
HAL Id: hal-04678612
https://hal.science/hal-04678612v1

Preprint submitted on 27 Aug 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

PYRAMID: A Protocol for Private and Trustless
Multi-level Marketing on the Blockchain (Long Version)

Giovanna Kobus Conrado, Amir Kafshdar Goharshady, Kha Nhat Long
Nguyen

To cite this version:
Giovanna Kobus Conrado, Amir Kafshdar Goharshady, Kha Nhat Long Nguyen. PYRAMID: A
Protocol for Private and Trustless Multi-level Marketing on the Blockchain (Long Version). 2024.
�hal-04678612�

https://hal.science/hal-04678612v1
https://hal.archives-ouvertes.fr

PYRAMID: A Protocol for Private and Trustless
Multi-level Marketing on the Blockchain

(Long Version)
Giovanna Kobus Conrado

Department of Computer Science
HKUST

Clear Water Bay, Hong Kong
gkc@connect.ust.hk

Amir Goharshady
Department of Computer Science

HKUST
Clear Water Bay, Hong Kong
goharshady@cse.ust.hk

Kha Nhat Long Nguyen
Department of Computer Science

HKUST
Clear Water Bay, Hong Kong

knlnguyen@connect.ust.hk

Abstract—The inherent traceability of blockchain transactions
and smart contracts raises serious privacy concerns, especially
in contexts such as private multi-level marketing in which
maintaining the anonymity of relationships is paramount. In
this work, we present PYRAMID, a protocol leveraging blind
signature techniques that provides a smart-contract-based multi-
level marketing implementation which is both private, i.e. no one
can find out the relationships between people, and trustless. We
specifically focus on the unique challenges posed by pyramid-
like schemes, where funds must flow between members and
their referrers without revealing their relationship. Our protocol
achieves this by anonymizing the referral process, allowing
for secure transactions without compromising privacy. We also
provide a detailed security analysis showing that our approach
attains the desired operational and privacy requirements.

Index Terms—Multi-level Marketing, Blockchain, Smart Con-
tract Applications

I. INTRODUCTION

Blockchain and Smart Contracts. Pioneered by Bitcoin [1],
Blockchain protocols provide a general solution to the problem
of decentralized consensus. In a Blockchain-based system, all
honest nodes of the network can reach consensus about an
ordered set of transactions. In Bitcion, these transactions are
simply transfers of money. However, later protocols such as
Ethereum [2] built upon the groundbreaking idea that trans-
actions can perform any well-defined and unambiguous com-
putation. This led to the so-called programmable blockchains,
which form the vast majority of new protocols in the past
decade, and on which transactions can not only transfer money
or tokens, but also deploy a piece of code (a smart contract)
or interact with already-deployed smart contracts, for example
by calling their functions. Since we have consensus over the
transactions and their order, any node on the network can
simulate the smart contracts and thus we will reach consensus
about the state of every contract and the balance of every
account. The decentralized and trustless nature of blockchain
made smart contracts the ideal platform for a wide variety of
financial contracts, such as auctions [3], escrows [4], [5], credit
reporting [6], games [7]–[9], distributed problem-solving [10],

elections [11], [12], random number generation [13]–[18] and
loans [19].

Multi-level Marketing [20]. In this work, our focus is on a
specific real-world type of multiparty financial contract, i.e.
Multi-Level Marketing (MLM). An MLM starts with a finite
set of founders, who are also members. Each member can
recruit new members and become their “referrer”. Each new
member pays a membership fee to the system. The members
also pay commercial revenues to the network from time to
time. Part of these funds goes to the member’s referrer, the
referrer’s referrer and so on. MLMs are also known as pyramid
schemes. For our technical purposes in this work, there is no
distinction between the two terms. However, there is a legal
distinction which is orthogonal to our work: MLMs are legal
in most jurisdictions and their main source of income is not the
membership fees but the sale of a product by the members to
the general public. Thus, they have independent commercial
income. On the other hand, pyramid schemes are illegal in
most jurisdictions, considered a scam, and merely function by
transferring membership funds from new recruits to the top of
the pyramid without providing any separate good or service.

The Challenge. As in the many other financial contracts
named above, it would be desirable to implement an MLM
as a smart contract and provide a decentralized and trustless
system in which everyone is assured that they will receive
their portions of the revenue. The primary challenge is that
blockchains and smart contracts are transparent by design.
Everyone can see the public list of transactions, which in turn
shows the flow of money and all function calls to the contracts.
Thus, if implemented naı̈vely, an MLM smart contract will
leak the relationships between the members and anyone on
the blockchain can know the referrer and referees of every
member.

Our Contribution. In this work, we provide a novel MLM
protocol called PYRAMID, using ideas and techniques from
blind signatures and mixing, that not only achieves the benefits
of a smart contract such as decentralization and trustlessness,
but also provides strong privacy guarantees ensuring that no

other member or network node can unmask the referrer-
referee relationship of any pair of members. Our protocol is
implemented as an Ethereum smart contract. Interactions with
smart contracts incur gas costs, minimizing which is an active
area of research [21]–[23]. We show that our approach is also
gas-efficient and highly cost-effective in practice.

II. RELATED WORKS

Our PYRAMID protocol is mainly based on blind signa-
tures [24], a cryptographic primitive which we will formally
define in Section III. Blind signatures have also been used for
the following related purposes:

Auctions. In Decentralized Finance (DeFi) literature, many
protocols have been proposed to address the challenges of con-
ducting secure and transparent auctions [25], [26]. Many cryp-
tographic primitives like Zero-knowledge proofs [25], [26],
Multi-party computation [25], public-key encryption [26], and
blind signatures [27] are used by these auction protocols.

