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Chapter 6 ®)
Acoustic Wave Propagation in Qe
Viscothermal Fluids

An Electromagnetic Analogy

Denis Lafarge

Abstract First, we recall the Navier-Stokes-Fourier model linearized equations,
which govern the propagation of small amplitude, long wavelength waves in vis-
cothermal fluids; we specify how these equations are derived from several thermo-
dynamic simplifications, and examine some of their solutions. Then, we analyze the
general pattern of macroscopic nonlocal equations of propagation of small ampli-
tude electromagnetic waves in effective homogeneous media, taking into account
both the temporal and spatial dispersion. We argue that we lack a whole thermody-
namics to fully precise all intervening quantities; proceeding by analogy, we then
suggest that for the general acoustics of a homogeneous fluid, an analogous gen-
eral pattern of nonlocal equations of propagation would arise, if we had sufficient
thermodynamics. These ideas are finally implemented to obtain, within the available
Navier-Stokes-Fourier’s model, a nonlocal description of compressional waves.

6.1 Introduction

In the many works carried out on acoustic phononic crystals and metamaterials,
viscous and thermal losses are usually neglected. This is often unrealistic. In this
chapter, we first recall the classical theory of small amplitude wave propagation in a
viscothermal fluid, and next reexamine it in a new light: that of a deep electromagnetic
analogy. Indeed, we show that to some extent it can be put in the form of “nonlocal
acoustic” equations allowing for both temporal and spatial dispersion. This is closely
similar to the general nonlocal Maxwell equations that describe electromagnetic wave
propagation in dispersive materials with temporal and spatial dispersion. Working
within the usual (Navier-Stokes-Fourier) near—equilibrium thermodynamic frame-
work, only a reduced version of this analogy, concerned with compressional motions
only, will be accessible here. As outlined in the Appendix, we believe that the anal-
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ogy would undertake its more complete nondegenerate form, (including Frenkel’s
solid-type of shearing at short times, see Sect. 6.6.2), if the thermodynamic frame-
work could be sufficiently extended. This extension, however, is at present time a
distant perspective.

In the next chapter the reduced analogy describing compressional waves in the
homogeneous fluid, then is generalized to describe macroscopic compressional
waves along a symmetry axis in macroscopically homogeneous unbounded meta-
materials constituted of the viscothermal fluid permeating a rigid' porous structure
having arbitrary microgeometry. It expresses in a nonlocal dynamic homogenization
attributing to the medium, from microstructure, an equivalent nonlocal density and
bulk modulus, playing the role of nonlocal electric and (inverse) magnetic suscepti-
bilities. The developed nonlocal homogenization description is new and, we believe,
will predict the right metamaterial properties when generalized further to describe
inhomogeneous materials, and in particular, materials having finite dimensions.?

Finally, in Appendix of next chapter we recall how the developed nonlocal descrip-
tion simplifies in a classic local one, in some simple microgeometries. It is more
convenient not to derive this simplified local description from the general nonlocal
one, but to calculate afresh the relevant quantities.

Usually, this limit is deduced from a long-wavelength condition by blindly apply-
ing the method of two-scale asymptotic homogenization?; in reality, this “deduction”
is not only illusory, (in it, is tacitly introduced a prerequisite of the local theory,
namely, that the microgeometry is “simple” i.e. does not involve very different char-
acteristic pore sizes), it is also fundamentally faulty. Here, we deduce the same
limit in a better physical way by explicitly granting as a simplification of the real
problem, the total absence of spatial dispersion.* As this total absence is the exact,
(but unphysical), expression of the leading order terms of the method of two-scale
asymptotic homogenization, (considered here,in the case of rigid porous structure)
it should be clear, a priori, that the latter method cannot be an entirely consistent
method of homogenization, (despite its large literature, practical usefulness, and
original introduction by mathematicians).’

UIf deformable, the macroscopic description is expected to manifest the full nonlocal pattern of
equations expressed in Appendix: see the concluding considerations.

2 In the context of a macroscopic nonlocal description any material having finite dimensions is to
be viewed as an inhomogeneous material.

3 And retaining only the leading order, see e.g. [3] (Appendix A) and [2] and [4] in next chapter.
4To take an image, this simplification transforms the full Kirchhoff’s theory of the propagation
of sound waves in cylindrical circular tubes, in Zwikker and Kosten’s, classical but incomplete
treatment, only slightly inexact at long wavelengths.

5 In particular, we can anticipate that the addition of all higher order terms appearing in sequence

in this abstract homogenization process, will always prove to yield results departing significantly
from the exact ones.
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6.2 Molecular Constitution of Fluids

We start by recalling basic facts about the molecular constitution of fluids. Virtually
everything we are sensitive to, on earth and in the sky, is made up of countless
molecules that respond to electromagnetic interactions. Molecules are usually small
electrical dipoles, (either permanent or induced): a small separation of negative and
positive charges is present, which produces a dipole moment equal to the amount
of separated charges times the distance. The dipole averaged pair-interaction energy
potentials \% (d), have a simple Boscovich form, shown in Fig. 6.1, in function of the
distance d between two of them.®

A fluid, liquid or gas, comprises an incredibly large number of molecules in any
“physically infinitesimal” volume. A number so large (recall Avogadro’s number:
N4 = 6.10%) that it corresponds to a so-called “thermodynamic limit”.

In a liquid (solid) such as water (ice), the molecules are bound at distances d on
the order of a few Angstrom. Typically, dy ~ 3.1 - 10~'° m, for the distance where
the pair-interaction potential V (d) is close to its minimum. In a gas such as air,

6 In the averaging over the relative orientations of two dipoles, a thermalization is performed, so that
a configuration having pair-interaction energy V is considered to have a probability proportional to
e~ V/¥T to occur.
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the molecules are widely distanced on the order of, say, mean distances d ~ 10dp.
The molecules then are mostly non-interacting, in uniform inertial motion except for
binary collisions. The mean free path, (mean distance travelled by a molecule between
two collisions), is on the order of the microscopic distance £ = 1/pgco, (as can be
estimated by elementary kinetic theory considerations), where 7 is first viscosity, pg
ambient density, and ¢y is (adiabatic) speed of sound. This distance is very small,
(~ 4.5 -107% m in air), only one order of magnitude higher than the mean distance
d between molecules, (¢ ~ 10d ~ 100dy). In a liquid, as the molecules are bound,
a mean free path distance is not well-defined, but can be considered on the order of
the mean distance (d ~ d,) between molecules, (in water we find 5.9 - 10~% m for
the above microscopic distance £, which is roughly two-times dj).

The thermal expansion coefficient 5y of a fluid, (liquid or gas), in thermodynamic
equilibrium at temperature 7" and pressure P, is defined as

1 [(0v 1 /0
bo==(5-) =—(5=) - ©.1)
v \OT /p p\O0T ),
where v = 1/p is the specific volume, (volume per unit of mass). The ideal gas is

the limit where the molecules are considered point mass, possessing mass but no
significant volume. Simple kinetic theory considerations lead to the ideal gas law

PV = NkT,

where V is the volume, N is the number of particles in it, and k is Boltzmann’s
constant. From this law and the definition (6.1), we see that the thermal expansion
coefficient of an ideal gas is given by

Bo = 1/ T, (6.2)

with Ty the ambient temperature. In a real gas, there are deviations from (6.2) to
account for the nonzero tail of the actual potential at large distances; but as the
potential goes to zero very rapidly, (see the exponent —6 in Fig.6.1), the above is
only slightly modified:

Go = 1/T,. (6.3)

A physical expression of these molecular characteristics is that a gas is easily com-
pressible and also significantly expands when heated.

In a liquid, because the molecules are bound, trapped at the minimum distance d
allowed by intermolecular forces, but not occupying fixed mean positions, (on the
contrary, undergoing permanent diffusive wandering from one location to the other),
the coefficient of thermal expansion is drastically lower, in order of magnitude:

Bo & 1/Ty. (6.4)
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Indeed, when some heat quantity is given to the fluid so that the equilibrium tem-
perature increases, the molecules augment their characteristic diffusive velocities,
wandering more rapidly from one location to the other. In so doing, however, they
almost remain trapped at the minimum distance dy. The thermal expansion coeffi-
cient is non zero, 3y # 0, because there always subsists a small thermal expansion
on the order of that found in solids.

In what follows, we limit ourselves to considering simple liquids and gases whose
composition is invariable, i.e. so-called trivariate fluids whose thermodynamic state
is specified by two independent thermodynamic variables, (such as pressure, temper-
ature, density, etc.). A brief recap on the thermodynamics of trivariate fluids is given
in Sect. 6.5. There is the following important thermodynamic identity, between fluid
parameters, (see below (6.20.1)):

T 2 .2
7—1=M, (6.5)
cp

with v and cp, the heat capacity ratio (or adiabatic exponent) and specific heat
coefficient at constant pressure. In view of this general identity, the above molec-
ular characteristics of the liquid and gas phases, can be seen to have the following
important consequences.

For aliquid, as 3y is very small, the deviation (6.5) is almost zero, (it is a quadratic
effect on f3y), and  turns out to be nearly indistinguishable from 1. Therefore, the
isothermal bulk modulus Ky, is nearly indistinguishable from the adiabatic bulk
modulus’ K, = YKy, i.e.: K, = Ky. At variance, in a gas, (3 is not to be considered
a small quantity, and it turns out that the factor v — 1 is generally of order 1. Simple
kinetic theory considerations give: v — 1 = 2/n,4, where n, is the number of excited
degrees of freedom of a typical molecule. For example, for air, 99% composed of
diatomic molecules (N, and O,) whose vibrational movements are only slightly
excited, ny = 5, as there are 3 translational and only 2 rotational degrees of freedom
to consider. This gives v — 1 = 0.4, and in normal conditions the adiabatic bulk
modulus of air, K, = 7Py, is 40% greater than the isothermal bulk modulus, Ky =
Py, where Py is atmospheric pressure.

To finish, we recall that a special notation x| is used for the inverse of the adiabatic
bulk modulus, the adiabatic compressibility:

1/Ku = X0- (66)

For the case of propagation in the fluid with losses disregarded, no heat enters or leaves
an element of fluid during its alternate cooling and warming due to the passage of
sound waves, so that the pressure-density cycle is adiabatic, and the following relation
occurs between the fluid ambient density pg, the fluid adiabatic compressibility X,
and the (adiabatic) speed of sound ¢y

7 See below (6.19.1) and (6.19.3) for the general definition of the adiabatic and isothermal bulk
moduli K, and K.
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poxoc(z) =1 (6.7)

This relation reminds us that observed for the propagation of electromagnetic waves
in a lossless non-dispersive medium equivalent to vacuum:

60#062 =1. (6.8)

In the presence of losses, we will see that the density and compressibility eventually
become operators p and X. They will play the role assigned in electromagnetism to
the electrical susceptibility ¢ and magnetic susceptibility /i operators, respectively.®

6.3 Wave Propagation in a Viscothermal Fluid: Use of
Near- Equilibrium Thermodynamics Because of Scale
Separation

ELINNT3

Let us now precise notions such as, “fluid particle”, “macroscopic level” and “scale
separation”. A “fluid particle” refers to the macroscopic collection of molecules con-
tained in a “physically infinitesimal” volume. Despite its small size, it is a “macro-
scopic” object in the sense that it contains an enormous number — “thermodynamic”
— of molecules. To have an order of magnitude in mind, we typically have 10°
molecules in the smallest experimentally resolvable volumes [3]. A given volume
£3 = dV containing a “thermodynamic” number of molecules will be considered an
infinitesimal macroscopic volume, or “microscopic” volume, when its size £ is very
much smaller than any macroscopic characteristic distance L, such as sample size,
characteristic structure size, or wavelength \.

As an example of a microscopic size £ in a homogeneous fluid, we may think of
the mean free path, £ ~ 1/poco. We do not aim at a description of the underlying
motion of interacting molecules in such volumes. With numbers N > 10° this would
be not only impossible but also useless. Instead, we aim at a macroscopic description
statistical in nature, feasible because of there being a “thermodynamic-limit”, very
large number of particles. In fact, through the statistical Law of Large Numbers, the
physical state of each infinitesimal “fluid particle” is specified by remarkably few
macroscopic variables.

This is related to the very large “scale separation” between the typical macroscopic
and microscopic scales, as shown in Fig. 6.2.

Because of the assumed “scale separation”, the fluid in the infinitesimal volume
¢3 =dV is very nearly in a state of local thermodynamic equilibrium. Instead of

8 More precisely and as discussed in the text and in Appendix, this affinity will be fully expressed
only when the thermodynamic framework is sufficiently extended, with density and compressibility
kernels becoming second order and fourth order tensors. In the main text they will remain scalars
because we will restrict to long-wavelengths compressional waves only described within classical
near-equilibrium framework.
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doing a microscopic description, we can make a macroscopic description in which
the state of “macroscopic motion” of each fluid particle is summed up in terms of
only five numbers: the mean or macroscopic velocity, and two equilibrium, (for a
trivariate fluid), thermodynamic variables.

