymmetric, as indicated by the SJC copula. The correlation in the lower tail is higher than
that in the upper. Hence, oil and stock returns are more closely joined and tend to co-move more
closely together in bullish periods than in bearish periods. Finally, the dependence between WTI
crude oil and the SP500 stock index seems to be more affected by exogenous shocks and instability
than the oil and European stock markets.

Keywords: dynamic copula; regime switching; dependence; GARCH models; oil and stock markets

1. Introduction

Energy prices play an important role in economic activity and growth, which can
impact stock markets. One of the major consequences of that is the financialization of
the commodity market. This phenomenon has been highlighted, particularly in the last
decade, and has been the main driver of commodity price developments since the early
2000s. It was caused by an expansion of commodity transactions by investors and financial
institutions in derivatives markets. This expansion of commodities can be attributed to
different reasons. The first one is for investors to diversify their portfolios and minimize
losses and risks related to their investments. This attractive feature of commodities can
be attributed to their lack of correlation with other financial assets. Jones and Kaul (1996);
Chong and Miffre (2010), Lescaroux and Mignon (2008), Gorton and Rouwenhorst (2006),
and Buyuksahin et al. (2010) have confirmed the negative or even independent relationship
between commodities and other traditional financial assets such as equities, stocks, and
bonds. The second reason for this expansion is the huge increase in trading and speculation
with commodities. Consequently, they were massively included in portfolios, not just for
diversification benefits but also for investment purposes. Progressively, commodities have
come to behave like other traditional financial assets as their correlation is no longer the
same but has been increasing because of these changes. This is how the financialization of
commodities was initiated at the beginning of 2000.
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In this paper, I study the conditional correlation and dependency between oil com-
modity prices and stock market prices (in terms of their volatility) to better understand
their relationships and co-movements. Understanding the dynamics of their price behavior
would be of interest from a consumer and supplier perspective as well as from a policy
perspective. The analysis of dependence and interactions between energy and stock mar-
kets and among economic, macroeconomic, and financial variables in general is a matter of
great importance. It represents one of the biggest challenges facing researchers, investors,
and financial agents. It allows them a better understanding of the economic behavior of
price returns and the nature of their linkages and associations. Additionally, it helps them
make better decisions in terms of risk management and asset allocation.

This paper focuses on energy commodities, particularly crude oil. Energy commodities
represent a major class of commodities. In addition, they play a major role in economic
development, international trade, and global economic and political stability. Hence, they
have been particularly affected by commodity trading (the financialization) during the last
decade. Consequently, their association with financial markets has been strengthened. Dur-
ing the global crisis, in particular, there was a dramatic increase in the correlation between
crude oil and other equities and stock returns, as the collapse of prices also affected energy
commodities. In this paper, I consider the oil commodity. First, it is one of the fundamental
inputs of the economies of many countries, such as the US, on the production and/or
consumption sides. Second, because oil market trading activity is the highest among other
energy commodities.

Generally, the dependence between variables is measured using the Pearson correla-
tion coefficient. However, this indirectly assumes the hypothesis of both normality and
linearity of the returns, which is not the case, particularly for financial data. When faced
with this non-linearity, non-normality, and some other features characterizing financial data,
such as heavy tails, asymmetry, leverage, and extreme events, returns need to be modeled
using a much more flexible and non-standard model—a model capable of incorporating
these features and going beyond the linear approach to appropriately evaluate and examine
the dependence structure. In this context, the copula approach is the best alternative for
overcoming these limitations. It is a mathematical and statistical tool that was introduced
by Sklar (1959). It allows us to properly model the joint distributions of multiple variables
and examine their conditional correlations and co-movements in more detail.

Copulas are of interest to statisticians for two main reasons: as a way of studying
scale-free measures of dependence and as a starting point for constructing families of bi-
variate and multivariate distributions. It was Embrechts et al. (1999) that introduced copula
functions into financial econometrics in a seminal work. Meanwhile, it was pioneered
by Patton (2006) as one of the most powerful and useful tools to model and measure the
dependence and correlation between asset returns and financial data.

In this paper, I analyze the dynamics of the relationship and co-movements between
the WTI crude oil price and two major stock prices (SP500 for the US financial market and
Euro Stoxx 50 for the European stock market). To this end, I model their joint distribution
using the time-varying (dynamic) copula introduced by Patton (2006). The dependence
parameter, which describes the evolution of the correlation, is time-varying. In addition,
the intercept term of the dependence equation depends on a hidden first-order Markov
chain. This model represents the regime-switching (RS) copula, a model in which the
dynamic process can undergo sudden shifts in regimes. It was proposed by da Silva Filho
et al. (2012). The choice of this particular model for studying dependence is not random. In
finance, the dependence between financial asset returns is often subject to instability and
shifts over time. A well known example of such shifts and instability used in this paper
corresponds to the idea of bull and bear regimes alternating in financial markets. Thus,
with the particular case of the RS copula model, I aim to detect visible and persistent swings
in trends between the oil and US/European stock markets. Furthermore, regime-switching
models are the best candidates for representing and capturing more complex nonlinear
dynamic patterns, such as asymmetry. The Markov switching model is suitable for de-
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scribing correlated data that exhibits distinct dynamic patterns during different periods
Kuan (2002). The performance of the RS copula model was compared to the dynamic
copula without incorporating Markov regime switching in order to prove its efficiency
in capturing the dependence structure, taking into account the breaks and regimes over
the period of the study. The number of studies dealing with regime switching in copula
functions is limited. Also, the dependence was treated as constant and not dynamic in most
cases (Jondeau and Rockinger 2006; Rodriguez 2007; Chollete et al. 2009; Fei et al. 2013).
More recently, researchers include Boubaker and Sghaier (2016), Fink et al. (2017), Pircalabu
and Benth (2017), and Zhou (2019), among others.

Estimating the copula parameter is crucial but demanding. The dependence param-
eter incorporates an unobserved process variable related to the regime-switching model.
Consequently, it is not straightforward and computationally intensive to evaluate the log-
likelihood of the studied model. To proceed with the estimation process, I use Kim’s filter
method, proposed by Kim and Nelson (1999), to obtain the smoothing probabilities and
evaluate the likelihood function together with the usual inference function for margins
(IFM) method for copula estimation.