E-Cash. Blind signatures were originally designed to enable
the e-cash protocol [24]. This protocol predates blockchains
and uses blind signatures to provide electronic money with pri-
vacy and unlinkability between the payer and the payee [24],
[28]. This can be seen as a digital counterpart of anonymous
transactions in physical currency. In e-cash, users withdraw
electronic coins from a bank and spend them with merchants.
Later, each merchant deposits the collected coins back to the
bank. However, the bank is unable to connect the deposits to
the withdrawals and thus has no information regarding which
user paid which merchant.

Voting. The transparency provided by blockchain is highly
useful for electronic voting. In this context, blind signatures
have been extensively employed in the design of secure voting
protocols on the blockchain, ensuring both transparency of
outcome and user privacy, i.e. guaranteeing that no one can
know which user voted for which candidate [28]–[32].

Coin Mixing. A mixer is a cryptographic protocol used to
enhance privacy and anonymity in cryptocurrency transactions
on a blockchain [33]. It works by combining and redistributing
coins from multiple users, making it impossible to trace
transactions back to their original senders. Coin mixers help
protect user privacy by obfuscating transaction histories and
preventing straightforward analysis of blockchain data. Many
practical coin-mixing protocol have been developed using both
blind signatures and other techniques [33]–[37]

III. PRELIMINARIES ON BLIND SIGNATURES

In this section, we cover the blind signature background
needed for our approach. We refer to [24], [38] for a more
detailed treatment. Blind signatures enable a user to obtain a
valid signature on a message without revealing the message
itself to the signer. The process typically involves the user
“blinding” the message before presenting it to the signer,
who then signs the blinded message. Upon receiving the
signature, the user can “unblind” the signature on the blinded
message to obtain a valid signature on the original message.

In PYRAMID, we opt to use Schnorr Blind Signatures (SBS)
as in [38]. We note that [39] showed Schnorr Blind Signatures
are not secure under the ROS assumption. However, this was
alleviated by [38]. In this work, we use blind signatures
and partial blind signatures in a modular manner. Thus, to
understand our approach, one can ignore the mathematical
details of the construction below and focus only on the high-
level guarantees provided by these signatures, i.e. the inability
of the user, Alice, to forge signatures and the impossibility
for the signer, Bob, to find any information about the message
m. Nevertheless, we include all the details in order to be self-
contained.

Schnorr Blind Signatures [38]. Suppose that Alice wants to
obtain Bob’s signature on a message m which must be kept
private and not disclosed to Bob. SBS solves this problem in
the following phases:

Setup Phase. The following parameters are chosen by Alice
and Bob:

• A large prime number p,
• A multiplicative generator (primitive root) g which has

order q = p− 1 modulo p,
• A cryptographic hash function H.

Additionally, Bob generates a private key x and computes and
announces his public key X = gx mod p.

Signing Phase. This phase starts with Alice communicating
to Bob that she wants a blind signature on an undisclosed
message. Let this message be m. They then take the following
steps:

• Nonce Generation: Bob selects two random values a, y ∈
Z and computes

A = ga

Y = Xy

He sends A and Y to Alice. This effectively commits him
to a and y without disclosing them.

• Blinding: Alice generates three random values r1, r2, γ ∈
Zp and computes:

Y0 = Y γ

A0 = gr1 ·Aγ · Y r20

c0 = H(A0||Y0||m)

c = c0 + r2

Intuitively, c is a blinded version of c0. She sends c to
Bob.

• Signing: Bob receives c from Alice and computes the
signature s such that s = a+ c · y · x and sends (s, y) to
Alice.

Unblinding Phase. Upon receiving (s, y) from Bob, Alice
checks that y 6= 0, Y = Xy and gs = A · Y c. If these checks
do not pass, she rejects the signature (s, y). Otherwise, Alice
computes s0 = γ · s+ r1 and y0 = γ · y. The tuple (c0, s0, y0)
is the valid unblinded signature on m.

Signature Verification. The verification consists of checking
that y0 6= 0, letting Y0 = Xy0 and A0 = gs0 · Y −c0

0 . The
signature is valid if c0 = H(A0||Y0||m).

In this example, Alice successfully obtains a blind signature
(c0, s0, y) from Bob for her message m without ever disclosing
m to Bob or enabling him to find any information about m.

Partial Blind Signatures [38]. Partially-blind signature
schemes extend blind signature schemes by enabling signers
to include specific public information η, such as an expiration
date, in the resulting signatures based on prior agreement with
the receiver. This enhancement allows for greater flexibility
and customization in the signed documents while preserving
the privacy and security provided by blind signatures. In this
work, we use the implementation of Partial Blind Signatures
from [38] which is secure without relying on the ROS assump-
tion. Suppose that Alice wants to obtain a signature on the
undisclosed message m but the signature should also certify
public information η. The protocol consists of the following
phases:

Setup Phase. The following parameters are chosen by Alice
and Bob:

• A large prime number p,
• A multiplicative generator (primitive root) g which has

order q = p− 1 modulo p,
• Two cryptographic hash functions H and F .

As before, Bob generates a private key x and computes and
announces his public key X = gx mod p.

Signing Phase. This phase starts when Alice communicates
to Bob that she wants a blind signature on an undisclosed
message m. We also assume that Alice and Bob already agree
on the public information η which should be embedded into
the signature. They take the following steps:

1) Nonce Generation: Bob selects three random values
a, t, y ∈ Zp and computes Z = F (η) and the commit-
ments A = ga and C = gt · Zy . He sends A and C to
Alice.