Indeed, our wide “scale separation” condition implies in particular that any typ-
ical relaxation time associated with irreversible processes in the fluid, will be very
short compared to the typical periods of the acoustic vibrations. As a result, we
will be justified in discarding the effects of the so-called molecular relaxation. Con-
sider for example the case of air. It is principally made of polyatomic — diatomic
— molecules. Their energy will be distributed between the translational (external)
degrees of freedom and the rotational and vibrational (internal) degrees of freedom.
Obviously the sound wave disturbs to some extent the equilibrium distribution of
energy between external and internal degrees of freedom. The concomitant depar-
tures from local thermodynamic equilibrium have tendency to return to equilibrium
after certain relaxation times. Here, assuming that the typical periods of motion are
sufficiently large compared to the molecular relaxation times, we have that the dis-
tribution of energy between external and internal degrees of freedom always remains



212 D. Lafarge

that of thermodynamic equilibrium. In practice, this limit is well-satisfied for audible
sounds.

Pressure and temperature is a possible convenient choice for the two thermody-
namic variables. These thermodynamic variables — as is apparent from the fact that
they become meaningless for the case of a system having only a few degrees of free-
dom — are macroscopic statistical variables having more than a purely “mechanical”
meaning. Their averaged nature can be conceived using the conception of volume
average, referred here to H.A. Lorentz who used it in his landmark program of the
“theory of electrons” [4], (see Sect. 6.11.2), or, better, the conception of ensemble
average, referred to J.W. Gibbs, who introduced it in his fundamental studies of the
theory of gases and the statistical mechanics foundations of thermodynamics [1]:
the average is performed over the ensemble of all systems that are “macroscopically
identical”. This notion of macroscopically identical systems can be clarified in the
case of thermodynamic equilibrium. In this case, we have to think as equiprobable,
all configurations that a set of molecules can take in a given volume and which share
a given total energy. We will imagine that the notion of Gibbs ensemble could also
in principle be generalized in an appropriate way in the case of deviations from the
thermodynamic equilibrium, which would enable us to describe in a generalized
Gibbs sense the propagation of waves of arbitrarily short wavelengths or arbitrarily
high frequencies,’ not respecting any scale-separation condition.

As for the macroscopic mean velocity v, we have the same two conceptions.
With volume averaging, we can define v as the velocity of the center of mass of the
collection of molecules present in the fluid particle volume. With ensemble averaging,
we will assume possible to define a collection of different molecular realizations
of the same fluid medium and wave propagation phenomenon, that are equivalent
from a macroscopic point of view. We can define v at a given position, as, say, the
velocity of the closest molecule, averaged over all realizations. (Of course, these
naive definitions would have to be refined as they are, both, not consistent quantum
mechanically, but this is not our focus here). At long wavelengths, we will assume
that ergodicity properties will ensure the equivalence of the two points of view.

6.4 Governing Navier-Stokes-Fourier Equations for Small
Amplitude Wave Propagation

We are interested here in the first place in describing, at the macroscopic thermody-
namic level, small amplitude long-wavelength wave propagation in a homogeneous
fluid, (see e.g. the situation depicted on (Fig.6.3) with A > £, £ the mean free path).
Ateach spatial position x and instant of time ¢, the state of the fluid, nearly in equilib-
rium, is for the essential described by the velocity v = v(t, x), pressure P (¢, x) and
temperature 7 (¢, x). But as the fluid is not, exactly, in a local state of pure thermo-

9 We will later need thinking in this strongly out-of-equilibrium, hypothetical Gibbs averaging
sense, when discussing hypothetical Frenkel-type of motions in gases.



6 Acoustic Wave Propagation in Viscothermal Fluids 213

8 T T T T T T T
6 1
4k \
2 GO T ]
<o} LU TR .
of WA ]
4 F .
6| 1
-8 L 1 L L 1 1 1
-15 -10 -5 0 5 10 15
/A

Fig. 6.3 Wave propagation example: two intersecting Gaussian beams

dynamic equilibrium, this description is not complete. To account for the dissipative
processes induced by the nonequilibrium, there are additional variables, such as the
dissipative viscous stresses o7, ; and heat flux ¢, that will be necessary to introduce,
and relate, by constitutive laws, to the variations of the former variables. All variables
are “total variables”, I, sum of an equilibrium variable, I, representing the value
of this variable in the ambient thermodynamic state, (zero for the velocity and addi-
tional variables), and a wave variable, I, representing an excess value associated to

the wave:
total equilibrium wave
I (Variable) =l < variable ) + (Variable) ’ (6.9)

We now recall how are derived the basic Navier-Stokes-Fourier viscothermal lin-
earized model equations of motion, governing the small “wave variables”, v, p, T
and b, namely: v = part “w” of velocity, its equilibrium part being zero, p = part
“w” of pressure, or “excess pressure”, the equilibrium part being Py, 7 = part “w” of
temperature, or “excess temperature”, the equilibrium part being Ty, and b = p'/po,
the condensation, equal to excess density p’ — part “w” of density — over ambient
density po'’

10 This variable b, as we already have p and 7 in the set of variables, is redundant thermodynam-
ically, see (6.12). It is introduced here mainly because it will later facilitate the discussion of the
electromagnetic analogy. In the context of the electromagnetic analogy, however, b will in fact
not be viewed as the quantity b = p/pg. It will either be viewed as the purely kinematic quantity
directly defined with (6.10), (see Sect. 6.12.1 and the definitions (6.98.1) and (6.98.2), equivalent to
(6.10)); more precisely, in the full analogy we introduce a symmetric tensor b;; playing the role of
antisymmetric magnetic tensor field, obeying db;; /0t = —(0;v; + 0;v;)/2, and representing the
opposite strain, with b = Y, b;;, (more details are in Appendix).
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P o ov=0 (6.10)
ot v=r '
p(,@=—ap—naxaxv+<4—"+g>a(a-v),
ot 3
_ 2 (1 44
— —9p +ndv (3+c)a a;)’ 6.11)
YXop = b+ foT, (6.12)
O _ 12?1 P (6.13)
_— = _— T. .
pOCPat ooat K

The parameters 7 and (, first and second viscosities, and «, thermal conduction
coefficient, are constitutive constants of the fluid. Their appearance is the expres-
sion of the mentioned additional irreversible-thermodynamic variables, (o), ;and @),
related by constitutive laws to the former variables, (here v and 7, resp.). To arrive
at these linearized model equations (6.10)—(6.13), first, we recall some basic facts
and definitions about equilibrium thermodynamics of trivariate fluids, and next, we
introduce the additional variables associated to near-equilibrium deviations, and state
the conservation and constitutive laws.

6.5 Equilibrium Thermodynamics: Brief Recap on
Trivariate Fluids

Classical equilibrium thermodynamics of a trivariate fluid asserts that all thermody-
namic quantities — thermodynamic variables and thermodynamic constants — can be
deduced when we know a single relationship that links three independent additive
quantities: entropy, internal energy and volume. It is the so-called fundamental rela-
tion.!! It can be written either in the original form of entropy S in function of internal
energy E and volume V/, or in the form of internal energy E in function of entropy
S and volume V:
S=S(E,V),

(6.14)
E=E(S,YV).
Indeed, as the entropy S is postulated to be a single valued continuous and differen-
tiable function of E and V, and moreover a monotonic increasing function of E, the
fundamental relation (6.14.1) can be inverted with respect to energy, giving (6.14.2)
with a function E that is also single valued, continuous and differentiable.
Knowing the fundamental relation, the pressure and temperature can be written
by the formulae:

11 See [2, 3, 5]; nice discussions of several topics of interest here, e.g., thermodynamics, equations
of motion in a fluid, and averaging operations in a material, are given by Marle [5].
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OE OE
Pr(ﬁ); r= (%)V’ 1>

and likewise, all other quantities can be expressed as well in terms of S, V and the
partial derivatives of E.

Equation (6.15) derive immediately from the thermodynamic identity 7dS =
dE + PdV. And the latter identity is a consequence of the First Law, dQ = dE +
PdV, stating that the internal energy can change (by d E) only by receiving work
(—PdV) and/or heat (dQ), joined to the additional condition that the latter is always
the formd Q = T'd S, (the notationd Q reminds that the infinitesimal heat quantity is
not an exact differential). Note that, as all quantities S, E and V in (6.14) are additive,
the fundamental relation is homogeneous of order 1. Hence writing (6.14.2) for a
unit mass fluid particle which can be in translational motion, we have the so-called
caloric equation:

€ = €e(s,v). (6.16)

It gives the specific internal energy e in the fluid, (i.e. internal energy per unit mass,
which includes all forms of energy except the specific kinetic energy v?/2 associated
with the global mass translation movement), as a function of the specific entropy s,
(entropy per unit mass), and the specific volume v = 1/p. Pressure and temperature
are then functions P = P(s,v) and T = T (s, v) given by:

Oe Oe

As all thermodynamic variables can be expressed in terms of s, v, and the partial
derivatives of e, there are only two independent thermodynamic variables. Any vari-
able, e.g. temperature, can be expressed as a function of two any other independent
variables, by means of equations of state characteristic of the fluid,e.g. T = T (P, v),
T =T (P, ¢), etc. Contrary to the fundamental relation, the equations of state do not
constitute complete knowledge of the thermodynamic properties of the fluid. Knowl-
edge of all equations of state, however, is complete, and equivalent to the knowledge
of the fundamental relation or caloric equation.

The specific heat coefficients cp and cy, (amount of heat needed to rise a tem-
perature of the unit of mass by 1 Kelvin under constant pressure, or under constant
volume), adiabatic exponent, and thermal expansion coefficient, are:

s s cp 1 /0v
=T — =T — =—, f=—-(—) . 1
°r (8T>P’ v <6T)77’ ! CV’ v <6T>P (6 8)

For a trivariate fluid g is not completely negligible, (3 # 0), or y is not strictly
equal to one. There follows that the caloric (6.16) cannot be written in the form e =
Y (s) + Z(v) and none of the equations of state degenerate into relations connecting
only two thermodynamic variables.
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Other useful thermodynamic definitions are those of the reference adiabatic and
isothermal, bulk moduli K, and K; (or Ky), and velocities ¢, (or ¢¢) and ¢; (or c;,
later on), in the fluid:

(9P s (9PN . _ (0P 2 (2P) 61
a=p ). = ). i=p ). ci = o), @

By purely thermodynamic arguments, the various constitutive constants introduced
so far (6.18)—(6.19) are not independent. One can show the following general ther-
modynamic identities:

T 3c2
’y—l:—ﬂ a’ CZ:
cp

ye?. (6.20)

These are consequences of the First Law and the fact that dQ = T'dS. Indeed the
fundamental thermodynamic requirement that 4 Q/ T is actually an exact differential,
meaning that the entropy is a function of state, imposes a restriction on the analytical
form of the internal energy, also implying that the caloric equation € = €(s, v) is not
independent of the thermal equation of state P = P (T, v). In the proof of (6.20),
will be involved:

(i) Maxwell’s thermodynamic relations such as —(0P /0s), = (0T /Ov), express-
ing the fact that energy e or other potentials such as enthalpy H (whose differen-
tialis d H = T'ds + vd P) and the Helmholtz free energy F (whose differential
is dF = —sdT — Pdv) are functions of state; the process of obtaining this
kind of relations is as follows: let € = €(s, v), then writing de = Tds — Pdv
and 0%¢/0s0v = 0%¢/0vds, we get, —(OP /0s), = (0T /Ov)y, and similarly
for the other thermodynamic potentials, e.g. with the enthalpy one finds,
(Ov/0s)p = (OT [OP);.

(ii) General relations of the type (0v/0s)p = —(0v/OP);(OP /0s), satisfied by
any three quantities v, P, s, satisfying a single functional relationship, which
again expresses the existence of equations of state; the process of obtain-
ing these relations is as follows: let P = P (s, v), then dP = (OP/0s),ds +
(OP/0v)sdv, and if dP =0, then (OP/0v);(dv/ds) = —(OP/Ds),, which
also writes (Qv/0s)p = —(Ov/IP);(OP[Ds),.

The detailed proof of (6.20) is classically found in textbooks (a derivation is also
available at https://www.astro.princeton.edu/~gk/A403/termo.pdf). We will always
have to use the identity (6.20.1) for quantities taken in the ambient state, denoted
by index 0. For simplicity, however, we do not put the index O on all the quantities
involved. In what follows we write CZ = c(z] and (6.20.1) in the form of (6.5).
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6.6 Derivation of the Equations of Motion

Let us now turn to the derivation of the Navier-Stokes-Fourier model equations
(6.10)—(6.13) that govern the small deviations from the equilibrium state. Consider
the thermodynamic total variables pressure, temperature, entropy, specific volume,
density, and specific internal energy. Removing for simplicity the index “w”, we
write them in the form:

Pressure: P =P+ p,
Temperature: T=Ty+T,
Specific entropy: s=us0+5s,

Specific volume: v =19+,
Density: p=po+p,
Specific internal energy: e=¢+¢.