Attention will be directed to the marginals, which must also be modeled and estimated
properly since they represent the first step in obtaining copula inputs. As proposed by
Engle (1982), Bollerslev (1986), and Creal et al. (2013), I consider a GARCH (generalized
autoregressive conditional heteroskedasticity)/GAS (generalized autoregressive score) ap-
proach to model the returns. Then, standardized residuals of each variable were extracted,
and the empirical cumulative distribution function ‘ecdf’ was applied to transform them
into uniform data for copula inputs.

The major findings of this paper are presented as follows: The dependence of WTI
crude oil with the SP500 and the Euro Stoxx50 financial indexes has been persistent over
time. The RS copula model was a good fit to analyze and measure the dynamics and time
evolution of their co-movements by identifying two distinct regimes. The dependence
between crude oil and stock returns can be divided into two stages: a relatively calm
state and a turbulent state. The calm state corresponds to the low regime, where condi-
tional correlations between the studied variables were weak or negative. The turbulent
state corresponds to the high regime during exogenous shocks, crises, news, or turmoil,
where dependency increases significantly. With WTI crude oil, both SP500 and Euro Stoxx
50 stock returns exhibited an asymmetric tail correlation due to lower tail correlations
being higher than upper tail correlations. In other words, extreme negative returns were
more tail-dependent than extreme positive returns. The oil crude with the SP500 and Euro
Stoxx 50 indexes were more dependent and linked when extreme negative events occurred
than when positive extreme events occurred. However, the US stock market was found
to be more affected by exogenous shocks, instability, and bad news than the European
stock market.

2. Review of the Literature

Modeling dependence is of great importance for financial and economic applications.
The understanding of their relationship and behavior toward each other and the compre-
hension of their interactions in the financial market have become the focus of attention for
many investors, policymakers, and researchers. It has important implications for risk pre-
vention, portfolio selection and optimization, risk management, and asset diversification.

Many authors have confirmed the relationship between oil and stock prices. Sadorsky
(1999) argued that oil price volatility had an impact on stock returns. The same applies to
the work of Hammoudeh and Li (2008). They suggested that some major events that caused
changes in oil prices also tended to increase stock market volatility. Malik and Ewing (2009)
used the BEKK-GARCH model to examine the volatility transmission between oil prices
and five US sector indices from 1992 to 2008. They showed the existence of a significant
transmission of shocks and volatility between oil prices and the studied stock returns.
Arouri et al. (2012) did the same thing by focusing on the European stock market. Using the
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VAR-GARCH model, they showed the presence of significant volatility spillovers between
them and oil prices from 1998 to 2009. Creti et al. (2013) revealed that correlations between
commodities, including the energy and stock markets, increased significantly during the fi-
nancial crisis. Aboura and Chevallier (2015), with an asymmetric DCC with one exogenous
variable model based on the work of Hamao et al. (1990) and Vargas (2008), confirmed
the existence of significant interconnections between data from financial and commodity
markets from 1983 to 2013. Martin-Barragan et al. (2015), using wavelet analysis, found
that there is a connection between oil and stock markets (UK, Germany, US, Germany, and
Japan). This relationship was nonexistent in calm periods and increased in periods of crisis.
Hanif et al. (2023) also established the time-varying nature of the co-movements between
oil and equities using wavelet analysis.

However, modeling the dependence of asset returns is not very simple and requires
some well-developed econometric and statistical tools. The exact knowledge of their laws
of probability, as well as their joint distribution, is crucial. It is also important to take into
account the non-normality and non-linearity of financial data. Numerous empirical works
have discussed this issue Fama and French (1993), Richardson and Smith (1993), Longin
and Solnik (2001), Mashal and Zeevi (2002).

Faced with this non-linearity and non-normality, as well as other stylized facts charac-
terizing financial data such as heavy tails, asymmetry, negative Skewness, excess Kurtosis,
extreme events, and volatility clustering, returns need to be modeled using a flexible
model—a model capable of incorporating all these features and going beyond the linear
approach to appropriately model their dependency structure. In this context, we chose the
copula approach.

The term copula originates from the verb ‘to couple’, which means linking, to join,
or unite. To put it simply, copula functions are “functions that join or couple multivariate
distribution functions to their one-dimensional marginal distribution functions” Nelsen
(2007). The main point of this approach is the possibility of splitting the multivariate
(joint) distribution function into two components: marginal distributions that describe the
individual behavior of each series, and a copula function that captures the dependence
structure between them. The modeling procedure consists of two steps: First, specify the
functional form of the marginal distributions. This allows us to explore in detail stylized
facts about the returns individually (using GARCH/GAS models, for example). The next
step is to determine an adequate copula function that characterizes the dependence between
the variables. Thus, copulas have almost all the information concerning the dependence
structure independently of the marginal variables.

Several approaches analyzed the dependence structure between different variables
and modeled their joint distributions and volatilities. The generalized autoregressive con-
ditional heteroskedasticity (GARCH) model, the BEKK model by Engle and Kroner (1995),
and the dynamic conditional correlation (DCC) model by Engle (2002), among others. A
major shortcoming of these models is that conditional correlations follow the same dynamic
structure Billio et al. (2006). This imposes common dynamics among all assets, in contrast
to copula functions, where dependencies rely only on the data. In addition, DCC and BEKK
models might provide a fast and straightforward approach to analyzing smaller datasets;
however, the parameters to estimate tend to increase significantly for higher dimensions.

The literature study demonstrates a growing focus on modeling the dependence of fi-
nancial assets. Analyzing their co-movements to understand their behavior and interactions
in the financial market has important implications for risk management. Therefore, the
choice of a powerful but flexible approach to study and measure dependency is necessary.
Copula functions offer several advantages. They allow the modeling of linear, nonlinear,
and dynamic dependencies. The objective of this study is to analyze the dependence
between oil commodity prices and stock market prices (in terms of their volatility) to better
understand their correlations and co-movements. For that, I used the time-varying Markov
regime-switching copula model to detect visible and persistent swings in trends between
the oil and US/European stock markets.
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In the next two sections, I explain the methodology of the RS copula model, and then I
present the empirical study followed by the results before concluding.