2) Blinding: Alice receives (A,C) and computes Z = F (η).
She generates four random values r1, r2, γ1, γ2 and com-
putes:

A0 = gr1 ·Aγ1/γ2

C0 = Cγ1 · gr2

c0 = H(η||A0||C0||m)

c = c0 · γ2

As before, the intuition is that c serves as a blinded
version of c0. Alice sends c to Bob.

3) Signing: Bob checks that c 6= 0, computes s = a+c ·x ·y
and then sends (s, y, t) to Alice as signature

Unblinding Phase. Upon receiving (s, y, t) from Bob, Alice
checks that y 6= 0, C = gt ·Zy and gs = A ·Xc·y. She rejects
the signature if these checks fail. If they pass, Alice computes
s0 = (γ1/γ2) · s+ r1 and y0 = γ1 · y and t0 = γ1 · t+ r2. The
tuple (c0, s0, y0, t0) is the unblinded signature.

Signature Verification. The verification step checks that y0 6=
0 and computes C0 = gt0 · Zy0 and A0 = gs0 ·X−y0·c0 . The
signature is valid if c0 = H(η||A0||C0||m).

Informally, the approach is very similar to blind signatures,
except that the public information η forms part of c0.

IV. DESIGN GOALS AND SYSTEM MODEL

In this section, we give an overview of our PYRAMID
protocol, its design goals and the security model.

A. Desired Functionality

The protocol is initialized with a set of founding members.
An existing member Andy can refer a new member Bernie
to join the protocol. We will call Andy the parent of Bernie.
When Bernie joins, he must pay a protocol fee, that goes to
the platform owner, and a joining fee, that goes to his parent
Andy. Before accessing any received money, any non-founding
members need to send a fixed percentage π of that money to
their parents. In this case, if Andy is not a founding member,
he must send a portion π of the money received from Bernie to
his own parent and only then can Andy access the remainder.
Similarly, if Andy’s parent is not a founding member, they
must send a portion π of the money received from Andy to
their parent, and so on.

B. Security Model

We make the following standard security assumptions which
are supported by the cryptographic primitives we will use in
the design of our protocol:
Adversary Model. We consider an adversary that can control
any number of accounts/members in the protocol, which may
also include the signer.
Rational Adversary Assumption. The adversary will not per-
form an attack that causes them to lose money. We use a
similar analysis of a rational adversary as in [40].
Properties of Blind Signatures. We assume the standard
security properties of (partially) blind signature schemes:

• Unforgeability: It is impossible for an adversary to gen-
erate k+1 valid message-signature pairs after observing
k completed interactions with an honest signer.

• Blindness: It is infeasible for a dishonest signer to decide
which of two messages m0 and m1 has been signed first
in two executions with an honest user. This holds even if
the signer is allowed to choose the public key.

C. Desired Security Guarantees

Our protocol must satisfy the following desired security
requirements:

• Theft-resistance: If by honestly following the rules of
protocol the adversary will gain m0 units of money, then
they should not be able to gain more than m0 units by
any dishonest behavior.

• Unlinkability of Referrals: An existing member Andy
should be able to recruit a new member Bernie without
the adversary being able to uncover their relationship,
i.e. that Andy is Bernie’s parent.

Andy Bernie

Referral Mixer

$

Money Mixer

Bernie

Member Account

Signy

Signer Account

Protocol Contract

$

Money Record

Fig. 1. System Architecture of the PYRAMID Protocol

• Unlinkability of Money Flow: Members should be able
to transfer money to their parents without the adversary
being able to uncover their relationship. Since we use
blind signatures for our money transfers (see below),
given the control of the signer account, the adversary
is successful if they can link a blind signature with
the unblinded signature, which corresponds to linking a
member with their parent.

We use mixers to create both types of unlinkability. In doing
so, we can inherit all the security guarantees of mixers as
in [33]. In particular, this guarantees correctness in the amount
of money sent and received from and to each member which
is our theft-resistance property above.

V. OUR PROTOCOL

In this section, we first provide an overview of our protocol’s
system architecture and then present all the details.

A. System Architecture

The architecture of our protocol, as shown in Figure 1,
consists of the following parts:
Protocol Contract. The protocol will be initialized with the
following public parameters:

• Two hash functions: H,F : {0, 1}∗ → {0, 1}C . The
constant C depends on the setting in which the protocol
is implemented. In practice, we use C = 256.

• A large prime number p.
• An integer g which is a primitive root modulo p.
• A portion π ∈ [0, 1], which models the percentage of

money that a member needs to send to their parent before
they can access the remainder.

• Three fixed fees: FEEPROT, the protocol fee, FEEJOIN, the
joining fee that new members need to send to their parent
after they have been referred, and FEEBID, the bidding fee
required for a member to become the signer. The role of
the signer will become apparent further below.

• A fixed value µ which will be used in the money mixer.
These parameters will be the same for all rounds. Every pair

of private and public keys in the protocol will be of the form
(X,x) with the private key x and public key X = gx mod p.
The protocol will also record a list of blockchain addresses
(ADDR) of member accounts.
Member Accounts. This is a new type of account, itself im-
plemented by a smart contract. As a deployed smart contract,

each member account will have a public address denoted as
ADDR. Naturally, each member account is associated with
one of the members in the protocol. The member account also
contains two different public keys:

• Public Send Key (PUSK): This is a public key that is used
to generate a signature to initiate a send transaction from
the account. The signature needs to be generated using
a corresponding private send key (PRSK) that is known
only to the parent of the member owning this account.

• Public Receive Key (PURK): This is a public key that is
used to initiate a receive transaction by the account. The
signature needed to initiate a receive transaction will be
created using a corresponding private receive key (PRRK)
that is known by the member owning this account.