Because of scale separation, the fluid in the infinitesimal volumes dV used to
define these quantities is very nearly in equilibrium state. Therefore, both the ambi-
ent quantities and the total variable quantities, are related by equations of state. For
example, writing the caloric equation for ambient state and actual state, we have,
€0 = €(sg, vg) and eg + € = e(sg + 5, vg + V) = €(sp, Vo) + s (0e/Ds) (s, Vo) +
v' (0e/0v) (sg, v9) + ..., whence in the linear approximation, ¢ =
s' (0e/Ds) (50, vo) + V' (De/Ov) (s0, Vo). In that way, starting with the different state
equations, and within linear approximation valid for small amplitude perturbations,
many linear relations can be obtained, relating any three of the above deviatoric (“w”
quantities, and making apparent some of the ambient quantities, and also, the fluid
thermodynamic constants such as (y, cp and cy . Examples of such relationships will
appear below.

The general equations governing the spatiotemporal evolution of all total vari-
ables quantities — the velocity v(¢, x) and the thermodynamic fields P (¢, x), T (¢, x),
p(t, x), etc. — will be derived from:

(i) General conservation laws,
(i) Equilibrium thermodynamics,
(iii) Constitutive equations, outside the realm of equilibrium thermodynamics.

The reason why the evolution of the fields cannot be derived solely from (i) general
conservation laws and (ii) equilibrium thermodynamics (despite the long-wavelength
scale-separation condition A > ¢ ensuring the existence of local equilibrium states,
where £ is a microscopic length such as mean free path), is because the fields and,
thus, the thermodynamic state of the fluid vary to some extent in space and time,
meaning that the system is, slightly, out-of-equilibrium. As later discussed with the
electromagnetic analogy, taking into account the effect of these variations will already
consist in taking spatial dispersion and temporal dispersion effects into account.
Due to spatial and temporal variations, irreversible transient currents are gener-
ated, aimed at bringing the system back to equilibrium. Indeed, consider two neigh-
bouring infinitesimal particles. At each instant of time they are in slightly different
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Fig. 6.4 Generation of State 1
irreversible currents State 2

Ve irreversible currents

aiming at making in the end 1=2

equilibrium thermodynamic states of motion (where by “thermodynamic state of
motion” here we also include the information of the mean velocity), say state 1 and
state 2, as sketched in Fig. 6.4.

During any physically infinitesimal period, many molecules (a thermodynamic
number) pass through the boundary surface between particles 1 and 2. Particles
passing in either direction carry information on the state 1 or 2, which are different;
therefore, their passage is necessarily associated with an irreversible exchange of
momentum and energy, aimed at suppressing the difference of state. The appearance
of these transient irreversible currents is described in practice by the introduction
of additional variables, related to the former by empirical constitutive laws. These
laws lie outside the realm of equilibrium thermodynamics. Essentially, they must
precise how much momentum and heat energy are irreversibly transferred, (resp. by
so-called viscous effects and thermal conduction effects), per unit of time across the
surface.

6.6.1 Conservation Laws and Equation of State

We first state the general conservation or balance laws.

Mass Conservation
It is classically found and derived in any textbook:

dp
— 40 =0.
o (pv)
After linearization, it reads
_Bb +0 0 (6.21)
. ‘v e .
ot ’

where b = p'/py is the condensation.
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Momentum Balance
d

This balance law is best written using the convective derivative, - = % +v-0:

d
/)E(Ui) = 0;j0ij,

where 0;; is the excess stress tensor in the fluid, which incorporates the mentioned
momentum irreversibly transferred. By integration over an infinitesimal volume d'V
in motion, it reads, dm<% (v;) = 4 (v;dm) = § 0;;ii; dS (dm = pd V). This is New-
ton’s law, stating that the time rate of change of momentum is the result of the excess
stress contact forces exerted at the particle bounding surface, (with 71 the unit outward
normal).

If there were present an external bulk force acting at a distance, pulling the volume
dV with force d f, it would be necessary to rewrite the above, as, dm% (v;)) =
% (vidm) = ¢ o;;7;dS + df;. It would correspond, writing the starting equation
with a bulk-source term of force, [df; /d V], added in the right-hand side. Obviously,
df; /dV = pdf; /dm, and if we count the force per unit mass, we write:

d
PZ(UL') =005 + [pfil.

On using the expression of the convective derivative and inserting mass Conservation,
it also reads

1o}
E(pvi) + 0j(pvivy) = 9;0i; + [pfil,

and after linearization 9
POEW = 0j0i; + [po fi]. (6.22)

Energy Balance
This balance law is also stated in the most simple and explicit form using the con-
vective derivative:

P~ <%U2 + 6) =0 (—Zijv; +q),
where ¢q is the heat flux density due to thermal conduction, that determines the
above-mentioned heat energy irreversibly transferred, and X;; = —Pyd;; + 0j; is
the total variables stress tensor. By integration over an infinitesimal volume dV
in motion, (and such that pdV = dm), it reads dir (dm%v2 + dme) = f(—Z‘ijvj +
qi)(—n;) dS, where the surface integrals are over the bounding surface of element
dV . This is the basic thermodynamic principle, stating that the time rate of change of
the energy of a given fluid volume, (kinetic energy plus internal energy), is equal to
the work done on it, (by the total stress contact forces exerted at the particle bounding
surface), plus the heat it receives, (through this bounding surface), per unit of time.
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If there were present a bulk-source of heat, directly acting in the fluid, and giving
a quantity of heat dQ in the volume dV during time d¢, it would be necessary to
rewrite the above, as, % (dm%v2 + dme) = $(—=Z;jv))(—h;)dS + § gi(—n;) dS +
dQ/dt. Tt would correspond writing the above starting balance law with a bulk-source
term [d Q/dVdt] added in the right-hand side. But, dQ/dVdt = pd Q /dmdt, and
choosing to count the heat per unit of mass, i.e. noting the present dQ/dm as dQ,
we have

d (1, do
o (z” " ) =0Tt a) [pz} '
After linearization the energy balance equation is, (omitting the prime on €)

Oe daQ
= —Pydiv; — Oiq; + = 1. 6.23
£0 5 00V q [Po lt} ( )

We next introduce the equation of state, which expresses the condition of local
thermodynamic equilibrium, to obtain another form of this energy balance equation.

Starting with the thermodynamic equilibrium relation, de = Tds — Pdv =
Tds + Pdp/p?, substituting in (6.23), and taking into account (6.21), we find

Os

B O o
at——a,q,+[po } (6.24)

T
Polo a1

Finally, to complete these equations and make apparent only the excess thermo-
dynamic pressure and temperature, we write the equilibrium equations of state,
p=p(P,Tyand T = T (P, s), whose linearized versions give, resp.

= () i (2 () 4 (& (6.25)
P=\or), P \or),” "= \op) P \os ), " ‘

that is, using (6.19.3) and (6.18.4) and noting that 1/ Ky = ~yxo,

T T
poTo p+ —Os.
pocp cp

b=p'/po="Xxop—Por, and T = (6.26)

In the last equation, (6.18.1) has been used to evaluate (0T /0s)p = (Ty/cp), and
the remaining coefficient has been expressed using the thermodynamic identity
(0T /OP)s = (BoTo)/(pocp), given in Pierce [18] Sect. (6.10). Substituting (6.26.2)
in (6.24), we obtain finally the following useful form of the energy balance equation:

or op doQ
— = GoTo—= — Oiq; — . 6.27
pocr o, /ooat 6]+[P0dt] (6.27)
To summarize, after consideration of the general conservation laws and equilib-
rium thermodynamic relations, we have obtained the following set, (6.28)—(6.31), of
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linearized equations:

ob
Mass: N +0-v=0, (6.28)
avi
Momentum: pOE = 0joij + [po fil , (6.29)
Equation of state:  vxop = b + [y, (6.30)
or op dao
E : — = ByTy— — Oiq; — |, 6.31
nergy:  pocr o Bo 05, qi + |:P0 dt] (6.31)

with f;, a possible external body force per unit mass, andd'Q/dt, a possible external
rate of heat supply per unit mass, acting on the fluid.

6.6.2 Constitutive Laws: Stokes and Fourier

Finally, we state irreversible-thermodynamic constitutive laws, for the evaluation of
the heat flux ¢;, and an additional lossy part o; ; present in the excess stresses o;;:

0ij = —pabij + 0}, Pa=x;'D. (6.32)

with p,, the fictitious excess pressure in adiabatic relation with the condensation. The
additional stress o ; owes its presence to the losses processes generated in response
to the temporal and spatial variations in the fields. Using terminology inspired by
the electromagnetic analogy that will later be discussed, (Sects. 6.10-6.12), the first
adiabatic term would give the right result in the absence of intrinsically irreversible
“polarization processes” induced by temporal and spatial variations in the fields; the
additional term o} ;» 1s there to take into account the presence of such processes. A
priori it would decompose in two parts:

o. =0 .. + o’ (633)

ij Tij vij>

!
one, 07,

ations, and the other, ¢
velocity variations.
Indeed, in an inhomogeneous temperature field such as found in a wavefield, the
condensation-rarefaction do not occur in exact adiabatic manner due to the small
temperature exchanges which appear mainly by thermal conduction between neigh-
bouring particles, (having slightly different instantaneous temperatures). For this rea-
son, the natural excess pressure variable will not be the adiabatic one, p, = X, 'p.
It will be the thermodynamic excess pressure, p(b, 7), by definition related to b and

caused by the irreversible processes generated by the temperature vari-

, . .
vij> caused by the irreversible processes generated by the
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Fig. 6.5 Momentum fluid particle 2

transfer between two fluid
E v,

particles 1 and 2 in contact fluid particle 1

T by the equation of state, (6.30).12 This is because, as said, scale-separation here,
means that the local thermodynamic equilibrium tends to be reached. Actually, as
the effect of temperature spatial variations must express in af,l.j, we guess that this
thermal stress term, once added to the adiabatic first term in (6.32), leads to the excess
thermodynamic pressure, hydrostatic term:

— pu5,~.,- + 0-7/'[1 = —Xalbéij + O':”ij = —p5,-j. (634)
Then the total excess stress tensor also simply writes:
oij = —pdij + 0,/)”. (6.35)

This last form (6.35) in place of (6.32), is the way the stresses are usually directly
written in literature, without mentioning (6.32), (6.33), and (6.34), see e.g. Landau
and Lifshitz [6]. We will soon see, in the analysis of the Fourier constitutive law
which specifies the additional variable g;, that the thermal stress tensor o/, i which
allows (6.32)—(6.34) to be satisfied is:

U /l dr' 076, (6.36)
Ti] ,8()T() o 1]» .

where x is the coefficient of thermal conduction in Fourier’s law.

The remaining U’UU in (6.33) or (6.35), is the viscous contribution, separately
identified in Stokes’s law. It must determine the rate of momentum transfer between
two fluid particles 1 and 2 in contact, that do not have the same average velocity, as
sketched in Fig.6.5.

Indeed, over a physically infinitesimal time period, many molecules (a thermo-
dynamic number) pass through the boundary surface between particles 1 and 2. But

12 1t will be shown that p is related to b only, by an operational nonlocal bulk modulus. The operator
in the relation p = xb will be derived in Sect. 6.12.3
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as the mean velocity in 2 is, say, greater than that in 1, this exchange is not sym-
metrical and particle 1 receives more momentum than does particle 2. Therefore, an
irreversible exchange of momentum between the two particles is generated across
the surface. This exchange creates the viscous stress tensor o, ;j- Ithas two indices as
one is defined by the direction of the normal to the considered surface, and the other
is the direction defining the considered momentum component. The simplest ansatz
is that at a given time ¢ and position, it depends only on the first derivatives, dv; /Ox ,
evaluated at the same time and position, with other dependencies, (higher order spa-
tial derivatives and time-memory effects), leading to negligible corrections.'*> With
the additional observation that it should vanish if the fluid is rotating uniformly as a
whole, one deduces that only the symmetric combinations dv; /0x; 4+ Ov;/0x;, can
be involved. As a result, o), ;j must be constructed with these combinations and the
unit tensor J;;, the only other tensor at our disposal with isotropy assumed. There fol-
lows that the viscous irreversible current density of momentum is principally given
in the form:

2
O'll)ij =n (&v‘,- + ajv,- — 56,'j611)1> + C(S,‘jazvl, (6.37)

with 1 and (, two constitutive constants of the fluid, which are named the first and
second viscosity. Equation (6.37) is Stokes’s constitutive law.