3. Materials and Methods

In this section, I consider the Markov switching dynamic copula model based on da
Silva Filho et al. (2012), which introduces different regimes or states in the dependence
structure of the returns. The estimation of the parameters of the copula is conducted
using Kim’s filter for regime switching models. Since it is complex and computationally
demanding to estimate all the parameters (the copulas parameters and the marginals’
parameters) together in one step, I use the inference function for margins (IFM) method
proposed by Joe and Xu (1996) to evaluate the model in two steps. First, I will provide an
introduction to copula functions and their properties.

3.1. Introduction to Copulas Functions

Let Y ∈ Rn be a random vector. Let F(x) be the cumulative distribution function
(CDF) of Y, i.e.,

F(y) = P(Y1 ≤ y1, . . . , Yn ≤ yn)

Further, we denote F1, . . . , Fn to be the marginal CDF of Y1, . . . , Yn. A copula is a
function C : [0, 1]n → [0, 1] that verifies the following properties:

• For any i = 1, . . . , n,
C(vj, v−j) = vj

where
v−j = 1

means that all arguments except the jth argument are equal to 1.
• C(v) ≤ C(u) if v ≤ u, where v ≤ u means that vi ≤ ui for all i = 1, . . . , n.
• C is n-increasing, i.e., for any box [d, e] ⊂ [0, 1]n with non-empty volume, C([d, e]) > 0.

When there are n variables, C is called the n-copula. A copula can be viewed as a
CDF of the n-dimensional random vector V such that Vi ∼ Uni f [0, 1]. Based on the Sklar
theorem, we can link any multivariate cumulative distribution function to a copula function
as the following.

Sklar Theorem
For a random vector Y with CDF F and univariate marginal CDFs F1, . . . , Fn, there

exists a copula C such that:

F(y1, . . . , yn) = C(F1(y1), . . . , Fn(yn))

If Y is continuous, then such a copula C is unique.

3.2. The Model

The regime-switching (RS) copula model is an extension of the dynamic copula based
on Patton (2006) by adding a regime-switching part to the autoregressive dependence
equation. Note Yt = (y1,t, y2,t)

′, t = {1 . . . T}, a bivariate time series vector. By applying
the Sklar theorem, the copula model can be expressed as follows:

H(y1, y2) = Cθt(F1(y1,t|µ1), F2(y2,t|µ2)). (1)

If (F1, F2) are continuous, then the copula can be expressed as:

C(u1, u2) = H(F−1
1 (u1), F−1

2 (u2)), (2)

where θt is the copula parameter, F1 and F2 are the distribution functions of the margins and
µ1 and µ2 their parameters. H is the joint distribution function of vector Yt, u1 = F1(y1,t|µ1)
and u2 = F2(y2,t|µ1) are uniform copula inputs, obtained from the bivariate process
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Y = (y1, y2)
′
. Cθt is the dynamic Patton copula of the dependence structure, where θt

evolves over time through the following mechanism:

θt = Λ(ω + βθt−1 + αΓt), (3)

where (ω, β, α) are the set of interest parameters to be estimated, Λ is an appropriate
function depending on the choice of the copula function1 and Γ is the forcing variable
described as follows:

Γt =
1
10

10

∑
i=1

F−1
1 (u1,t−i)F−1

2 (u2,t−i) if elliptical copula (4)

Γt =
1

10

10

∑
i=1

|u1,t−i − u2,t−i| if archimedean copula. (5)

To sum up, the equation characterizing the conditional correlation evolution of the
returns corresponds to an intercept, an autoregressive term βθt−1, and a forcing variable Γt.
Γt is expressed by the mean absolute difference between u1,t and u2,t over the ten previous
observations when dealing with Archimedian copulas. It is the product of the inverse c.d.f
of the two variables in the case of the elliptical copula.

Our aim is to introduce different regimes to take into account the variations and
changes that can affect the dependence between the bivariate process Yt in terms of their
volatilities. The regime switching is introduced to the dependence equation, explained
above, by allowing the parameter ω to depend on a hidden, latent state variable St. St
takes discrete values k = [1 . . . n]. Two states, or regimes, are considered: St = {0, 1}2. The
two states represent low/high regimes. St follows a Markov chain of order one, irreducible
and ergodic, with a 2 × 2 transition probability matrix P.(

P(St = 0|St−1 = 0) P(St = 1|St−1 = 0)
P(St = 0|St−1 = 1) P(St = 1|St−1 = 1)

)
=
(

p00 p01
p10 p11

)
where pij = P[St = j|St−1 = i], (i, j) ∈ {0, 1} are the transition probabilities of St given
that St−1. They verify the equation pi0 + pi1 = 1. The transition matrix drives the random
behavior of the state variable and contains only two parameters (p00 and p11). The im-
proved copula parameter evolves dynamically, as already defined by Patton (2006), and the
constant term (ω) switches according to a Markov chain of order one, as follows:

θSt
t = Λ(ωSt + βθt−1 + αΓt). (6)

Finally, the distribution function of the bivariate time series process (y1,t, y2,t) is given by:

(y1, y2) ∝ C
θ

St
t
(u1,t, u2,t|θSt

t ). (7)

3.3. The Estimation

The density function, h, of the vector Yt can be expressed as:

h(y1,t, y2,t) = c
θ

St
t
(u1,t, u2,t|θSt

t )
2

∏
i=1

fit(yit|µi). (8)

Its log-likelihood based on the Markov copula model is the following:

l(Ψ|Yt) =
T

∑
t=1

log(h(y1,t, y2,t)) (9)

=
T

∑
t=1

log
(

c
θ

St
t
((u1,t, u2,t)|θSt

t )×
2

∏
i=1

fit(yit; µi)
)

. (10)
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It is not straightforward to evaluate the log-likelihood in the previous equation. It
is computationally intensive because we have an unobserved process St related to the
regime-switching model.

For simplification, we proceed to the decomposition of the log-likelihood function into
two equations by referring to the inference function for margins (IFM) method proposed
by Xu (1996). Using the IFM method, the parameters of the log-likelihood function are
estimated in two stages, plus this method is computationally simpler than the maximum
likelihood estimation (MLE).

First, we estimate the parameters of the margins (µi, i = {0, 1}) and then use these
estimated parameters to estimate the copula parameters (θSt

t ). In the first step, the marginal
distribution parameters are estimated using the GARCH and GAS models. Thus, the
estimation is straightforward since it follows the traditional approach for GARCH models.
The difficulty lies in the estimation of the copula parameters because θSt

c depends on a
non-observable discrete variable St that follows a Markov chain of order one. For that, we
use Kim’s filter method, proposed by Kim and Nelson (1999).