In the case of our founding members, who naturally have no
parent, the public send key will be 0. Each member account
will also hold a money record and contain further data (see
below) supporting message signing.

Signer Account. The signer account is simply a member
account that is selected as the signer in our current round.
The additional information saved in the member account to
support signing is:

• Public Sign Key (PUSIGN): This is the public key that is
used to blind-sign a transaction when this member is the
signer. The corresponding Private Sign Key (PRSIGN) is
known by the member and satisfies PUSIGN = gPRSIGN.

• Signer Index (SI): This indicates the priority of the
member when they request to become a signer. The
smaller the number, the higher the priority. This value
will increase each time the member successfully becomes
the signer and gets arbitrarily large if cheating behavior
is detected.

Money Record (MR). The ownership of money by members
will be encoded through a money record. Thus, each member
account will also contain the following information:

• Number of MRs: A count of the MRs generated by this
account through transfer activities.

• List of MRs: All MRs this account holds.
Each MR possesses, as attributes, the amount of money it
holds, and a state which can be either “locked” or “unlocked”.
Locked MRs require the member to send π percent of their
value to the member’s parent in order to get unlocked. Un-
locked MRs can be converted into the base cryptocurrency
and withdrawn from the PYRAMID system. At any time, every
member has the option of merging several of their locked MRs
into a single locked MR whose value is the sum of the original
values. This is implemented as a contract function. Similarly,
they always have the ability to break down a locked MR into
several smaller locked MRs whose total value is equal to the
initial MR’s value.

Referral Mixer. To support the unlinkability of referral of
a new member, we utilize a referral mixer where we mix
referrals in the same round with each other, making them indis-
tinguishable. The mixer will record the following information:

• Blind Schnorr Signature: We use Blind Schnorr Signa-
tures to implement the referral mixer. Thus, our imple-
mentation contains a function to verify such signatures.

• List of Referral Requests: This contains all the referral
requests taking place in the current round.

• List of Signatures: This contains all signatures corre-
sponding to the requests.

Money Mixer. To support the unlinkability of money flow from
a member to their parent, we use a money mixer where MRs
of a fixed value µ are mixed with each other. The mixer will
have a send phase, receive phase, and verify phase, similar
to [36]. The Mixer will record the following information:

• List of Send Requests: All send requests in the current
round.

• List of signatures: All signatures corresponding to the
referred requests. These are signatures created using
members’ PRSIGN.

• List of receive requests: All receive requests in the current
round.

• Total amount of transferred money in this round.
Given the structure above, our protocol is comprised of two

distinct workflows: one for the entry of new members into the
system and another for the secure distribution of funds from
a member to their parent.
Entry Workflow. The protocol employs a blind signature
scheme for the entry of new members into the system. This
mechanism ensures that the relationship between the referrer
and the new member remains confidential. The blind signature
process allows the referrer to obtain a signature on behalf of
the new member without revealing the identity of the new
member to any other party.
Distribution Workflow. To facilitate secure transactions be-
tween members and their parents, the protocol utilizes a partial
blind signature scheme. This ensures that the total amount
of money being transferred is publicly known while still
maintaining the anonymity of the parties involved in each
transaction.
Prevention of Cheating. The protocol works similarly to a
mixer in both workflows: we employ a mechanism where the
role of the central signer is rotated among member accounts.
By employing game theory principles, the protocol aligns the
incentives of internal members with the overall integrity of the
system. Participants are incentivized to follow the protocol
rules and act honestly, as deviations from the prescribed
behavior would result in unfavorable outcomes for themselves.

B. Detailed Protocol Description

We will now detail the steps the protocol takes for deploy-
ment and the entry and distribution workflows.
Protocol Deployment. First, we will deploy the protocol
contract, with all its initial parameters as previously defined.
Account Deployment. Each person who wants to join the
protocol will need to deploy a smart contract following the
member account model. This person will then acquire a public
address for the member account. They should use this public

address to join the protocol. The protocol will check that the
public address corresponds to a member account.
Protocol Setup. This phase sets up the founding members.
Each founding member will need to deposit an amount of
money to enter the protocol. These members will have 0 as
their PUSK and they will be able to unlock their MRs without
the need for a transfer to parents.
Signer Rotation. The protocol works in rounds, and each
round will have a member chosen as the signer. Each member
can bid to become the signer of the next round during the time
of the current round by depositing FEEBID. When a member
joins the protocol, their SI is set as the position they join
the protocol, i.e. the k-th member will have SI = k. When a
member successfully becomes the signer, their SI will increase
by the number of current members in the protocol. When two
members with the same smallest SI bid for the signer, the
first come first serve rule will be applied. The remaining two
workflows only happen after the protocol setup and registration
of founding members. Round 0 is used to find the first signer,
so all other actions start at round 1.
Member Referral. We now describe the workflow for the entry
of non-founding (referred) members. Please see Figure 2. This
follows the blind signature protocol in Section II. A person
who wants to join the protocol must first deploy a member
account and acquire a public address. The account will become
a member of the protocol when the protocol contract records
that address as a member. Suppose that Andy, which is already
a member account of the protocol, wants to refer an account
Bernie, which is currently not a member and that member
Signy is the current signer. The steps are:

1) Andy requests a new referral code from Signy. In this
step, Signy will choose a, y $←− Zp and send A = ga and
Y = PUSIGNySigny to Andy. The pair (A, Y) will also act
as the nonce to identify the request.