It remains to state Fourier’s constitutive law, indicating how much thermal energy
isirreversibly transferred by thermal conduction. To state this law, we assume that the
fluid particles 1 and 2 in contact do not have the same temperature. As before, particles
1 and 2 exchange a thermodynamic number of molecules, across their common
boundary surface, over a physically infinitesimal period of time. But as the mean
temperature in 2 is, say, greater than that in 1, particle 1 receives molecules having
higher thermal speed than does particle 2. Therefore, a heat exchange is generated
across the surface, that is described in terms of a thermal-conduction vector heat flux
gi- The simplest ansatz is that at a given time ¢ and position, this vector depends
only on the first derivatives O7/0x; evaluated at the same time and position, with
other dependencies leading to negligible corrections.'* With isotropy assumed there
follows that the irreversible current density of heat transfer is principally:

qi = —KO,T, (6.38)
with x a constitutive constant of the fluid, which is named the thermal conduction

coefficient. Equation (6.38) is Fourier’s constitutive law. Note that with these laws
the density of entropy production can be shown to be

131n fact, these corrections should imperatively be taken into account, (which raises deep
irreversible-thermodynamic questions), in such a way that the description, once reviewed in the
light of the nonlocal electromagnetic analogy, remains physical and mathematically well condi-
tioned: see end of Sect. 6.12.3.

14 Again, the electromagnetic analogy suggests that these corrections should also be taken into
account to ensure that the description remains entirely physical: see end of Sect. 6.12.3.
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o5 = —To_zq,-(?,-r + TO_la;ijaivj, (6.39)
and by the second principle of thermodynamics which imposes o, > 0, we have that
the introduced viscosities and thermal conduction coefficients are all positive.

Substituting Stokes’s and Fourier’s constitutive laws in the set (6.28)—(6.31) com-
pleted by (6.35), we finally obtain the governing linearized equations stated in (6.10)—
(6.13).

We can now check our previous identifications (6.34) and (6.36). The combination
of (6.12) and (6.13) gives, pocpd; (Yxop — b) /5o = BoTo0; p + k0>, and using the
first thermodynamic identity (6.20), we derive after straightforward calculation:

— 1 t
p=x;'b+ KJFYﬂOTO / dr' 9. (6.40)
—00

This expression of the thermodynamic excess pressure is coherent with (6.34), if
only, we have the expression (6.36) of the thermal stresses.

We note that, in the same way as itis logical to write the momentum equation (6.29)
as, po0,v; = 8j(—xg1b6ij + a{i), (using (6.32)), but it is, actually, more convenient
to use the thermodynamic pressure and write it, poO,v; = 0;(—pd;; + o, ) (using
instead (6.35)), it would be logical to write, for the energy equation, pocpd;T =
BoToxo 19, iq!, with some irreversible g/ flux, but it is, again, more convenient
to make appear the thermodynamic pressure, and use (6.31). The irreversible flux
g} would be: g/ = —ykO;T = 7¢;, and it is preferable to deal with ¢;, which is the
thermal energy flux.

There is still one important point to be made here. The laws we have considered
are special in that they have explicitly assumed scale separation, or sufficiently slow
times variations. In reality, at very short times or very short wavelengths, the used
near-equilibrium thermodynamic framework becomes unadapted and the appropri-
ate description is expected to become much more subtle. In particular, solid-like
behaviours should systematically appear in any fluid, to some extent, at very short
times. This hypothesis was put forward long ago, in 1925, by the self-taught Russian
theoretical physicist Yakov II’ich Frenkel [7].

Frenkel’s ideas which have long been overlooked, have recently been substantiated
in liquids [8]. This suggests that, if the thermodynamic framework in which we work
were broad enough, we would have to write, instead of (6.32):

(0ia; + 8;a;), v=0a/ot, (6.41)

N =

Oij = _(Xal)ijklbkl + ij, bij =—
- - 2
(X() l)ijkl = Xo 15,~j(3k1 + o (5,’]((5]'1 + 51’15‘1'1( — §5i<i5kl> . (6.42)

In the last equation, y1p would be a new constant, which we could denote the “Frenkel-
Lamé” adiabatic shear modulus of the fluid. Its nonzero value would allow for the
propagation of undamped shear waves in a very-short-times limit (times so short
that the dissipative reactions expressed in the lossy a{j, have no time to be built).
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In Appendix we see how the electromagnetic-acoustic analogy is automatically, by
construction, coherent with these physical views.

In a gas, the large separation between the molecules will make the modulus i a
priori extraordinarily small; nevertheless, from the strict point of view of questions
of principle, it should be considered nonzero, which would imply the presence of
additional terms in the dissipative part alfj of the stresses, in turn determining at least
in Gibbs’ sense,!” the dynamics of propagation and attenuation of Frenkel’s “elastic”
waves, of extraordinarily low amplitudes. Of course, well before considering these
effects in a thermodynamic extension, it would have been necessary, in the first place,
to account for the molecular relaxation, and go beyond the too simplistic Stokes and
Fourier’s laws. A complete thermodynamic extension, we believe, would reveal the
full nonlocal pattern of equations and quantities conjectured in the Appendix, inspired
by the electromagnetic analogy.

6.6.3 Inherent Thermodynamic Simplifications in
Navier-Stokes-Fourier’s Framework

Let us now summarize and comment the above development, which has justified the
Navier-Stokes-Fourier linearized-motion model equations (6.10)—(6.13). It rests on
simplifications well-verified in practice: the assumption of local equilibrium allow-
ing to use classical equilibrium thermodynamic relations and to neglect molecular
relaxation phenomena, the Stokes and Fourier constitutive laws which are the sim-
plest ones to be considered in this framework, and finally, the neglect of Frenkel’s
shear motions. Nevertheless, as we have just suggested, these are important simplifi-
cations from a general physical point of view. As such they can have some unwanted
consequences. The motion equations obtained have an elliptic nature through the
absence of Frenkel’s terms and the Stokes law in the momentum equations, and a
parabolic nature through Fourier’s law in the energy equation. Their solutions then
manifest unphysical features such as the totally diffusive nature of shear waves mode
solutions,'® and instant propagation of an initial temperature disturbance.'”

In short, when these model equations (6.10)—(6.13) will be reexamined in the light
of a general nonlocal electromagnetic analogy, (see Sects. 6.10—6.12 and Appendix),
the simplifications they convey will cause defects, particularly visible in the degener-
ate description they will give of the shearing movements. These degeneracies could

15 As in this context the wavelengths could be reduced to the point of becoming comparable to the
mean free path, the separation of scale would not be ensured and macroscopic means would have
to be taken in the Gibbs sense.

16 See (6.66) below, this unphysical feature being related to the absence, in purely viscous shearing
motions, of associated nonzero “acoustic stress field H;;” — see in Appendix, after (6.205).

17 See (6.145) below, this unphysical feature being related to the nonvanishing of the kernel x, (7, x),
whatever the values, however large, of | x|, contradicting the finite velocity of propagation of physical
influences.
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only be totally overcome by working within an extended framework of the thermo-
dynamics of irreversible processes, if necessary with the Gibbs mean, abandoning
local equilibrium, going beyond Stokes and Fourier’s laws, and introducing Frenkel’s
shearing motions. Nevertheless, by limiting our considerations to longitudinal move-
ments as described by current laws, (see Sects.6.10 and 6.12), we will deliberately
avoid entering into this difficult subject, which belongs to the unclarified field of
Extended Irreversible Thermodynamics far from equilibrium.

6.7 The Different Normal Modes at Fixed Real Wavevector

We detail here the different type of solutions of the model equations of motion (6.10)—
(6.13). Eliminating the condensation, we have a system of five first-order-in-time
differential equations for the five fields v(z, x), p(¢, x) and 7(z, x). Therefore, given
a fixed wavevector k, the solutions can be analyzed in terms of five “hydrodynamic
modes” or “normal modes” solutions varying like'8:

—iwt+ik-x —iwt+ik-x —iwt+ik-x
9 b .

v(t,x) = vge p(t,x) = poe 7(t,x) = 1€
Consider first the case where the wavevector k = k. + k, ¥ + k.Z has real compo-
nents. Itis the form k = kn, specified by a unit vector direction 72 and modulus k. We
must find five hydrodynamic modes solutions having this real wavevector, and com-
plex frequencies, (to account for the damping brought by irreversible processes). To
clarify these five solutions, we introduce three independent polarization directions,
the longitudinal (1) direction (|| 72), and transversal (2, 3) directions (_L#), in which
the velocity amplitude vector vy can point, as shown in Fig. 6.6.

We write the complex frequencies as, w = w’ — iw"”. Hence the exponential factor
will have the form e~ ¢~ !+/kix Physically, here, as the imaginary parts owe
their existence to the losses terms, they are to be taken negative, i.e. w” positive,
to ensure that the solutions fade away over time. The real parts will be either zero,
corresponding to diffusive purely damped solutions, or nonzero, with the two signs
possible, corresponding to right-going or left-going waves.

The five modes solutions, therefore, are as follows!?:

Polarization 1:

W' = cok — O(K?), W' =Tk> + 0(k*),

—iwt+ik-x ) , etc., system-

18 When using this complex notation, we understand that v(¢, x) = R (voe
atically omitting here and elsewhere the real part symbol % ().

19 The results for polarization 1 are the complex solutions, w = w’ — iw”, of Kirchhoff-Langevin’s
dispersion equation (6.52). The results for polarization 2, 3, are the complex solutions of the vortical
diffusion equation, first (6.61).
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Fig. 6.6 Polarization k — k n

vy

damped longitudinal wave propagating in the direction of vector k = k#n (a so-
called “acoustic wave”; it has pressure and temperature variations but almost no
entropy variations),

Polarization 1:

W' = —cok + O (K3), W' =Tk* + 0k*),

damped longitudinal wave of the same type (acoustic wave) propagating in the
reverse direction,

Polarization 1:

W = 0’ W' = p"z k2 _ 0(k4),
oc p

purely damped longitudinal wave (a so-called “entropic wave”; it has entropy and
temperature variations but almost no pressure variation),

Polarization 2:

purely damped shear wave (transversal, also called vortical; it has no pressure,
temperature, or entropy variations),

Polarization 3:

W' = ﬂkZ
Lo

purely damped shear wave of the same type but other polarization,

and where,
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1[4y 11
's —|=+¢+6|l———)], (6.43)
2p0 | 3 cy  cp

is a small constitutive constant called the classical sound damping constant. Its order
of magnitude is that of the kinematic viscosity

n
P07

v (6.44)

respectively 1073 m?s~! and 107® m?s~! for air and water.

Consider next the case with real frequency and complex wavevectors. The above
three kinds of waves, shear, “entropic” and “acoustic”, will correspond to three
different sorts of complex wavenumbers. In the following, we show how the equations
of motion (6.10)—(6.13), are used to derive the characteristics of the “acoustic” and
“entropic” harmonic modes; this calculation is classical and can be found in Rayleigh

[9].

6.8 Some Explicit Calculations for the Longitudinal Modes

Insert (6.12) in (6.13) and use the first thermodynamic identity (6.20) and third
definition (6.18) to obtain an alternative form of (6.13):
v—1 K

o;b +
Bo " pocy

o, T = .
It simplifies the equations to introduce 7" = fy7/(y — 1). Using this temperature

variable and denoting ¢ and ¢, the adiabatic and isothermal reference sound veloc-
ities (¢, and ¢; see (6.19)),%° the (6.12) and (6.13) take the following form:

P b+ — D), (6.45)
Po
and .
0,7 =0,b+ 7. (6.46)
PoCv

Let us work in harmonic regime e~'“!. Substituting (6.45) inside the last form of
(6.11) gives an equation having the form, 9,v — v9’v = —9X, with

+ n
X = |:C62 - iw—C 3 :| b+ (ct —chHr,
Po

. . A—cP? 1 2—c?
20 Which verify poxoc2 = 1, povxocg =1, 3 =y, v — 1= % and 7,—’ =50
0 0
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Equation (6.46) gives
b=1 4 —2 P (6.47)
pPoCylwW

Finally, with (6.10) giving 0-v —iwb =0, we obtain the following velocity-
temperature equations:

+ n
—iwv — vdv = —9X, X = [cg)z — iw<—3:| b+ (c; —cHr, (6.48)
Po

"o =0 (6.49)

poCv

0-v—iwr —

By taking the divergence of (6.48.1), and eliminating the velocity-divergence terms
using (6.49), there results the following equation on temperature:

. _|_ﬂ
_wZT/—|:C(2)—iw< n +u+< 3)}8%#...

pocCv o

, (6.50)
+ 1
B |:cf)2—iw (V+<—3>:|84T/=0.
PoCyiw o
Looking for a solution having the form e~“/*ik* and setting by definition
— k=), (6.51)

the constant A must be the solution of the following Kirchhoff-Langevin’s?! charac-
teristic equation:

7
—wz—[cé—iw< r ~|—1/~|—C+3>:|)\~|—...