The log-likelihood function of the RS copula model is given by:

l(Ψ|Yt) =
T

∑
t=1

log

(
c

θ
St
t
(F1(y1t|µ1), F2(y2t|µ2)|θSt

t )
2

∏
i=1

fit(yit|µi)

)
, (11)

where c is the copula function with parameter θSt
t , f is the density of the marginal distri-

bution of the returns yi, µi is the set of parameters of the marginals, Fi is the cumulative
distribution function, and Ψ = (θSt=0

t , θSt=1
t , µ1, µ2, p11, p00).

Based on the IFM method, we proceed to the decomposition of the log-likelihood
function as follows:

l(Ψ|Yt) =
T

∑
t=1

log

(
c

θ
St
t
(F1(y1t|µ1), F2(y2t|µ2)|θSt

t )
2

∏
i=1

fit(yit|µi)

)

=
T

∑
t=1

log c
θ

St
t
(F1(y1t|µ1), F2(y2t|µ2)|θSt

t ) +
T

∑
t=1

2

∏
i=1

log( fit(yit|µi))

=
T

∑
t=1

log c
θ

St
t
(F1(y1t|µ1), F2(y2t|µ2)|θSt

t ) +
T

∑
t=1

log( f1t(y1t|µ1)) +
T

∑
t=1

log( f2t(y2t|µ2))

=
T

∑
t=1

log c
θ

St
t
(u1,t, u2,t|µ1, µ2; θSt

t ) +
T

∑
t=1

log( f1t(y1t|µ1)) +
T

∑
t=1

log( f2t(y2t|µ2))

= lc(θSt
t ) + l f1

(µ1) + l f2 (µ2)

l f1(µ1) and l f2(µ2) are the likelihood functions of the marginal distributions of y1 and y2,
respectively. In this case, the parameters of each margin are explicitly estimated without
any need for sophisticated numerical optimization. However, this does not apply to lc(θ

St
t ),

the copula log-Likelihood. Considering the different states of St, lc(θ
St
t ) can be expressed as:

lc(θ
St
t ) =

T

∑
t=1

log c(F1(y1t), F2(y2t)|µ1, µ2; θSt
t )

=
T

∑
t=1

log
( 1

∑
St=0

c(F1(y1t), F2(y2t)|µ1, µ2; θSt
t )

=
T

∑
t=1

log
( 1

∑
St=0

c(F1(y1t), F2(y2t)|St, It−1)Pr(St|It−1)

where It−1 is the set of information available prior to time t.
St, t ∈ {0, 1} are not observable; thus, the MLE approach is not fitted to estimate the

parameters θSt
t of the copula likelihood lc(θ

St
t ). Instead, we use Kim’s filter, which combines

the Kalman filter with Hamilton’s filter for Markov switching models.
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To evaluate lc(θ
St
t ), it is necessary to calculate the weights Pr(St|It−1) for both states or,

more precisely, the filtered probabilities of the unobservable regime St given the available
information set. Given It−1 = {Y1, Y2, . . . Yt−1}, the information set up to t − 1, and the
states {St = i, i ∈ {0, 1}}, the copula likelihood function of Yt can be rewritten as:

c(u1t, u2t) =P(St = 0|It−1; θSt
t ).c(u1t, u2t|St = 0, It−1; θSt

t )

+ P(St = 1|It−1; θSt
t ).c(u1t, u2t|St = 1, It−1; θSt

t ).
(12)

For i = {0, 1}, the filtering probabilities of St are:

P(St = i|It, θSt
t ) =

(
P(St = i|It−1; θSt

t ).c(u1t, u2t|St = i, It−1; θSt
t )

)/
(

P(St = 0|It−1; θSt
t ).c(u1t, u2t|St = 0, It−1; θSt

t )

+ P(St = 1|It−1; θSt
t ).c(u1t, u2t|St = 1, It−1; θSt

t )

) (13)

In addition, we obtained the predicted probabilities using the relationship between them
and the filtering probabilities:

P(St+1 = i|It, θSt
t ) =P(St+1 = i|St = 0, It)P(St = 0|It; θSt

t )

+ P(St+1 = i|St = 1, It)P(St = 1|It; θSt
t ).

(14)

The filtering process presented above in Equations (13) and (14) represents the filtering
algorithm developed by Kim (1994) and Kim and Nelson (1999). By iterating this process,
for t = 1 . . . T, we obtain the filtered probabilities P(St = i|It; θSt

t ), the conditional densities
of the copula c(u1, u2|It−1; θSt

t ), and the conditional probability distribution of St given the
information set up to t.

Obtaining the distribution of St for the entire sample using the information given
by all T observations would be more efficient than simply considering information up to
t. Kim’s filter is used to compute the smoothing probabilities, Pr(St = i|IT) = ∑1

j=0 Pr
(St = i, ST = j|IT) where Pr(St = i, ST = j|IT) is obtained based on the filtered probabilities
by applying the backward-smoothing process.

For (i, j) ∈ {0, 1}, the smoothing probabilities can be expressed as:

P(St = i|IT ; θSt
t ) = P(St = i|It; θSt

t )×
( pi0.P(St+1 = 0|IT ; θSt

t )

P(St+1 = 0|It; θSt
t )

+
pi1.P(St+1 = 1|IT ; θSt

t )

P(St+1 = 1|It; θSt
t )

)
. (15)

The backward-smoothing process is described as follows:

1. We obtain P(St = i|It), i ∈ {0, 1} for t = 1 . . . T, which are given by the filtering
algorithm.

2. We initialize the smoothing algorithm in t = T with the filtering probability P(ST = i|IT;
θSt

t ) and go back recursively.
3. For each t = T − 1, . . . , 1, the smoothing probability distribution P(St = i|IT ; θSt

t ) is
given by Equation (15).

The combination of the two algorithms, the filtering algorithm (to obtain the filtered
probabilities) and the backward-smoothing algorithm (presented above for the smoothing
probabilities), is called the forward-filtering–backward-smoothing algorithm, which allows
the estimation of the parameters needed to maximize the RS copula log-likelihood.