2) Andy chooses three random numbers r1, r2, γ
$←− Zp and

computes:

Y0 = Y γ

A0 = gr1 ·Aγ · Y r20

c0 = H(A0||Y0||ADDRBernie)

c = c0 + r2

Andy sends c to Signy. Note that in this case, the secret
message m which should not be disclosed to Signy or
anyone else is simply Bernie’s address. Moreover, Andy
would agree to do this step only if he has access to the
PRSK corresponding to the PUSK of Bernie’s member
account contract.

3) Signy checks that c 6= 0 and then computes s = a +
c · PRSIGNSigny · y and then sends (c, s, y) to Andy as
signature. All announcement are on-chain and recorded
in the smart contract.

4) The smart contract checks that y 6= 0, Y = PUSIGNySigny
and gs = A · Y c. If these checks do not pass, it refuses
to record the values provided by Signy. Not providing a

Signy Andy Bernie

Step 1
Requests referral code

Sends referral code

Step 2
Generates blind message

Sends blinded message

Step 3
Computes message signature

Sends blind signature

Step 4 Smart contract checks signature

Step 5
Unblinds the signature

Sends signature

Step 6 Announces signature

Step 7 Smart contract checks the account and adds Bernie as a member

Step 8 Smart contract checks if Signy is cheating

Fig. 2. PYRAMID Member Referral Workflow. Messages have been ab-
stracted. In implementation, every communication other than the one between
Andy and Bernie is done through the contract protocol, which performs the
required checks automatically.

correct signature is seen as dishonest behavior by Signy
and will be punished.

5) Andy computes s0 = γ · s + r1 and y0 = γ · y. The
tuple (c0, s0, y0) is a valid signature. Andy sends this to
Bernie.

6) After all the new registrations in the current round have
passed the previous step, Bernie announces (c0, s0, y0)
for verification to the smart contract. He also pays the
fees (see further below for details).

7) The verification step checks that y0 6= 0 and computes
Y0 = PUSIGNy0Signy and A0 = gs0 · Y −c0

0 . The signature is
valid if c0 = H(A0||Y0||ADDRBernie). After successful
verification and checking that ADDRBernie is a valid
instance of the member account contract, the protocol
contract registers it as a member.

8) The contract checks whether the number of added mem-
bers in the current round is less than or equal to the
number of referral requests in Step 1. If there are more
members added than referred, then Signy is cheating. The
contract will cancel all the referrals of the current round
and punish Signy.

Initial Setup for New Member. As mentioned above, each
newly-referred member needs to deposit FEEPROT to join the
protocol. The new account Bernie will need to send FEEJOIN

to the account Andy that referred them to the protocol. This
money will become a locked MR that belongs to Andy. This
is not applicable to the founding members since they are

not referred and have no parents. To achieve privacy for this
transfer, we utilize the following money flow.

Money Flow. We now describe how money flows between
members and their parents. This is illustrated in Figure 3. We
focus on the benefits associated with referrals, but one can
transfer any other commercial income in the same manner.
This workflow follows the partial blind signature protocol in
Section III. Assume a member Bernie has to send money to
their parent Andy and the current signer is a member Signy.
Recall that the private send key PRSK corresponding to the
PUSK recorded in Bernie’s member account is only known to
the parent Andy. Let Bernie have an MR with the value µ and
suppose the current round number is rCURR. The process is as
follows:

1) Bernie initiates a send transaction.
2) Signy generates three random values a, t, y

$←− Zp,
computes Z = F (µ||rCURR) and then computes the
commitment A = ga, C = gt · Zy . She sends (A,C)
to Bernie via the smart contract.

3) Bernie receives (A,C), generates random values
r1, r2, γ1, γ2 and computes:

A0 = gr1 ·Aγ1/γ2

C0 = Cγ1 · gr2

c0 = H(Z||A0||C0||ADDRAndy)
c = c0 · γ2

Here c0 is the original message and c is the blind
message.

4) Bernie sends all the values above to Andy and asks Andy
to sign c using the PRSK corresponding to the PUSK in
Bernie’s member account.

5) Andy verifies that all values, especially c0, are well-
formed as above, and only if so, signs c. This ensures
that Bernie cannot send money to anyone other than his
parent, Andy, since if c0 does not reference ADDRAndy,
he would simply refuse to sign it.

6) Bernie sends c to Signy over the smart contract. He also
sends the signature obtained in the previous step. The
contract verifies the signature using the PUSK in Bernie’s
account.

7) Signy checks that c 6= 0 and then computes s = a + c ·
PRSIGNSigny · y and sends (s, y, t) to Bernie and Andy as
signature. This is also over the smart contract and visible
to everyone. The smart contract checks the validity of the
blind signature, i.e. it checks that y 6= 0, C = gt ·Zy and
gs = A · PUSIGNy·cSigny.

8) After all transfers of the current round have passed the
previous step, Andy initiates a receive transaction by pro-
viding a valid receive signature generated by PRRKAndy.
He reads (c, s, y, t) from the contract and computes

s0 = (γ1/γ2) · s+ r1

y0 = γ1 · y
t0 = γ1 · t+ r2

Signy Andy Bernie

Step 1 Initiates transaction

Step 2 Sends commitment

Step 3 Generates blind message

Step 4 Sends blinded message

Step 5
Computes message signature

Sends signature

Step 6 Sends blind message and signature

Step 7 Sends blind signature

Step 8
Initiates receive transaction

Smart contract checks signature

Step 9 Smart contract checks that Signy has not cheated

Fig. 3. Flow of Money from a Member Bernie to his Parent Andy in
PYRAMID.

The tuple (c0, s0, y0, t0) is a valid signature. Andy pro-
vides this to the contract, which checks its validity
by running the verification step. It first checks that
y0 6= 0 and then computes C0 = gt0 · Zy0 and
A0 = gs0 · PUSIGN−y0·c0

Signy . The signature is valid if
c0 = H(Z||A0||C0||ADDRAndy). Note that Andy is
the only member who can receive this money since his
address is embedded into c0.