pocy 0

. + n
h, el —iw 1/+C 3) (A2 =0.
0
pocyiw Lo

(6.52)
For small real k (k(£ ~ v/cy) < 1, long wavelengths), the complex frequencies
w, solutions to this equation, expand in powers of k. Writing such expansions and
substituting them in (6.52), along with A = —k?, one obtains the three “polarization
17 solutions, (two acoustic, one entropic), given in Sect.6.7. For real frequency, the
dispersion equation (6.52) has two complex roots Aj »:

1 1
-\ =k = ﬂ[—B + VB2 —4AC], —\ =k} = ﬂ[—B — VB2 —4AC],

(6.53)

with

21 See [2] for an explanation of this denomination.
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K + 1
A=— [cgz—iw(y+< 3)],C=—w2,
Po
i

: +
B:c(z)—iw( = +1/+C—3).
PoCy Po

(6.54)

Using by convention, square-root determinations 9 ( v ) > 0, A; represents the

smallest solution, mainly real, that describes acoustic waves having very small
absorption, and ), represents the other much larger solution,”” mainly purely imag-
inary, that describes the highly damped diffusive entropic waves. The associated
acoustic and entropic wavenumbers, such that the dependencies e~/“'+12% repre-
sent acoustic and entropic waves propagating in the direction +x, are

ky = \/i[—B + VB2 —4AC], k = \/%[—B — VB2 —4AC], (655)

2A

(with this choice, J (klyz) > (, so that the waves attenuate along +x).
After straightforward calculations we find expansions having the form:

2 2r 2r'
= [1+iw—2+...], P L |:1+iw—2+...i|, (6.56)
K

€o €o o
w r cpw r’
k1=—|:1+iw—2+...] ky = (141) pO—P|:1+iw—2+...:|,
<o e 2K <
(6.57)
with I" the expression previously given in (6.43) and I’ the expression
—1/4
r="1 (—” . i) . (6.58)
2p0 \ 3 cp

The solution for the wavenumber k; describes a pressure wave propagating with
a soundspeed velocity always slightly less than the reference adiabatic value c,
and which is slightly attenuated because of the small factor I". The solution for the
wavenumber k, describes a mainly purely diffusive (N(k) = J(k)), highly attenuat-
ing entropic (or thermal) wave. The characteristic penetration length of this wave is,
as seen on the exponential exp(ikyx) = exp(ix~/pocrw/2K) exp(—x~/pocrw/2K),
determined by the characteristic entropic, or thermal boundary layer, length §, =
(2k/pocpw)'’?.

It can be checked that, for these two types of waves (respectively 7 = 1, 2) there
are the following relations:

22 But still small in the sense |kp¢| << 1 (long wavelengths), ensuring the scale separation discussed
in Sect. 6.3.
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w . 1 v—1
v = _szib’ i=x,y,29, p=—1]1+ i b, (6.59)
kT TXo 1_‘_,\/ k2
pocp —iw |
1 -1 -1 1
T = 8_ ")/K 1 b, S = 7 C; -1 + " 1 b
Py ——17 ¢l L+y———k;
pocp —iw pocp —iw

For the type 1, the “acoustic wave”, the entropy variations are almost zero, s = 0.
In effect, (yx/ —iprCP)kf is usually close to zero because of the small x/pycp
value (as long as frequencies are not too high, or wavelengths, not too small). Hence
the parenthesis in the expression of s almost vanishes. In the expression of p, the
parenthesis almost takes the value 1 + (7 — 1)/1 = ~, leading to pressure-density
relation p =y, 'p, close to the adiabatic. The temperature also, is almost in adiabatic
relation to the condensation, 7 = b(y — 1)/ 0o.

For the type 2, the “entropic wave”, on the contrary, (yx/—iwpoc p)k% = —.
Then the entropy variations are significant:

1 1
—1+ — ;<—1+1—>=1L = s%—‘CPTb.
1+~ k% - - BoTo
pocp —IW

The temperature variations are also non-negligible 7 = b(y —1)/6(1 — )

= —b/By. The pressure variations are practically zero,

-1 -1
1+ 7 1 =1+ ;YT =0 = p=0.
pocCp —lw
. ) ) 1 2wl )
Indeed, using (6.57.2) we find, for this entropic pressure, p = — ————b, which

oy — 1 C2
is very small compared to the adiabatic pressure b/ x(. This is wﬁy t(h/e ﬁrst) a%d second
type of longitudinal waves are often termed pressure waves and entropy waves, in
spite of the fact that pressure and entropy variations are always simultaneously present
in these two waves.

6.9 General Representation of the Fields in Harmonic
Regime Without Source

Introducing acoustic and entropic potentials, ¢, and ¢,, such as
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Pb12 = N2o12, (6.60)
the general field 7', solution to the temperature equation (6.50), will be
7' = A1¢1 + Axgn,
with A; , two constants. The general velocity field v will be
v =1+ B10¢ + B:9¢s,
with the vortical part v’ obeying the equations

v = ﬂv’, 0-v =0. (6.61)
v
One expresses the coefficients B from the coefficients A by using the fact that the
(6.49) is independently satisfied by terms 1 and 2. This yields

K —iw
By, = -~ ) A2
pocy A2

From the temperature field, the condensation field can be written using (6.47). The
pressure field then derives using (6.45). In summary, the general form of the fields
in harmonic regime and without source, is:

v=v + ( A l—”) A0 + ( A E) A2, (6.62)
pocy Ay pocy A2
T = Ai1g1 + Argn, (6.63)
b= <1 T Al) A+ (1 b /\2) A1, (6.64)
poCyiw PoCyiw
r_ <c5 top— /\1> Argr + <c5 +opl— = /\2> Ay, (6.65)
Po poCylw PoCyiw

The wavenumber for the vortical motions (shear motions described in the part v"),
is purely diffusive, highly attenuated. Indeed, putting the form, v’ = vje'«'*kv*,

in (6.61.1), gives, k2 = iw/v, or:

k, = lj; (;)1/2. (6.66)

The characteristic penetration length of this wave is seen on the exponen-
tial exp (ik,x) = exp (ix/dy) exp (—x/d,). It is the characteristic shear, or viscous
boundary layer, length 6, = (2V/w)1/ 2. Because the Prandtl number, Pr = nep /K, s
generally of order one, (e.g. 0.71 for air), the viscous and thermal penetration lengths,
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6, = 0,/ Pr'/?, are of a comparable order. This order is very small: for example for
air at audible frequencies, typical viscous and thermal attenuation lengths are in
the order of 10~* m, (still very “long-wavelength” compared to the mean free path
¢ ~mn/poco = 4.5 103 m).

6.10 Revisiting the Longitudinal Acoustic Equations Using
an Electromagnetic Analogy

We now want to make clear, that the propagation of waves in the fluid, in the pres-
ence of viscous and thermal losses, can be considered in exactly the same way
as the nonlocal macroscopic propagation of electromagnetic waves in a medium.
We believe that this electromagnetic analogy would assume its full beautiful form,
sketched in Appendix, if it were possible to extend sufficiently the thermodynamic
framework, so as to model also Frenkel’s shearing movements; if we work within
Navier-Stokes-Fourier model, however, the absence of Frenkel’s shearing, among
other shortcomings, makes the description degenerate. We mentioned previously in
Sect. 6.6.3 these insufficiencies of the description. As the completion of the analogy
is until now a distant perspective, in what follows, to avoid degeneration, we limit
ourselves to considering the Navier-Stokes-Fourier model when shearing movements
are not excited.

Recall that the momentum equation can be written, pgd,v = —0p — nd x (0 X
v) + (4n/3 + ¢) (9 - v). Focusing on longitudinal motions only, the term —nd x
(0 x v) is not excited, and the set of equations to be revisited is

ob+0-v=0, (6.67)
4

podhv = —0p — <?” + C) dob+[f=-0P].  (668)

YXop = b+ Bor, (6.69)

pocpO,T = BoTod; p + KO*T. (6.70)

In (6.68) we have included the possibility that an external density of longitudinal
bulk force f, that is thus given as a gradient, is acting on the fluid. We will see
that these (6.67)—(6.70) can be transformed into a general pattern inspired by that
of macroscopic electromagnetic equations in a homogeneous material medium, with
a source [J], density of external electrical current, playing the role of source [ f ],
density of external longitudinal body force. To prepare this way of looking at the
acoustic equations of motion, we now go to macroscopic electromagnetic theory and
study its formal pattern.
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6.11 Macroscopic Electromagnetics

Due to the lack, to date, of a precise relationship between macroscopic electromag-
netics and thermodynamics in the broad sense, (out of equilibrium), it is still not
possible to perform a precise specification of some of the macroscopic quantities
involved in the macroscopic equations that describe the propagation of electromag-
netic waves in, say, a neutral material medium given in an ambient rest state. This
point is generally not sufficiently well recognized in textbooks and literature. For
example in Jackson [10, Chap. 6], there is written, about the macroscopic electro-
magnetic equations: “Although these equations are familiar and totally acceptable,
we have yet to present a serious derivation of them from a microscopic starting point™;
there follows a “microscopic derivation” of the stated equations, which is apparently
intended to clarify the question, but which, in fact, remains superficial and does not
address a number of difficult and embarrassing questions. This is not surprising: one
could hardly expect deriving results belonging to the field of macroscopic physics
proper, from scratch microscopics, (and even less so, when the microscopic level is
that of semiclassical models). We try here to bring out some of the irritating pend-
ing questions, in a formal discussion. The subject will not come out of it clarified,
quite the contrary, but the simple recognition of the presence of difficulties of a
macroscopic thermodynamic nature in the broad sense, will be useful to us later in
acoustics. Moreover, the forthcoming acoustic implementation of our discussion —
in this chapter and the next — will particularly retrospectively highlight the thermo-
dynamic nature of these difficulties, which will be circumvented in acoustics, only
because of an existing (even if imperfect) thermodynamic framework, that of the
Navier-Stokes-Fourier model.

6.11.1 Nonlocal Maxwellian Pattern of the Macroscopic
Equations

Here, we are interested in the description of time variable and space variable phenom-
ena such as occurring in macroscopic wave propagation, either corresponding to free
motion (no external source), or forced motion (with external source). Although, as
we have said, no complete derivations of the required macroscopic electromagnetic
wave equations have ever been made from the microstructure, we will argue that,
what is known at the microscopic level, suggests that, at the macroscopic level can
be written a system of two field equations and two nonlocal constitutive equations:

OB
ot

oD
=—-0xE, E:(’)XH—[J], D=¢E, H=/p"'B. 671

The impressed term [ J ] is a current density source term which we put inside brackets,
as it may, or may not be applied. The quantities € and [i are operators intrinsic to the
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medium, establishing action-response relations between fields, and having the same

following general nonlocal form, whatever the source term is present, or not>*:
D(,x) = /e(t —t,x,x"YE({', x"dt'dx’, (6.72)
H(t,x) = /,u_l(t — ¢, x,x"B(, x")dt'dx'. (6.73)

Of the four electromagnetic macroscopic fields E, B, D, H, two of them, E
and B, will be called Lorentz’s fields and directly interpreted in the next subsection
as the macroscopic means of the microscopic electric and magnetic fields e and b:
E = (e) and B = (b). The other two, D and H, will be called Maxwell’s fields
and seen to reflect the response of the medium to the preceding fields, and thus,
the nature of the microstructures. They are not to be viewed as the macroscopic
averages of corresponding microscopic fields. They are, in fact, problematic to define
in principle, in a material environment. By the way, not apparent in the above Gibbs-
Heaviside’s standard vector notations, Lorentz’s and Maxwell’s fields have different
tensor nature, (see Appendix>*). Whereas E and B express in terms of true tensors,
D and H express in terms of tensor densities of weight —1. The impressed densities
of charges and current p and J? also are tensor densities of weight —1. Like the
Maxwell fields they are problematic to define in principle, in a material environment,
and this is also generally obscured in literature.

The nonlocal form of the relationships (6.72) and (6.73) is essential to assure that
the description is general; as it is rarely considered in the literature, it is worthwhile
opening a parenthesis to comment on it in some detail.

The integration over time ¢, i.e. temporal nonlocality, gives rise to what is called
“temporal dispersion”; the integration over space x’, i.e. spatial nonlocality, gives rise
to what is called “spatial dispersion”. Because both integrations are accounted for, we
are directly assured of the general validity of the relation (6.72) for a time-invariant
medium: it would be useless to add in (6.72) an integral term built on the values
B(t', x'). Indeed, as analyzed in Landau and Lifshitz [13], because the fields E and
B are not totally independent but related by (6.71.1), it would be possible to view this
term as an effect of spatial dispersion, already described in the first term. Concerning

23 The dependencies are over t — ¢/, x and x’, because the medium is assumed time-invariant
but not translational invariant. When considering an homogeneous unbounded medium, the spatial
dependency will be over differences x — x’. Note that the indefinite integrals become definite
when considering that the kernels factors must vanish at some point — if only when the event
(t', x") lies outside the relativistic cone of causality whose tip is the event (¢, x): f dt’ f dx' <
[ioo dt' flex’\<c(tft') dx'.