To summarize, the dependence parameter follows a restricted ARMA process that
depends on a latent process St. The state St can have two regimes indicated by St = 0 and
St = 1. Additionally, St follows a first-order Markov chain. This implies that the probability
that regime 0 will occur at time t depends solely on the regime at time t − 1. This is referred
to as the transition probabilities. However, we can use the information from current and
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past observations, combined with the distributions and transition probabilities, to make an
inference on the probability of being in each regime. This gives us the filtering probabilities
and the conditional probability distribution of St given the information set up to time t. We
refer to this procedure as the Hamilton filter. It is also possible to determine the distribution
of St on a specific regime at time t, using all available information, given all T observations.
These are the smoothed probabilities. Kim (1994) presented an efficient recursive algorithm,
the forward-filtering–backward-smoothing algorithm, which can be applied to compute
these smoothed probabilities. The estimation of the time-varying copula and the RS copula
models was performed using Matlab software, particularly the Copula toolbox and the
Markov-switching copula toolbox.

4. Results
The Data

This analysis was based on the daily spot prices of West Texas Intermediate (WTI)
crude oil, a global benchmark for oil, and two major stock indices: the SP500 (Standard
and Poor’s 500), representing the US stock market, and the Euro Stoxx 50, representing the
European stock market. The West Texas Intermediate (WTI) crude oil prices were extracted
from the US Energy Information Agency (EIA), while the SP500 and the Euro Stoxx 50 were
from Yahoo Finance. The series data are of daily frequency, comprising the period from
2 January 1990 to 2 January 2023, for a total of 8255 observations. The datasets take into
account different turbulences and extreme events in the economy (the Asian crisis between
1997 and 1998, the global financial crisis around 2007–2009, the European debt crisis of
2009–2012, etc.).

The daily returns of each series, rt, were obtained by taking the log difference of the
prices, pt, as follows:

rt = log(pt)− log(pt−1) (16)

This transformation is required because the evolution of prices is usually non-stationary,
and returns help remove the source of this non-stationarity.

Table 1 summarizes the descriptive statistics of oil price returns and the two stock
returns. All returns were stationary. They exhibited negative skewness and ’excess’ kurtosis,
while the Jarque–Bera statistic indicated that neither series is unconditionally normal. The
three markets did not show a significant trend over the period of study because their
means were very small relative to their standard deviations. Based on the robust Ljung–Box
statistic, the Euro Stoxx 50 index suggests the presence of temporal dependence in its
returns. In addition, the ARCH-LM test rejects the null hypothesis of no presence of ARCH
effects for all variables.

Table 1. Descriptive statistics of the returns.

SP500 WTI Oil Euro Stoxx 50

Size 8255 8255 8255
Mean 0.000 0.000 0.000

SD 0.011 0.025 0.013
Max 0.109 0.188 0.104
Min −0.094 −0.406 −0.090

Excess Kurtosis 8.527 14.659 5.138
Skewness −0.242 −0.646 −0.113

Jarque Bera 20,155 *** 59,835 *** 7309.4 ***
Robust Q (20) 27.766 28.225 32.810 *

ARCH 217.140 39.027 139.110
Note: *** and * denote statistical significance at 1% and 10% levels, respectively.

The non-normality, possible asymmetry, and presence of heavy tails further confirmed
the nonlinearity between returns. Consequently, the particular choice of the copula model
integrating a regime-switching model may be a good candidate to deal with dependence in
a more general setting and take into account those features characterizing the data.
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Marginal Distributions

To study the marginal distributions of the variables, I used the GARCH/GAS-type
models with different distributions for the error terms (Normal, Student, or skewed Student)
for their variances (volatilities) and the ARMA/ARFIMA model for the means. The
estimation of the models was performed using Oxmetrics software. The aim of this section
is to extract and correct the volatilities of the returns from the presence of autocorrelation
and conditional heteroscedasticity. The choice of the best-fitted model for the data was
based on the information criteria, as well as a set of diagnostic tests.

The results of the estimation of the marginal models are given in Table 2. The ARFIMA
(2, d, 2)-IGARCH (1, 1) with Normal innovations was the best model for the SP500 index,
whereas the ARFIMA (2, d, 1)-IGARCH (1, 1) model with Normal innovations was best
for WTI crude oil. For the Euro Stoxx 50, the GAS (1, 1) model with skewed Student-t
innovation was the best-fitted model. The lagged autoregressive terms (AR(1) and AR(2))
related to the mean equation of the crude oil and the SP500 were, overall, statistically
significant at the 1% level. Thus, past observations (past information sets) did impact and
affect the returns of the series. Furthermore, the estimates of the ARCH component in the
variance equation were statistically significant for the three studied variables. Thus, all of
them exhibit significant ARCH effects. In other words, one-period lagged squared shocks
could affect the current conditional volatility. Likewise, the significant GARCH coefficients
indicate the persistence of the volatility in each market. Both the coefficients of asymmetry
and the degree of freedom of the student distribution were significant. Therefore, the
distribution of the European stock market was characterized by heavy tails that could be
related to a ‘possible’ dependence in the tails when joined to other distributions.

Table 2. Parameter estimates of the returns of the variables: WTI oil, SP500, Euro Stoxx 50; p-values
are between parentheses.

SP500 WTI Oil Euro Stoxx 50

Mean Equation
Cst (M) 0.000563 0.000199 0.000447

(0.000) (0.225) (0.000)
d-Arfima 0.013 −0.065

(0.761) (0.003)
AR (1) 0.009 −0.526

(0.947) (0.011)
AR (2) 0.783 0.042

(0.000) (0.087)
MA (1) −0.052 0.579

(0.614) (0.005)
MA (2) −0.799 -

(0.000) (-)
Variance Equation 0.012

Cst (V) × 104 0.009 0.014 0.000
(0.002) (0.004)

ARCH (Alpha1) 0.089 0.082 0.104
(0.000) (0.000) (0.000)

GARCH (Beta1) 0.910 0.917 0.994
(0.002) (0.000) (0.000)

Asymmetry −0.090
(0.000)

Tail 7.529
(0.000)

Diagnostic tests
LL 21609.5 15920 20,317.752

AIC −6.515 −4.799 −6.126
Q (20) [0.051] [0.384] [0.130]
Q(20)2 [0.051] [0.080] [0.493]

ARCH 1–10 [0.079] [0.103] [0.391]
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Testing the accuracy of the estimates to ensure the efficiency of the selected models
is crucial for our study. Copula inputs must be well specified for better results. At the 5%
significance level, the null hypothesis of no autocorrelation was accepted, and there were
no remaining ARCH effects in the estimated residuals, as indicated by the Ljung–Box and
the ARCH–LM tests. All models were well specified and offered a good fit for the data. To
obtain uniform inputs for the copula model, we used the empirical cumulative distribution.
The Anderson Darling (AD), the Cramer–von Mises, and the Kolmogorov–Smirnov (KS)
tests, presented in Table 3, which were used as uniformity tests for the obtained residuals,
did not indicate evidence against the uniform [0, 1].