9) The contract checks if the sum of the received moneys in
this round does not exceed the sum of sent money. If it
does, then Signy is dishonest. All transfers in the current
round will be ignored and Signy will be punished by
increasing her SI to ensure she will never be the signer
again. If the check passes, the money will be distributed
as follows: Bernie will receive an unlocked MR with a
value of µ · (1− π) and Andy will receive a locked MR
with a value of µ · π.

This concludes our protocol.

Deposits and Rewards. In practice, to ensure that taking the
role of Signy is rewarded, we can pay a fixed small portion
of each transfer as a fee to Signy. Similarly, we can require
Signy to put down a deposit which will be confiscated if the
contract detects her cheating or lack of participation by Signy.

VI. SECURITY ANALYSIS

In this section, we prove the desired security properties of
our PYRAMID protocol.

Theorem 1 (Valid Blind Signatures). In PYRAMID, Signy
cannot provide invalid signatures.

Proof. Every signature request is recorded in the smart con-
tract and every signature provided by Signy is verified by the
protocol contract.

Theorem 2 (Honest Signer). A rational Signy will follow the
protocol honestly.

Proof. Since she cannot provide invalid signatures as per
Theorem 1, a dishonest Signy can either (i) refuse to provide
blind signatures for some requests in either of the two mixing
workflows, or (ii) forge valid blind signatures that do not
correspond to a request recorded in the smart contract. Our
contract has deadlines for each step and identifies and punishes
(i) as cheating. Since there is no financial benefit in (i), a
rational Signy will always provide valid signatures. Attack
(ii) is also identified at the last step of every workflow by
the contract. If the contract receives more valid unblinded
signatures than the number of requests/transfers in the current
round, then Signy has forged extra valid signatures. This will
invalidate all the referrals and transfers in the current round,
which is mildly inconvenient to the other members, but they
can retry in next round. Signy on the other hand will be
penalized by having her deposit taken away and losing the
ability to ever be the signer in the future. Thus, a rational
Signy will not attempt this.

Theorem 3 (Signature Reuse Prevention). A member account
cannot reuse the signature in the money flow protocol of a
given round to generate a valid signature for a later round.

Proof. This is a direct corollary of the fact that round numbers
are included as public information in the blind signatures.

Theorem 4 (Correctness of Member Referral). Only members
can refer other members. If Andy is a member who refers
Bernie, he will become Bernie’s parent unless he chooses not
to.

Proof. Only members can request referrals and have them
signed by Signy. As per Theorem 2, Signy will not sign
blind messages from non-members as this will cause her to be
caught for cheating. Since blind signatures are unforgeable, no
one else can create them. In Step 2 of our Member Referral
workflow, Andy chooses to include ADDRBernie in his c0. He
will do this only if he has access to the private send key
corresponding to the public send key in ADDRBernie. This by
definition means Andy is Bernie’s parent. A rational Andy
would not agree to add a member Bernie without having
control over the private send key. However, there is nothing
in the protocol to prevent this. If they so choose, a member
can refer another member without becoming their parent. The
only side-effect is that the referrer misses out on their shares
of the revenue generated by the referee.

Theorem 5 (Correctness of Money Flow). Each member
Bernie can send money only to their parent Andy and can
only unlock a locked MR by sending a portion π of it to the
parent.

Proof. Since blind signatures are unforgeable, they can only
be created by Signy. As shown in Theorem 2, Signy only
signs values c that are sent to her over the smart contract in
Step 6. However, in this step, the contract first verifies the
consent of Andy by checking that c is signed by the private
send key corresponding to Bernie’s public send key. Recall that
this private key is only known to Andy (Theorem 4). Thus,
Bernie can transfer an MR only with Andy’s consent, which
will be given only if Andy’s address is put as the recipient.
The contract automatically pays a portion π to Andy (locked)
and the rest to Bernie (unlocked) in Step 9.

Theorem 6 (Unlinkability). If Andy is Bernie’s parent, it is
infeasible for an adversary, who may control any number of
nodes or members other than Andy and Bernie, potentially
even including Signy, to identify this relationship. More specif-
ically, in each round of referral, the adversary is unable to
distinguish which referrer referred which referee. However, the
identities of the sets of referrers and referees of the current
round are known. Similarly, in each round, the adversary is
unable to distinguish which recipient is receiving money from
which sender.

Proof. This is directly based on the blindness property of
our blind signatures. If an adversary can connect Bernie’s
identity to Andy’s, they can distinguish which messages were
blind-signed before/after the messages corresponding to the
referral/transfer between Andy and Bernie. See [38], [41], [42]
for more discussion on the blindness property.

VII. IMPLEMENTATION AND PERFORMANCE

Implementation. We implemented our PYRAMID protocol as
an Ethereum smart contract in Solidity. The implementation is
accessible at [43]. Our code is open-source, free and donated
to the public domain with no copyright.

Automated Security Analysis. To gain further confidence that
our implementation is secure and does not contain known
vulnerabilities, we ran it through two state-of-the-art auto-
mated static security analyzers: Slither and Mythril. Slither
[44] is an open-source project with over five thousand stars on
GitHub. It analyzes Solidity code and reports on a wide range
of common vulnerabilities that have been identified by the
community. Mythril [45] is a security analysis tool provided by
Consensys, a leading smart contract auditing firm. Similar to
Slither, Mythril also examines the Solidity code and identifies
various types of vulnerabilities. Neither Slither nor Mythril
reported any vulnerabilities in our implementation.