24 These aspects are often overlooked in electromagnetic literature — see however Fournet [11].
See Weinberg [12] for general notions on Gauss coordinates, tensors, tensor densities, covariance,
contravariance.

25 ;) appears in another general equation, 8 - D = p, which we need not explicitly consider here,
because, in the time variable, space variable regimes, it automatically follows from taking the
divergence of (6.71.2), and using the conservation equation, dp/0t + 0 - J = 0.
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the other nonlocal relationship (6.73), a similar justification of its generality, can be
made, based on the relation established between D and H through (6.71.2), and the
generality of (6.72). In brief, because they allow for spatial dispersion in addition
to temporal dispersion, the relationships (6.72) and (6.73) between Lorentz’s and
Maxwell’s fields are the most general possible ones, (including, in particular, the
so-called bianisotropic constitutive relations). Often, in literature, by a convention,
the temporal and spatial dispersion is introduced only in (6.72), not in (6.73), which
is replaced by a direct definition-relation, H = 'B. We will comment in more
detail on this convention in Sect. 6.11.3, and a similar problematics, in the acoustic
analogy, will later shed useful light on it, illustrating its simple nature as an expedient.

As long as we use Cartesian coordinates and work with Gibbs-Heaviside’s nota-
tion, the kernel functions e(r — ¢, x, x') and p~'(z — ¢', x, x) retain the nature of
second-rank tensor quantities.”’® As a rule, they are independent of the fields and
only determined by the microstructure. Nevertheless, different distributions of the
Lorentz fields must produce different resulting distributions of Maxwell fields D
and H. Precisely because the created D and H will depend on the variations of E
and B, all effective properties meaningful for wave propagation, such as impedances
and wavenumbers, will reflect associated temporal and spatial variations of Lorentz
fields.

Therefore in this sense, one may think of “temporal dispersion” as something that
tells us that the effective properties of the medium depend on the time variations
of the macroscopic fields; likewise, “spatial dispersion” is something that tells us
that the effective properties of the medium depend on the spatial variations of the
macroscopic fields.

In wave propagation problems, there are both time and space variations, therefore,
temporal dispersion and spatial dispersion, should always be simultaneously present.
Nevertheless, often, spatial dispersion effects are very weak: they are neglected in
almost all textbooks; or else, once introduced, they are assumed to be small correc-
tions meaningful to consider only when the wavelengths reduce sufficiently [13].
It is only very recently understood [14], that, spatial dispersion effects can be very
strong effects at long wavelengths. This occurs in presence of localized resonating
structures.

The same generalities will apply to acoustics. Often, spatial dispersion effects are
necessary to consider only as corrections to the conventional (local) homogenization,
(see next chapter), when the wavelengths reduce sufficiently to become commensu-
rable with the microstructure characteristic lengths. But in some other instances, this
time completely failing the conventional views, they can be strong effects at long
wavelengths. This occurs in presence of resonances. People often speak of “local
resonances” as these resonances are generally those of finite structures, localized in
space. But this wording is, in-part, unfortunate: when “local resonances” are present,

26 In general Gauss coordinates, ¢ remains second-rank but z~! becomes fourth-rank tensor; the
first and last (one or two) indices, transform respectively with coefficients associated to the different
points x and x'.
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the wave propagation physics becomes strongly nonlocal (spatially).?” A nonlocal
homogenization description will be developed in next chapter, for rigid-framed fluid-
saturated materials. In this chapter, as we consider a simple fluid with no structure,
the spatial dispersion effects will be weak, (but essential to allow for the propagation
of other waves than the so-called acoustic one).

We close our parenthesis here. We now want to examine why it is not so evident
to fix the meaning of the Maxwell fields D, H, and impressed source term [J]. To
do this, we try to sketch in the next section how these fields appear, in a material
environment, and lead to the formal pattern of the above equations.

6.11.2 Passage from Microscopics to Macroscopics

To evoke the difficult nature of the questions raised by the specification of the fields
D, H,and [J], let’s start with the equations that hold true at the microscopic level. In
a semi-classic description these are the well-known electromagnetic equations first
written at the turn of the 20th century by Lorentz in his celebrated series of papers,
and monograph, on “The theory of electrons”. They comprise first, the so-called
“microscopic Maxwell-Lorentz equations”:

b de 1
9.b=0, Zioxe=0, 9.e=L L= _axb—j (674
ot €0 ot o

We can be assured of their profound physical significance because there is a route,
from Quantum Electro-Dynamics describing the photonic field, to these equations,
describing electric and magnetic fields. They comprise next, the following inherently
semi-classic expressions for the microscopic densities of charge p and current j:

pP= qué [x - xu(t)] ) J = thvvu(t)é [x - xu(t)] ) (va = dxa/dt)s

(6.75)
where 4 is the Dirac delta, and the symbolic summation®® Za, a=1,2,..., isover
electrons and nuclei. They comprise finally, the following, also inherently semi-
classic and symbolic equations of motion, separately obeyed by the charges moving
under the action of the microscopic electric and magnetic fields:

d 2
| mopva/f1=22) = g, (e + v, x b) a=1,2.... (676
dt c?

27 1n this connection, see the discussion around Fig.7.4, next Chap.7, Sect.7.2.

28 The labelling o of all charged particles is here symbolic as it makes abstraction of counting
subtleties related to quantum indiscernibility of identical particles.
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The justification for using delta functions in (6.75) is that electrons have no per-
ceptible dimensions, while those of nuclei are still astonishingly small, ~ 10~ m.
Interested in what happens at scales much larger than this, everything is supposed to
happen as if charged particles were pointlike, and Maxwell-Lorentz’s microscopic
equations (6.74) applied everywhere in space. We take with reservation this semi-
classical expression of things, which is not a complete reflection of the microscopic
quantum world, and among other shortcomings, does not consider the collective
aspect of electron behaviour.”” We note that the conservation relation

Jdp
it L j = 17
" +0-j=0, (6.77)

can be obtained from the conservation of individual charges, g, = Cst, and the
semi-classic picture, but more deeply, it is also a consequence of Maxwell-Lorentz’s
microscopic equations themselves.

Now, we observe that we are not directly concerned by microscopic equations
and quantities. The fields will have rapid variations at the Angstrom scale of molec-
ular dimensions and less (A = 10~'°m), and we have to fix our attention not on
all these irregularities but only on certain mean values that vary at a much larger
(“macroscopic”) scale. As Gibbs’ conception of ensemble average is delicate to be
made explicit here, in literature these mean values (-) are generally conceived using
Lorentz’s conception of volume average. The idea is to smooth-out irregularities by
integrating in averaging spheres or “homogenization” volumes, neither too small nor
too large. The sphere radius must be sufficient to be representative of the structure
of the material. Since the purpose is to get rid of the irregularities, the sphere must
contain a very large number of particles. The averaging on the other hand must not
obliterate the changes from point to point that can really be observed. Molecular
dimensions (~ A) are so much smaller than ordinary electromagnetic wavelengths
that both conditions can be met at the same time. In homogeneous substances, a
suitable macroscopic homogenization length L, will be on the order of 1004, typ-
ically. In a Lorentz averaging sphere having this size, there is still on the order
of 10° nuclei and electrons. The average can be best performed using Russakoff’s
signal-theory-type refinement of a convolution with an isotropic test function w(x),
of characteristic extent L, and normalized to unity, f dxw(x) =1, (see [15] and
the discussion in Jackson [10], Chap. 6). The macroscopic volume-averaged electric
field E, for example, will be

E(t,x) = {(e(t,x)) = (e)(t,x) = /dx/w(x/)e(t,x —x). (6.78)

If we put a derivative symbol in front of the above integral, we can move it inside:
Ox, [dx'w(x")e(t,x —x') = [ dx'w(x)Oy,e(t, x — x'). Therefore the operations
of space differentiation and averaging commute by construction:

29 In this respect, see in next chapter, Appendix, the discussion about Curie-von Schweidler’s law.



6 Acoustic Wave Propagation in Viscothermal Fluids 239
8X,~E(ts x) :8x,~(e(tvx)> = (8x,-e)(tsx)- (679)
The commutation with time differentiation is also evident. Thus, by averaging, the

microscopic Maxwell-Lorentz equations (6.74) become the following macroscopic
ones

OB OE 1
0-B =0, —+0x E=0, 8-E=@, €e— = —3J x B — (j).
ot €0 ot o
(6.80)
and the conservation relation (6.77) becomes
0
W) Loy =o. (6.81)
ot

Equation (6.80.1) is, for (time-variable) wave phenomena, a consequence of
(6.80.2), whereas, (6.80.3) is a consequence of (6.80.4) and the conservation of
charges (6.81). Thus, in what follows, we limit our attention to (6.80.2) and
(6.80.4). Comparison of these two equations with (6.71.1) and (6.71.2), suggests
that Maxwell’s fields D and H, are introduced by the extraction from (j) of cer-
tain contributions, that can be identified either, with “intrinsic polarization current”
determined by bulk properties of the medium, or with “extrinsic” to the medium,
external contribution imposed from without. That is, (j) will have to be decomposed
in a (intrinsic) polarization response current J ,,;, expressing the rearrangements of
all charges (bound or free) and internal currents (circulation currents responsible for
magnetism) in the medium, in relation to the presence of the macroscopic Lorentz
fields,*” and an additional (extrinsic) impressed charge current [J], imposed from
the outside:

Moreover the (intrinsic) polarization current J ,,, characteristic response of the
medium to the presence of macroscopic fields E and B, is supposed to decompose
in two parts electric and magnetic:

P
Jpolzaﬁ_t‘FaXM, (683)

what we call Lorentz-splitting,! with nonlocal operators X and Yp, or kernels
xe(t, x,x"), xp(t, x, x'), establishing how the “electric” and “magnetic” polariza-
tion fields P and M are determined by the electric and magnetic macroscopic fields:

30 Say, whatever this will precisely mean, some “electric” and “magnetic” polarization rearrange-
ments of charges and currents.

31 The idea can be attributed to Lorentz, though we have not found a clear expression of it in original
papers. Through it, the polarization current is formally decomposed in time derivative and spatial

derivative terms; the part O x M actually represents a contracted expression M ;, see Appendix,

with M’/ an antisymmetric tensor density.
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P(t,x) = /dt’dx’XE(t —t,x,xYE({', x), (6.84)
M(t,x) = fdt’dx’xg(t —t,x,x"YB({', x). (6.85)

Indeed, in (6.84) it is useless to add a similar term with the magnetic field, because,
as E and B are related by (6.80.2), such a term could also be rewritten in the
nonlocal integral form (6.84). Likewise, in (6.85), because of the complete nonlocal
form of the relation, there is no need to add a similar term with the electric field.
Therefore, when (6.82)—(6.83) are substituted in (6.80.4), the addition of the electric
polarization current term 9 P / Ot to g E /Ot will produce the term 0D /0t in (6.71.2),
and the subtraction of the magnetic polarization current term 0 x M to 0 x B/
will produce the term 0 x H, provided D and H are interpreted as:

1
D=cE+P, H=—B-M. (6.86)
Ho
Then, (6.72) and (6.73) will apply, with
et —t,x,x)=¢dt —t)o(x —x) +xgt -1, x,x), (6.87)
pt =t x,x)y = pg ot — 1)d(x —x) — xp(t — ', x,x). (6.88)

In this way, the formal pattern of the electromagnetic macroscopic equations set out
in Sect. 6.11.1 has been reconstructed and justified; it appears to be entirely general

as bo#r as a macroscopic descrption is possible.
JOON

6.11.3 Ambiguities and a Suggested Way to Resolve Them

In this “formal derivation” of (6.71)—(6.73) we have left open two difficult questions.
We have not explained, how are to be performed the successive separations (6.82)
and (6.83). The first separation is clearly elusive: how do we precisely distinguish
between the “intrinsic” J ,», and “extrinsic” [J] currents? The second separation
is in itself ambiguous: the rotational 0 x @ of an arbitrary vector potential @, can
always be added to P, provided simultaneously, a corresponding term 09 /0t, be
subtracted to M. This is not like Helmholtz’s decomposition, F = —0® + 9 x A,
of a vector field F, into a gradient of a scalar potential and a rotational of a vector
potential, which is unambiguous when requiring the vanishing of the fields at infinity
and the divergence-free nature of the vector potential.