Table 3. Diagnostic tests (p-values) for standard residuals of the three returns: Anderson Darling
(AD), Cramer–von Mises (CvM), and Kolmogorov–Smirnov (KS).

WTI Oil SP500 Euro Stoxx 50

CvM 1 1 1
KS 0.993 0.941 0.999
AD 1 1 1

5. Discussion

The next step, after specifying the marginals of each variable and obtaining uniform
data for copula inputs, is to proceed to estimate the copula model. The aim of this study
is to examine the dependence and co-movements between the oil market (crude oil) and
the US/Europe stock markets represented by the SP500 index and the Euro Stoxx index
using the copula approach. The results of the estimation for each pair (SP500-WTIoil and
Eurostox50-WTIoil) using both the dynamic and RS copula models are given in Tables 4–6.

Table 4. Estimated parameters of the dynamic copulas for the WTI crude oil/SP500 and the WTI
crude oil/Eurostoxx 50 volatilities; standard errors between brackets.

SP500 and WTIoil EuroStoxx50 and WTIoil

Copula
Function

Copula
Function

Normal Clayton Gumbel SJC Normal Clayton Gumbel SJC

ω 0.002 0.726 0.881 ωU −17.440 ω 0.002 0.715 −0.093 ωU −18.155
(0.001) (0.006) (-) (0.001) (0.001) (0.105) (0.120) (0.001)

β 1.926 1.485 0.181 βU −0.002 β 1.940 −1.434 1.468 βU −0.007
(0.0279) (0.0161) (-) (0.000) (0.026) (0.357) (0.236) (0.000)

α 0.0840 0.452 −1.127 αU −1.566 α 0.063 0.461 −0.536 αU −4.005
(0.016) (0.006) (-) (0.000) (0.012) (0.056) (0.055) (0.000)

ωL 3.926 ωL 3.754
(0.000) (0.000)

βL −2.852 βL −2.782
(0.000) (0.000)

αL −24.998 αL −24.766
(0.000) (0.000)

LogL 153.517 96.123 61.249 113.245 LogL 112.900 78.832 72.999 85.514
Aic −4.060 −3.128 −2.221 2.545 Aic −3.436 −2.713 −2.553 3.114
Bic 17.091 18.023 18.930 44.849 Bic 17.715 18.438 18.571 45.419



Econometrics 2024, 12, 14 12 of 19

Table 5. Estimated parameters of the regime-switching (RS) copula for the WTI crude oil/SP500
volatilities, standard errors between brackets.

Normal Clayton Gumbel SJC

w0 −0.000 0.511 0.165 w0,u −0.002
(0.001) (0.034) (0.006) (0.015)

w1 0.175 0.070 −0.662 w1,u −9.653
(0.067) (0.208) (0.896) (0.558)

β 1.929 0.507 0.511 βu 2.519
(0.135) (0.026) (0.000) (0.287)

α 0.038 −0.118 −1.653 αu −8.883
(0.046) (0.084) (0.067) (1.219)

p 0.944 0.951 0.982 w0,l −0.745
(2.424) (0.500) (0.372) (0.319)

q 0.952 0.944 0.975 w1,l −16.687
(0.942) (1.166) (0.674) (6.324)

βl −0.561
(0.490)

αl 2.454
(1.719)

p 0.951
(0.393)

q 0.944
(1.025)

logL 213.674 182.082 116.705 188.539
AIC 1.277 1.591 2.492 9.527
BIC 43.581 43.896 44.797 80.034

Table 6. Estimated parameters of the regime-switching (RS) copula of the WTI crude oil/Euro Stoxx
50 volatilities; standard errors between brackets.

Normal Clayton Gumbel SJC

w0 1.656 0.202 0.730 w0,u 0.418
(0.422) (0.110) (2.276) (1.238)

w1 0.003 −1.220 5.417 w1,u −9.386
(0.067) (0.080) (78.249) (2.634)

β 1.448 0.572 0.044 βu 1.897
(0.840) (0.028) (1.954) (0.785)

α 0.296 −0.268 −1.813 αu −11.224
(0.122) (0.245) (0.563) (6.771)

p 0.950 0.940 0.933 w0,l 0.469
(0.494) (1.113) (56.003) (0.686)

q 0.942 0.949 0.944 w0,l −24.363
(1.262) (0.560) (1.293) (87.805)

βl −4.107
(0.129)

αl 2.645
(2.710)

p 0.951
(0.380)

q 0.943
(0.937)

logL 161.173 145.833 51.763 150.347
AIC 1.837 2.046 4.136 9.978
BIC 44.141 44.351 46.440 80.486

Different families of copulas were considered to account for the different character-
istics in the dependence structure of the studied variables (linear correlation coefficient,
upper/lower tail dependency): Normal, Clayton, Gumbel, and Symmetrized Joe Clayton
(SJC). The choice of the best model fitted to the data was based on the maximization of the
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log-likelihood (or the minimization of the BIC/AIC criteria). For both the time-varying and
the regime-switching models, the Normal copula, followed by the SJC copula, was best
fitted to describe the dependence of the variables under analysis.