Gas Analysis. On Ethereum, deploying smart contracts and
interacting with them requires paying gas fees. This is the
mechanism that ensures safety against DoS attacks. Since ev-
ery member has to pay for gas, it is important for blockchain-
based protocols to be efficient and use as little gas as possible.
The gas costs of our protocol can be divided into deployment
costs, i.e. one-time costs for publishing contracts on the
blockchain, and workflow costs.

Contract Deployment Gas Cost
(Units of Gas)

Deployment Gas Cost
(USD)

Member Account 2,391,290 87
Main Protocol 3,271,747 120
Referral Mixer 1,094,354 40
Money Mixer 1,420,075 52

TABLE I
DEPLOYMENT GAS COST OF THE CONTRACTS IN PYRAMID.

Workflow Function Gas Cost
(Units of Gas)

Gas Cost
(USD)

Referral

sendReferRequest 74,427 2.7
signReferRequest 71,737 2.6

onBoard 174,398 6.4
referValidityCheck 55033 2.0

Money Flow

sendTransaction 106,472 3.9
signTransaction 73,233 2.7

receiveTransaction 117,275 4.3
moneyValidityCheck 54,956 2.0

TABLE II
WORKFLOW GAS COSTS IN OUR IMPLEMENTATION OF PYRAMID.

The deployment gas cost for each contract in our archi-
tecture is shown in Table I. USD values are approximated
based on typical gas prices and exchange rates on June 20th,
2024. The main contract takes almost 120 USD to deploy, but
this has to be done only once. Each member account requires
almost 87 USD in gas fees to deploy. Note that each member
creates their account only once, too. We then have one instance
of the mixers for each round, so the costs of deploying them
can be divided among all members taking part in that round.

The workflow gas cost is incurred when a member interacts
with the protocol in the two main workflows: Referral and
Money Flow. The gas cost for each step in these workflows is
shown in Table II. These costs are significantly smaller.

VIII. CONCLUSION

In this work, we presented PYRAMID, a secure, decen-
tralized and trustless protocol that implements multi-level
marketing using smart contracts and ensures privacy and
unlinkability of participants to their referrers. We achieved
this by relying on two mixing stages, one for referrals and
one for money transfers, which both use (partially) blind
signatures. We proved that our approach satisfies the desired
security and privacy properties and implemented it as a free
and open-source Solidity smart contract for Ethereum. Finally,
we showed that our contract is gas-efficient and affordable as
illustrated in Table II.
Acknowledgments and Notes. The research was partially supported
by the Hong Kong Research Grants Council ECS Project Number
26208122. G.K. Conrado was supported by the Hong Kong PhD
Fellowship Scheme (HKPFS). Authors are ordered alphabetically.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[2] G. Wood et al., “Ethereum: A secure decentralised generalised transac-

tion ledger,” Ethereum project yellow paper, pp. 1–32, 2014.
[3] H. S. Galal and A. M. Youssef, “Verifiable sealed-bid auction on the

Ethereum blockchain,” in FC, 2019, pp. 265–278.
[4] F. Sabry, W. Labda, A. Erbad, H. Al Jawaheri, and Q. Malluhi,

“Anonymity and privacy in bitcoin escrow trades,” in PES, 2019.
[5] A. K. Goharshady, “Irrationality, extortion, or trusted third-parties:

Why it is impossible to buy and sell physical goods securely on the
blockchain,” in Blockchain, 2021, pp. 73–81.

[6] A. K. Goharshady, A. Behrouz, and K. Chatteriee, “Secure credit
reporting on the blockchain,” in Blockchain, 2018, pp. 1343–1348.

[7] K. Chatterjee, A. K. Goharshady, and A. Pourdamghani, “Probabilistic
smart contracts: Secure randomness on the blockchain,” in ICBC, 2019.

[8] K. Chatterjee, A. K. Goharshady, and Y. Velner, “Quantitative analysis
of smart contracts,” in ESOP, 2018, pp. 739–767.

[9] K. Chatterjee, A. K. Goharshady, R. Ibsen-Jensen, and Y. Velner,
“Ergodic mean-payoff games for the analysis of attacks in crypto-
currencies,” in CONCUR, 2018, pp. 11:1–11:17.

[10] K. Chatterjee, A. K. Goharshady, and A. Pourdamghani, “Hybrid
mining: exploiting blockchain’s computational power for distributed
problem solving,” in SAC, 2019, pp. 374–381.

[11] R. Muth and F. Tschorsch, “Tornado vote: Anonymous blockchain-based
voting,” in ICBC, 2023, pp. 1–9.

[12] J. Ballweg, Z. Cai, and A. K. Goharshady, “Purelottery: Fair leader elec-
tion without decentralized random number generation,” in Blockchain,
2023, pp. 273–280.

[13] Z. Cai and A. K. Goharshady, “Trustless and bias-resistant game-
theoretic distributed randomness,” in ICBC, 2023, pp. 1–3.

[14] ——, “Game-theoretic randomness for proof-of-stake,” in MARBLE,
2023, pp. 28–47.

[15] P. Schindler, A. Judmayer, N. Stifter, and E. R. Weippl, “Hydrand:
Efficient continuous distributed randomness,” in SP, 2020, pp. 73–89.

[16] P. Fatemi and A. K. Goharshady, “Secure and decentralized generation
of secret random numbers on the blockchain,” in BCCA, 2023, pp. 511–
517.

[17] T. Barakbayeva, Z. Cai, and A. K. Goharshady, “SRNG: an efficient
decentralized approach for secret random number generation,” in ICBC,
2024.