Due to these shortcomings, we are not able to explain unambiguously, what are
the electric and magnetic polarizations P and M, the Maxwell fields D and H, the
polarization current J ,,;, the impressed current [J], and how to compute them in
principle.
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We will argue by comparison with a forthcoming acoustic implementation of a
similar problematic, that we can have no answers to the above questions, in absence
of thermodynamic considerations and laws for the motion of, say, the “fluid” of
electronic charges in the material lattice of nuclei, considerations and laws which
are however so far absent in the present state of macroscopic electromagnetics and
thermodynamics.

Here we say that, if we disposed of the suitable thermodynamic knowledge, a
solution to the indetermination in (6.83) would be to require that the Heaviside-
Poynting vector

S=ExH, (6.89)

possesses the thermodynamic meaning of the current density of energy transported
in electromagnetic form. We will denote this, the “Heaviside-Poynting”, thermody-
namic identification. “In electromagnetic form” means the part of the energy current
density, origin of the subsequent propagation and attenuation of the electromagnetic
disturbance, and not the part, “lost” for the propagation, which is right-on converted
in thermal degraded form.

If we knew what this current S is, in the sense that we would have a thermodynamic
framework (so far missing) to express it, we could, by working within this framework,
define H by applying (6.89), then M by applying (6.86.2). Assuming that the missing
knowledge would also determine what the “impressed part” [J] is, we could then
use (6.82)—(6.83) to define P, and finally, by (6.86.1), define D. These specifications
being performed whatever the chosen source term, [J], all nonlocal operators would
then be uniquely defined.

Basically, this is what we will try to do further on, in acoustics, with substituted
quantities and corresponding changes. But the concrete exploitation of these ideas
in electromagnetics is not feasible now, as long as a whole slice of thermodynam-
ics, concerned with the response of electrons in matter, is missing. For the motion
of a viscothermal fluid permeating a solid structure (see next chapter), or not (no
solid structure, see this chapter), we dispose of the thermodynamic Navier-Stokes-
Fourier equations we have stated, and this will suffice to us to progress significantly
in the direction of a satisfactory nonlocal description.*?> But for the response of an
“electronic fluid” (partially bounded and free) in the material nuclei lattice, we have
so far nothing comparable. It is therefore not surprising that in the electromagnetic
literature, the problem is not defined in the above general terms, which remain with-
out content for the moment. Shortcuts and simplifications, which we now try to
summarize, are used instead.

32 Note that in expressing ourselves in this manner we assume that the properties of the fluid will be
unaffected by its proximity to the walls of the solid; for the “electronic fluid”, on the contrary, one
can expect such complications to occur, and the development of an appropriate description seems
to be a distant prospect.
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6.11.4 Ambiguities and the Customary Way

A priori, there is in the polarization current (6.83), J poi = Jbound + J cona> two dif-
ferent parts: a part Jpouna, coming from the motion of bound electrons, and a part
J cond» coming from the motion of free electrons. The first Jp,unq, includes a first
contribution related to the global displacement of bound charges, to be incorporated
in the term 0P /0t, and a second contribution not related to this but to the modifi-
cations of underlying magnetic circulation currents (e.g. in the molecules or other
greater structures), to be incorporated in the 0 x M term in (6.83). The remaining,
J cona» Will be an induced conduction current, coming from the motion of electrons
not bounded to one individual molecule, and that will complete the above first contri-
bution to produce the term 9P /0t in (6.83), but also, for some structured materials,
the 0 x M term itself. Thus writing (6.82), we have

(J) = Jvouna + Jcona + [J1. (6.90)

In the literature, often, by a tacite redefinition, J ong + [J] = J, of the current J
which appears in the macroscopic equations, one writes (6.90) as

(J) = Jvouna + J. (6.91)

Finally, in presence of spatial dispersion and as explained in Landau and Lifshitz
[13] or Agranovich and Ginzburg [16] or Melrose and McPhedran [17], one decides
to put all different effects coming from the bound charges, in an abstract new P
obeying the definition:

oP
ound = —. 6.92
J bound By (6.92)
Then, macroscopic equations are obtained, which have the form:
OB oD 1
— =—-0xE, — =—90xB—-1], D =¢E, 6.93
ot x ot 140 % I ¢ ( )

with J, a current, that is either taken equal to J..,s and obeying Ohm’s law in
absence of source,*® or taken as an imposed term in presence of source,** and ¢ an
operator establishing a relation having the same following general nonlocal form
whatever the J term is present or not:

D(,x) = /e(t —t,x,xE(t' x)dt'dx . (6.94)

3 1n the most general case this will be a nonlocal Ohm’s law J(f,x) = fdt’dx’a(t —
', x, xYE{', x').

341t also obeys the above Ohm’s law, with E containing two parts, respectively associated to the
forced and free motion.
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In this conception, the magnetization M is, by force, defined to be zero, and the H

field, is, simply, viewed as:
1
H = —B. (6.95)
Ho

Contrary to the interpretation made of the term J in the set of (6.71)—(6.73), here, in
the above (6.93)—(6.95), because of the presence of J .,,4 in it, the term J is not truly
an external source-term. It becomes so, however, if we reincorporate the induced
conduction current J ,ng in the definition of D, i.e. decide to write J ,,; = OP /0t,
instead of (6.83) or (6.92), now artificially putting all effects coming from bound and
free charges, in the abstract P. Anyway, whatever ones uses or not the redefinition
Jcona + [J] = J, certainly by setting (6.95), some artificiality is introduced in the
definitions. We confirm this later in the acoustic case, where in this respect, similar
problematics will arise.

6.11.5 Discussion of Our Proposal

Our idea is that there should exist a dynamical field P, having thermodynamic
status, and such that § = E x P has the interpretation of current density of energy
transported in electromagnetic form. Then setting H = P would allow identifying
the field H, removing the ambiguity in the Lorentz decomposition, and fixing the
meaning of all fields and operators.

To precise this, we observe that, as discussed in textbooks, the polarization P,
verifies, 0 - P = p,o1, where 0ppo/0t + 0 - J por = 0. If we were to add the equa-
tion, 0 x P = 0, no ambiguity would arise for P, once given the p,,. But we are
guessing here, that, in general, what should be called the electric polarization will
have, 9 x P # 0. Let us thus denote P’, the field satisfying, 0 - P" = p,,, and,
0 x P’ = 0. The actual P, willbe, P = P’ + 0 x &, (with some @), with the addi-
tional term, compensated by a corresponding additional one, —0® /0t, in M. We are
guessing that the requirement, E x (B/uo — M) = E x P, would then be capable
to fix the appropriate term, —0® /Ot, resolving the ambiguity of the Lorentz splitting.

For later reference, we name this process of hypothetical identification of what
should be the Maxwell field H, based on (6.89), Heaviside-Poynting’s thermody-
namic identification of the field H, or in short, Heaviside-Poynting’s conception of
the field H.

We hope that these comments will help clarify the difference between how
Maxwell’s fields are generally defined in the electromagnetic literature, and how
they should be better defined, following (6.89), but unfortunately, in a way that is
not feasible at this time, due to the absence of irreversible thermodynamic descrip-
tions of the movement of an “electronic-fluid”, in part bound and free, in material
media. We note that many recent theoretical studies and experimental observations
are now pointing in this direction. Electrons flowing like liquid have been reported
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in graphene, and notions resembling viscosity have appeared, to describe newly
observed “fluidic” aspects of their collective behaviour.

In the next section we observe that a similar nonlocal pattern of relations applies
to the case of the propagation of acoustic small-amplitude perturbations in our vis-
cothermal homogeneous and unbounded fluid. In this case, however, we will not
have to resort to stopgap measures of the type (6.95) expounded just above. Because
in acoustics, we will have an existing irreversible thermodynamic framework — that
of Navier-Stokes-Fourier equations — it will be possible to make definite use of a
similarly imposed energetic condition of the type (6.89), allowing us to identify an
“acoustic H —field” and then to determine also the other acoustic quantities. For the
reasons mentioned above (Sect. 6.6.3, and comments above (6.67) in Sect.6.10),
however, we will limit ourselves to considering the case of longitudinal movements
only, (corresponding, without source, to the “acoustic” and “entropic” modes in the
fluid).

Finally, we insist that the acoustic example will help us, perceive the fundamen-
tal physical insufficiencies of present-day definitions of electromagnetic Maxwell’s
fields H = B/uo and D. It is to be hoped that in the future, a thermodynamics of the
behaviour of electrons in material media will be developed, that will be capable to
precise the notions of electric and magnetic polarizations P and M, and polarization-
and impressed-currents J ,,; and [J], but this, again, seems to be a distant perspec-
five.

6.12 Nonlocal Maxwellian Pattern of Longitudinal
Acoustics

We now can come back to the “acoustic” longitudinal equations in a viscothermal
fluid (6.67)—(6.70), and explain the formal pattern, that makes them comparable to
the macroscopic electromagnetic equations discussed in the previous Sects. 6.11.1
and 6.11.2. Consider, on one hand, the two longitudinal acoustic equations (6.67)—
(6.68), written with a source term f = —0JP, density of external longitudinal body
force:

4/
Ob+0-v=0, pdv=—0p— (?” + 4) 90,b + [ f = —9P], (6.96)

and completed by the additional thermodynamic ones (6.69)—(6.70), that tell us what
the variable p is. Consider, on the other hand, the two macroscopic electromagnetic
equations (6.80.2) and (6.80.4) with (6.82) inserted:

OB OE 1
E—i—(’)xE:O, EOE:%()XB_JPUI_[J]’ (697)
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and supposedly completed by additional ones, that should tell us, in the end, what
the polarization current J ,, is. The brackets [] recall that the source terms may
not be present. We say that the two sets can quite be seen in the same way. To dis-
cuss this affinity we have to avoid entering in too much details: (6.96) are directly
macroscopic® equations involving thermodynamic results, while (6.97) are also
macroscopic equations, but here we completely lack the necessary thermodynamics
to understand the currents. Indeed, already because it would need giving a pro-
hibitively large amount of information to specify the system, we cannot start at the
microscopic non-thermodynamic quantum level, give the configuration, state in full
the equations and find and average their solution to define J and J ., (see also
footnote 45 in Appendix); and we cannot, either, work directly at a thermodynamic
level as it would be desirable and as is done in the acoustic case, because so far, we
completely lack any irreversible-thermodynamic description of the motion of “elec-
tronic fluid” flowing in matter. Nevertheless, with this in mind, we can make appear
as follows the strong affinity between the two wave-propagation problems.

6.12.1 Electromagnetic Analogy

First, to see that the philosophy of (6.96.1) can be made comparable to that of (6.97.1),
we note that the macroscopic basic fields involved, v, b (acoustic) and E, B (electro-
magnetic), are “derived” fields, obtained in comparable manner from an underlying
macroscopic three-vector “potential” field, which we denote a in acoustics, and A in
electromagnetics.*® In acoustics, working in the reference-frame in which the fluid is
globally at rest, a(z, x) is the macroscopic displacement of fluid particles. In electro-
magnetics, working in the reference-frame in which the medium is globally at rest,
A(t, x) is the macroscopic mean potential in Weyl’s temporal gauge.’’

The relations between the acoustic (displacement) and electromagnetic (potential)
fields a and A and the derived acoustic and electromagnetic basic fields v, band E, B
are as follows:

Acoustics: Electromagnetics:
0 .
=-0-a, vE—a, B=0xA, EE—G—A. (6.98)
ot ot

35 The acoustic variables are from the beginning macroscopic variables, see Sect. 6.3.

36 We have A = (a) with a the microscopic potential associated to the fields e, b. The acoustic a,
in spite of his lowercase notation, is macroscopic and the correspondent of A. There’s no point in
looking for an acoustic match for the electromagnetic a.

37 The electromagnetic potential is a relativistic object A, = (ay) with four temporal and spatial
covariant indices . = 0, 1, 2, 3; general gauge invariance of electromagnetic equations describing
fields in interaction with charges, expresses in the fact that the covariant vector A, is determined
only up to a four-gradient ¢,,; then working in the fixed reference-frame where the medium is
at rest, it is possible to choose the four-gradient in such a way that the temporal component A
vanishes. This is Weyl’s temporal gauge, in which A, = (A9 = 0, A). The electromagnetic fields E
and B, then derive in this gauge from a three-vector A with the written relations (6.98.3), (6.98.4).
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The relations (6.96.1) and (6.97.1) are then seen to be, both, the tautological conse-
quences of the way the fields b, v, or B, E, are derived from a or A in (6.98).