The results of the parameter estimates for the two studied pairs given by the time-
varying dynamic copula model (Table 4) show that the autoregressive coefficient in the
dependence equation (β) was overall high for the best-fitted model. Thus, there was
a high degree of persistence in the dependence between WTI crude oil and both the
US and European stock indices. The parameter estimate, ω, the constant of the copula
parameter that reflects the dependency level, was higher with SP500-WTIoil than with
Eurostoxx50-WTIoil. Thus, the US stock market had the highest dependency on oil prices
compared to the European stock market. The SJC copula describes the behavior of the
dependence structure for both the lower and upper tails, which is why it has two different
estimates for the constant ω: ωL and ωU . For both pairs, ωL was higher than ωU , meaning
that lower-tail correlations are more important than upper-tail correlations for SP500-
WTIoil and Eurostoxx50-WTIoil. In other words, the oil-stock extreme dependence differs
during the upturn and downturn periods. Negative returns were more dependent than
positive returns between US/European stock markets and WTI crude oil. They exhibited
asymmetry in extreme dependency. We also confirm this fact based on their time-varying
tail dependence given by the dynamic SJC copula model (Figures 1A,C and 2A,C). Indeed,
both stock indices reflected more joint negative extremes than joint positive extremes with
the WTI crude oil returns. For both pairs, lower-tail correlations took values between 0 and
1.2, while upper-tail correlations did not exceed 0.2. Correlations in the upper tail were
very low and weak compared to those in the lower tails, confirming an asymmetric tail
dependency with WTI crude oil for both stock indices, particularly the European index,
and the nonlinearity of their dependency. Aloui et al. (2013) used the copula approach and
also confirmed asymmetry in extreme comovements between crude oil and equity markets
in the case of the Central and Eastern European transition economies.

Tables 5 and 6 report the parameter estimates of the RS Markov copula model given the
two regimes’ dependence structures. The high regime (regime 1) corresponds to turbulent
and unstable periods, and the low regime (regime 0) is for calm and stable periods. The high
values of the transition probabilities p (Pr(St = 0|St−1 = 0)) and q (Pr(St = 1|St−1 = 1))
indicate that both regimes were persistent. Based on their log-likelihood, the results of
the time-varying RS copula model offer a better fit for the data compared to the dynamic
model. The Normal copula was best fitted for the data, followed by the SJC. For both
SP500-WTIoil and Eurostoxx500-WTIoil, the difference between the absolute constant terms
in each regime |ω1| − |ω0| was overall positive for all copula functions. This means that
the correlations and co-movements between the volatilities of the SP500 and the Euro Stoxx
50 with the WTI crude oil increased in regime 1, the high-dependency regime. In addition,
in the RS case, the coefficient β was positive. Therefore, we also confirm the persistence
of the dependence structure of the studied variables over time, although this persistence
was higher in the US stock market than in the European stock market (β estimates mostly
higher for the SP500 index).

Furthermore, the absolute value of the constant
∣∣∣ωu(1,0)

∣∣∣ of the upper tail was lower

than that of the lower tail
∣∣∣ωl(1,0)

∣∣∣ in both regimes (high and low). Similar to the dy-
namic copula model, the RS copula model confirms that the lower tail dependence and
co-movement across both stock returns with crude oil were stronger than those of the
upper tail.

Figures 1–4 show the dependence paths between the US/Europe stock and oil markets
given by the dynamic copula model and the dynamic regime-switching copula model, as
well as their filtering probabilities on their high and low regimes, to obtain a better picture
of their time-varying evolution. The linear correlation coefficient is given by the Normal
copula (Figures 3 and 4) while the upper and lower tail dependencies are given by the SJC
copula (Figures 1 and 2).
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Figure 1. Lower and upper tail dependencies between Eurostoxx50–WTIoil returns. (A) Lower tail
by time-varying SJC copula. (B) Lower tail given by regime-switching (RS) SJC copula. (C) Upper tail
by the dynamic SJC copula. (D) Upper tail by RS SJC copula.
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Figure 2. Lower and upper tail dependencies between SP500–WTIoil returns. (A) Lower tail by
the dynamic SJC copula. (B) Lower tail by regime-switching (RS) SJC copula. (C) Upper tail by the
dynamic SJC copula. (D) Upper tail by RS SJC copula.

Figures 3C,D and 4C,D represent the estimated smoothing probabilities of being in the
high/low dependence regime for the SP500–WTIoil and Eurostoxx50–WTIoil, respectively.
It can be seen that both SP500 and Euro Stoxx50 volatilities produce regime-switching and
time-varying dependence with WTI crude oil.

Overall, the time-varying correlation, given by the dynamic copula, between the stock
and oil markets was weak (Figures 3A and 4A). The dependence between the SP500 and
WTI crude oil volatilities given by the RS model (Figure 3B) was low but with jumps related
to a negative increase in correlation reaching −0.5 during the high dependence regime on
specific dates (end 1991, mid 1995, 2009–2010, between 2014 and 2015, end 2017, end 2019).
These shifts in dependence, joined by a change in the regime from low to high, can be
attributed to different events: the Iraqi invasion of Kuwait in mid-1991 and the beginning
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of the Gulf War; the global financial crisis around 2008/2009; the oil price crash and plunge
in 2014; and the COVID-19 pandemic).
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Figure 3. Dependence dynamics between SP500–WTIoil returns. (A) Dependence by the dynamic
Normal copula. (B) Dependence by the regime-switching (RS) Normal copula. (C) Filtered probabili-
ties in the low regime. (D) Filtered probabilities for the high regime.
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Figure 4. Dependence dynamics between Eurostoxx50–WTIoil returns. (A) Dependence by the
dynamic Normal copula. (B) Dependence by the regime-switching (RS) Normal copula. (C) Filtered
probabilities in the low regime. (D) Filtered probabilities for the high regime.

Copula functions are a powerful tool for isolating and examining the dependency
structure. We can link the sudden rise or fall of correlations to major economic, financial,
and global events given their corresponding periods of time; however, a more thorough
regression analysis with macroeconomic and financial indicators needs to be conducted to
further confirm the results.

Notice that the time-varying correlation with and without regime switching between
the European stock market and WTI oil (Figure 4A,B), although also low and weak, did
not exhibit a distinguished regime shift with sudden jumps in the correlation like the
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SP500–WTI oil. Thus, we can say that there is a difference in the reaction of the European
stock index and the US stock index to exogenous shocks and news. This means that the
US stock market is more affected by instability, crises, and exogenous shocks than the
European market, which is in accordance with Schuenemann et al. (2023).