[18] V. P. Abidha, T. Barakbayeva, Z. Cai, and A. K. Goharshady, “Gas-
efficient decentralized random beacons,” in ICBC, 2024.

[19] B. Sriman and S. G. Kumar, “Decentralized finance (DeFi): the future
of finance and defi application for ethereum blockchain based finance
market,” in ACCAI, 2022, pp. 1–9.

[20] J. M. Taylor, “The case (for and) against multi-level marketing,” Con-
sumer Awareness Institute, vol. 1, no. 1, pp. 7–1, 2011.

[21] S. Farokhnia and A. K. Goharshady, “Alleviating high gas costs by
secure and trustless off-chain execution of smart contracts,” in SAC,
2023, pp. 258–261.

[22] ——, “Reducing the gas usage of ethereum smart contracts without a
sidechain,” in ICBC, 2023, pp. 1–3.

[23] Z. Cai, S. Farokhnia, A. K. Goharshady, and S. Hitarth, “Asparagus: Au-
tomated synthesis of parametric gas upper-bounds for smart contracts,”
Proc. ACM Program. Lang., vol. 7, no. OOPSLA2, pp. 882–911, 2023.

[24] D. Chaum, “Blind signatures for untraceable payments,” in CRYPTO,
1983.

[25] E.-O. Blass and F. Kerschbaum, “Strain: A secure auction for
blockchains,” in ESORICS, ser. Lecture Notes in Computer Science,
vol. 11098. Cham: Springer, 2018, pp. 87–110.

[26] H. S. Galal and A. M. Youssef, “Succinctly verifiable sealed-bid auction
smart contract,” in DPM, 2018.

[27] Q. Yue, C. Zhong, and H. Lei, “Quantum sealed-bid auction protocol
with post-confirmation based on blind signature,” Quantum Information
Processing, vol. 23, no. 70, 2024.

[28] L. Harn, C. Hsu, Z. Xia, and Z. Li, “Multiple blind signature for e-voting
and e-cash,” The Computer Journal, 2023.

[29] M. Kumar, C. P. Katti, and P. C. Saxena, “A secure anonymous e-voting
system using identity-based blind signature scheme,” in ICISS, 2017.

[30] J. C. P. Carcia, A. Benslimane, and S. Boutalbi, in GLOBECOM.
[31] L. López-Garcı́a, L. J. Dominguez Perez, and F. Rodrı́guez-Henrı́quez,

“A pairing-based blind signature e-voting scheme,” 2014.
[32] A. Goharshady and Z. Lin, “Blind vote: Economical and secret

blockchain-based voting,” in IEEE Blockchain, 2024.

[33] T. Ruffing, P. Moreno-Sanchez, and A. Kate, “Coinshuffle: Practical
decentralized coin mixing for bitcoin,” in ESORICS, 2014.

[34] L. Valenta and B. Rowan, “Blindcoin: Blinded, accountable mixes for
bitcoin,” in FC, 2015, pp. 112–126.

[35] N. Lu, Y. Chang, W. Shi, and K.-K. R. Choo, “Coinlayering: An
efficient coin mixing scheme for large scale bitcoin transactions,” IEEE
Transactions on Dependable and Secure Computing, vol. 19, no. 3, pp.
1974–1987, 2022.

[36] J. Du, Z. Ge, Y. Long, Z. Liu, S. Sun, X. Xu, and D. Gu, “Mixct:
Mixing confidential transactions from homomorphic commitment,” in
ESORICS, 2022.

[37] Z. Bao, W. Shi, S. Kumari, Z.-y. Kong, and C.-M. Chen, “Lockmix:
a secure and privacy-preserving mix service for bitcoin anonymity,”
International Journal of Information Security, 2020.

[38] S. Tessaro and C. Zhu, “Short pairing-free blind signatures with expo-
nential security,” in EUROCRYPT, 2022.

[39] F. Benhamouda, T. Lepoint, J. Loss, M. Orrù, and M. Raykova, “On the
(in)security of ROS,” in EUROCRYPT, 2021.

[40] S. J. De and A. K. Pal, “Auctions with rational adversary,” in Information
Systems Security, 2013.

[41] D. Schröder and D. Unruh, “Security of blind signatures revisited,” in
PKC, 2012.

[42] M. Abe and T. Okamoto, “Provably secure partially blind signatures,”
in CRYPTO, 2000.

[43] K. N. L. Nguyen, “PYRAMID: a protocol for private
and trustless multi level marketing on the blockchain,”
https://github.com/longnguyen1802/PYRAMID-A-Protocol-for-Private-
and-Trustless-Multi-level-Marketing-on-the-Blockchain, 2024.

[44] Trail of Bits, “Slither: Static analyzer for solidity and vyper,” https:
//github.com/crytic/slither, 2023.

[45] Consensys, “Security analysis tool for evm bytecode. supports smart
contracts built for ethereum, hedera, quorum, vechain, rootstock, tron
and other evm-compatible,” https://github.com/Consensys/mythril, 2024.

https://github.com/longnguyen1802/PYRAMID-A-Protocol-for-Private-and-Trustless-Multi-level-Marketing-on-the-Blockchain
https://github.com/longnguyen1802/PYRAMID-A-Protocol-for-Private-and-Trustless-Multi-level-Marketing-on-the-Blockchain
https://github.com/crytic/slither
https://github.com/crytic/slither
https://github.com/Consensys/mythril

	Introduction
	Related Works
	Preliminaries on Blind Signatures
	 Design Goals and System Model
	Desired Functionality
	Security Model
	Desired Security Guarantees

	Our Protocol
	System Architecture
	Detailed Protocol Description

	Security Analysis
	Implementation and Performance
	Conclusion
	References