The upper and lower tail correlations given by the dynamic copula and the regime-
switching copula are given in Figures 1 and 2. Two regimes, high and low, were detected
depending on the dependence structure. The changes in the tail correlations given by the
RS copulas were not as straightforward and distinct as their conditional linear correlations
(Figures 1B and 2B for lower tails, Figures 1D and 2D for upper tails). Both copula models
(with and without regimes) highlighted and confirmed the time variation and nonlinearity
of the dependence in both the upper and lower tails. However, as expected, the RS copula
was more fitted to represent the different regimes in the dependence structure. Apart from
a brief peak in 1995, both upper and lower tail dependencies given by the RS SJC copula
for both studied pairs were stable overall before the end of 2008 and increased slightly
after, particularly for the SP500–WTIoil (up to 1.1 for the lower tail and up to 0.25 for the
upper tail). In addition, the extreme dependency was higher in the lower tail than in the
upper tail. However, for Eurostox50–WTIoil, tail dependencies were more stable and did
not show a distinguished pattern with each regime (Figure 2B,D). Again, we show that the
European stock market is less affected by instability and crises than the US stock market.

Therefore, for both pairs, we can confirm that their tail correlations increased during
the global crisis. However, this increase was more important in the lower tail than in the
upper tail. In other words, WTI crude oil prices and European and US stock markets were
more dependent and linked when extreme negative events that occurred than with positive
extreme events. They are more affected by bad news and losses that naturally induce a
rise in their lower tail co-movements. However, this phenomenon is more visible and
noticeable in the US stock market.

To sum up, the dependence of WTI oil with the SP500 and the EuroStoxx50 can be
divided into two stages: a relatively calm state and a turbulent state.

The calm state corresponds to the low regime, where conditional correlations between
the studied variables were weak or negative. This finding has been confirmed by other
researchers (Cifarelli and Paladino (2010); Balcilar et al. (2015)). The turbulent state cor-
responds to the high regime during exogenous shocks, crises, news, or turmoil, where
dependency increases significantly. In addition, with WTI crude oil, both the SP500 and
Euro Stoxx 50 exhibited asymmetric tail correlations due to lower tail correlations being
higher than upper tail correlations. However, it was much more noticeable in the US equity
market than in the European one. In other words, the US stock market is more affected by
exogenous shocks and instability than the European stock market, which is in accordance
with Schuenemann et al. (2023).

This shift in dependence can be attributed to changes in the economy, the supply
and demand fundamentals, Chevillon and Rifflart (2009), along with increasing trading
activity by speculators and financial institutions in derivatives and financial markets (the
financialization of commodities).

It is known that commodity investments present an attractive aspect for investors and
financial institutions since they do not behave like traditional financial assets. Therefore,
they tend to include them in their mixed-asset portfolios for diversification benefits to
improve the risk-adjusted performance of their investments. However, the results of this
paper suggest that during crises and turmoil, the energy market, particularly oil, cannot be
a good hedge to protect investors from any potential losses related to their investments. In
other words, oil cannot be considered a safe haven to help reduce portfolio risk. Investors
should try another class of commodities instead of energy that follows a cyclical pattern
and is affected mostly by economic fundamentals and demand and supply variations, and
not by external factors such as crises, turbulence, and speculations. Our findings contradict
some studies in the literature, such as Lamm (1999) and Chong and Miffre (2010), who
found that commodities offer diversification benefits even in periods with high volatility.
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6. Conclusions

In this paper, I study the dependence between the US and European equity markets
represented by the SP500 and the Euro Stoxx 50 with the WTI oil price returns using the
copula approach. Both the dynamic and the Markov copula models are used. The difference
between the two is that the latter one, proposed by da Silva Filho et al. (2012), integrates
a Markov chain in the intercept term of the equation, describing the time evolution de-
pendency. It can provide a better understanding of the relationships between the studied
variables than with only the dynamic conditional copula. After properly modeling the
marginals of the returns using an ARIMA-GARCH/GAS model to extract their volatilities,
we proceed to the estimation of the RS copula model. This step is not straightforward and
is time consuming since we deal with an unobserved Markov process. For that, I used the
Kim filter to obtain the smoothing probabilities and estimate the copula parameters.

The empirical results confirmed the time-varying and non-linear aspect of the de-
pendence between the variables, alternating between high and low regimes. This can
be explained by the phenomenon of the financialization of commodities, where, starting
around 2003, there was a huge expansion of commodity transactions linked to investments.
More and more investors and financial institutions used the commodity market for the
purposes of asset management and portfolio allocation. Thus, commodities, or at least
some of them, started to behave more like traditional financial assets. That is why they
were also affected by the financial crisis in the same way as stock market assets.

The existence of two persistent regimes (high and low) in the dependence structure
was proven by the dynamic RS copula model. In addition, the US market was more affected
by economic and financial turmoil than the European market. The last point to mention is
the asymmetry between both SP500 and Eurostoxx50 with the WTI oil. In fact, dependence
in the lower tail was higher than the dependence in the upper tail for both pairs, meaning
that extreme negative returns are more likely to be linked and tail-dependent in periods of
economic turmoil and crisis (bear market), while extreme positive returns (bull market) are
more tail-independent.

Possible directions for future research would be to include other exogenous variables,
like some financial instruments and macroeconomic indicators, to study more in detail the
relationship between the oil price and the stock market prices. Also, considering other
energy commodities like natural gas, it would be interesting to see if there is any difference
in their behavior compared to oil. In addition, a possible extension of the RS model in
order to measure and evaluate more thoroughly the dependence structure is to introduce a
hidden state in the autoregressive term of the dependence equation of the copula function,
not just the constant term, and not limit the number of regimes to two.
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Notes
1 For the Frank copula, the transformation Ψ is Ψ(x) = x; for the Clayton copula, it is Ψ(x) = exp(x); for the Gumbel copula,

Ψ(x) = exp(x) + 1; and for the Gaussian and Student copulas, the Ψ is the inverse Fisher transform, Ψ(x) = exp(2x)−1
exp(2x)+1 .

2 Allowing for multiple regimes is possible, although it can be computationally expensive. In addition, in economics, this
unobservable state variable St represents the current state of the economy Anas and Ferrara (2004). Therefore, a two-state Markov
chain is generally used in practice. In particular, ’normal (good)’ and ’abnormal (bad)’ states are identified to represent the current
state of the economy.
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