The properties of the medium are not expressed in these first field equations
(6.96.1) and (6.97.1); they come from the other relations, which are to be writ-
ten as second field equations, constitutive relations, and other energetic (Heaviside-
Poynting’s) condition. If we want to see the acoustic relation (6.96.2) as a counterpart
to the electromagnetic relation (6.97.2), we have an interest in putting it in the form

of
ov

1
poE = —%8b+fp,,l+[f]. (6.99)

The term —9b/x( compares to the term 9 x B /. It comes from the diagonal adia-
batic part —p,d;; in the stresses (6.32), that is, from a medium response part making
abstraction of losses, and the rest, denoted f ,,; here to comply with electromagnetic
notations in (6.97.2), describes an “induced” viscous and thermal “polarization”
force density which is the expression of the previously mentioned, unavoidable and
accompanying, irreversible exchanges of momentum and energy. Here, as the motion
is assumed longitudinal, this induced “polarization” force density is simply given by,
(compare (6.99) and (6.68))

1 4n ob
=—0b—0p—|— 0—. 6.100
fpul X0 p ( 3 + C) ot ( )

The interpretation of the acoustic (6.99) and electromagnetic (6.97.2) equations
is now made along similar physical lines of reasoning. In absence of “polarization”
reactions of the media, the set of equations would be, 9b/0t = —0 - v, ppdv/0t =
—Xg 'Ob + [ f].inacoustics,and OB /0t = —0 x E,edE /0t = ji;' 0 x B —[J],
in macroscopic electromagnetics, leading to nondispersive wave propagation with
soundspeed ¢q and lightspeed c, such that, poxoc3 = 1, €opoc® = 1. But as soon as
the wavefields b, v, or B, E, are present and variable in time and space, progres-
sive “polarization” processes inevitably arise in response, resulting in an induced
polarization force f . or an induced polarization current J ,,, affecting in turn the
variations of the fields and causing the wave dispersion.

This analogy then suggests introducing, for the polarization force f ,,;, a general
representation in terms of a time-derived and space-derived term:
op
S por = 3 + Om. (6.101)

This will be the acoustic counterpart of the Lorentz splitting (6.83) of the macro-
scopic polarization current, (the “acoustic polarization” fields m and p are written
in lowercase here but they have macroscopic nature). As in electromagnetics, there
is an ambiguity in writing (6.101). Given some p and m satisfying (6.101), new p
and m given by p’ = p + 0y and m’ = m + Op/0t also satisfy (6.101), where ¢ is
a scalar field. Nevertheless, if some criterium can be found to fix the scalar unknown
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©, so that unique polarizations p and m exist, we have the following consequences.
Substituting (6.101) in (6.99) we arrive at

od
— =0h , 6.102
o +[f] ( )
with 1
d = pov + p, h=——>b+m. (6.103)
X0

Finally, in the same way as it has been suggested previously that macroscopic elec-
tromagnetic equations should ultimately be written in the form of (6.71)—(6.73),
with the Maxwell field H to be fixed according to the Heaviside-Poynting condition
that (6.89) should represent “the electromagnetic part” of the energy current density,
here, it is suggested that the acoustic equations for longitudinal motions in the fluid,
should ultimately be written in the following general form?®

b od
o tov=0 E:ath[f:—aP], (6.104)

d(t,x) = po(t, x) = /p(t — 1, x —x")(', x)dt'dx, (6.105)
h(t,x) = —X"'b(t, x) = — / Yt =1, x —x)b(t, x)dl'dx’,  (6.106)

with the “Maxwell field #” to be fixed according to the condition that
s = —vh (6.107)

should represent “the acoustic part” of the energy current density, or else, the current
density of energy transported in acoustic form. Like before in the electromagnetic
case, we mean by it the part of the energy current density, origin of the subsequent
propagation and attenuation of a disturbance, and not the part, “lost” for the propaga-
tion, which is right-on converted in thermal degraded form. We will denote this, the
“acoustic Heaviside-Poynting” thermodynamic identification of the 2—field. With
it, the h—field will represent an acoustic stress field, and the d—field an acous-
tic momentum field, different from the ideal fluid expressions, & = —y, lb, and
d = pyv, because of the “acoustic polarization” processes.

Although the hypothesized Heaviside-Poynting thermodynamic identification
(6.89) could not be performed, because of its current disconnection from available
thermodynamics, its acoustic version (6.107) will prove to be feasible, and to remove
the ambiguity inherent in Lorentz’s acoustic splitting (6.101). Nevertheless, in the
same way as, in electromagnetics in presence of spatial dispersion it is customary
to set, M = 0, or, (6.95), by definition, here in acoustics it could be considered that,

38 Tn (6.105), the kernels are written to depend on the difference x — x’, because we work with
Cartesian coordinates and the fluid, unbounded, defines an homogeneous medium.
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m=0,o0r,h =—x, 1b, by definition. In what follows, after considering making the
acoustic Heaviside-Poynting’s thermodynamic identification (6.107), we will also
have a look, for edification, at the different acoustic description resulting from this
last definition, counterpart of the electromagnetic customary one.

6.12.2 Acoustic Maxwell Fields

We now consider specifying the Maxwell acoustic field /4, the acoustic polarizations
m and p, the other Maxwell field d, and thus the acoustic nonlocal operators p
and ¥ !, by effecting the acoustic Heaviside-Poynting fundamental thermodynamic
identification (6.107).

First, we write down an Energy Conservation-Dissipation Corollary [18], which
applies to the Navier-Stokes-Fourier linearized equations:

ow
— +0-1=-D, 6.108
B + ( )

where

= - - , 6.109
T e T2 ! (6.109)
I = / N o 6.110
i—Pvi—Uv,-jUj—FOT iT, (6. )
D=0 0 N or)? 6.111
_O'Uij jvi—i—?O(T) . ( )

Here w represents the density of disturbance energy, that is, the first term in (6.108),
integrated in a control volume, represents the time rate of change of disturbance
energy, whether this energy is accumulated in acoustic organised from, or other,
degraded from. Vector I represents the energy-flux vector, whether the energy is
transported in usable acoustic form or other degraded form. Its surface integral on
the boundary of the control volume represents the rate at which disturbance energy
is flowing out, in acoustic or other form. Finally, D represents the density of energy
dissipated per unit volume and time, or in other terms, its integral in the control
volume is the energy “unaccountably” lost in this volume and transformed in heat
energy per unit of time. We see that D = Tyo,, where o, is the density of entropy
production (6.39), in accordance with the general thermodynamic relation, dQ =
TdsS.

In covariant notations, (see Appendix), I is a contravariant vector [ . From
its Cartesian-coordinates expression (6.110) we see that I’ doesn’t write in the
“Heaviside-Poynting” form —H/ (7, x)v/(, x). Indeed, the last thermal term in I’
will be proportional to —7(t, x)7 (¢, x), and this cannot be put in the form of a
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tensor at (¢, x) contracted with the velocity at (¢, x). It means that we cannot count
the thermal term in (6.110) in what we call the energy-flux vector “in acoustic form”
s: this term will correspond to an energy transported in a “degraded form”. As
regards the viscous term in I, it has the right form of a tensor at (¢, x) contracted
with the velocity at (¢, x), however we cannot count it in s because it again corre-
sponds to energy transported in degraded form. Indeed, we observe that these two
thermal and viscous contributions to the energy flux I, are transformed in similar
manner, (—%T@iT — %}8,4'8,-7', —U,’)Uvj — a;”.j 0;v;), in the two thermal conduc-
tion and viscosity contributions to the dissipated energy density D. If the thermal
term —Ti(')ran' carries only degraded energy, then it is in order also to assume that
the viscous term —o,; ;v; corresponds to the transport of degraded energy only. The
remaining term pv, to which corresponds no contribution in D, must be that associ-
ated to the energy transported in usable, acoustic form. Thus, finally, we set

s = pv. (6.112)

Given the two expressions (6.107) and (6.112) for the same s, it follows that we
must identify the 4 —field with the (opposite) thermodynamic excess pressure:

h=—p. (6.113)

This, turns out to be the translation of acoustic Heaviside-Poynting’s identification
of the h—field. It completely determines all quantities: it sets the m—field through
using (6.103.2) and the operator X! through (6.106); after m is determined, it sets the
p—field through using (6.100), (6.101), then the d —field through using (6.103.1), and
then p through using (6.105). Letus now proceed explicitly with these determinations.
Putting the acoustic Heaviside-Poynting identification (6.113) in (6.103.2) yields the
following expression of the “polarization m”

1
m=—p+ —b. (6.114)
X0

Eliminating b from using the state equation (6.69) we get

_ /30|: (’Y—l)XO]
m=——|r——p|.

6.115
X0 Bo ( )

Inserting the thermodynamic identity (6.5), taking the time derivative, and applying
the (6.70), this is rewritten 9m /0t = —[(y — 1)/BoTo]k0*T, or

Y —1 ! 192
m=———gx dt'o . (6.116)
GoTo  J-o

This equation joined to (6.114) allows us to see “polarization m” as a thermal con-
duction part of the #—field or opposite pressure, which builds up due to the thermal



250 D. Lafarge

conduction processes created in spatially variable (divergent) temperature gradients.
The diagonal thermal part, o7, ;» in the additional lossy stress tensor (6.33), is now

interpreted as being, mJ;;, and the 1—field as being

1 —1
h=——b—" n/ dr'd*r. (6.117)
X0 BOTO —c0

We find back in this way (6.40), seen to express the fact that “acoustic” pressure p
is not exactly in adiabatic relation with condensation, by the appearance of “polar-
ization” processes related to thermal conduction. Putting the expression (6.114) in
(6.100), (6.101) we next obtain that

p=(Fec)or=-(F+c)oe o, 6.118)
or P
b <4?’7 + g) / 490 - v). (6.119)

This last equation compares with (6.116) and allows us to see “polarization p” as an
additional viscous momentum, which builds up in response to the spatial variations
of the velocity divergence. The sign before the 0 p /0t term in (6.101) was chosen so
that (6.119), for p, has the same sign convention as (6.116), for m. Equation (6.119)
also expresses as, —dp; /0t = 0;0,;;, where o, is the viscous part in the stress

tensor (6.32).° And d, which finally is identified as

d = pov — (? + g) / dr'od - v), (6.120)

appears as an “acoustic momentum’ that is augmented by the viscous polarization
part p. It represents only the part of the momentum that is transferred in reversible
manner. Thus we see that, interestingly, Heaviside-Poynting’s thermodynamic iden-
tification of the h—field, leads to a natural separation of viscous effects and thermal
conduction effects, the former being expressed in “viscous polarization p” (6.119),
and the latter in “thermal polarization m” (6.116).

The laws and identifications obtained above have a somewhat unsatisfactory phys-
ical character, however, when viewed from the general nonlocal point of view. For
example, looking at (6.116) or (6.119), it is obviously not reasonable in nonlocal
physics, to treat on an equal footing the values of 9*7 or (3 - v) at different instants.
As we see in next subsection, these identifications do not lead to an existing density

39 For the case of longitudinal motions v = d¢ considered here, we have 8;0 v = 8%v; = 9;(0 -
v), so that E)ja;ij coincides with (4—3” —+ C) 9;(0 - v).



6 Acoustic Wave Propagation in Viscothermal Fluids 251

kernel in original space*’; but in the Fourier space, they do correspond to definite ker-
nels, whose expressions we will give. In Appendix we have given the more complete
and general pattern of macroscopic quantities and equations, expected to hold true in
presence of shear motions and when going far beyond the near-equilibrium simplifi-
cations made here. But corresponding quantities will await in the best case scenario
an attempt to construct considerable advances in nonequilibrium thermodynamics.

6.12.3 Acoustic Nonlocal Operators

The acoustic kernels can be written in a Fourier decomposition as:

d dk . N ,
p(t _ l/, x — x/) — / z_w p(w7 k)e—zw(t—t )+1k~(x—x)’
™

2 3

0 (d? (6.121)
X't x—x) =/—
2w

-1 —iw(t—t)+ik-(x—x")
w, ke .
2mi X (w, k)

In what follows we show how to compute the Fourier kernels coefficients p(w, k)
and Y~ (w, k), even if the orginal space density kernel function p(t, x) turns out to
be not well-defined mathematically by the Stokes law which interestingly, is not the
case for the inverse operator (9 . In accordance with the electromagnetic analogy,
the obtained expressions will be the same with and without source.

Let us first consider a calculation without source. Passing over to the Fourier
transform of the equations describing longitudinal motion (6.67)—(6.70), without
source (f = 0), we get, on using the acoustic Heaviside-Poynting’s identification
(6.113)

—iwb(w, k) = —ik - v(w, k), (6.122)
—poiwv(w, k) = ikh(w, k) — (4n/3 4 {) wkb(w, k), (6.123)
—yxoh(w, k) = b(w, k) + Go7(w, k), (6.124)
—pocpiwt(w, k) = BoTyiwh(w, k) — kk*T(w, k). (6.125)

As shown by (6.123), the velocity is collinear to k, and we may write v(w, k) =
v(w, k)i, k = kn. Equation (6.122) then is rewritten, —iwb(w, k) = —ikv(w, k),
and, inserting this in (6.123), we get

|:—p0iw + <43—77 + 4) k2:| v(w, k) = ikh(w, k).

40 A non-convergent integral is obtained. We do not see the mathematical difficulties encountered
as an indication that our nonlocal recasting of equations is not physical, but as an expression of
the fact that the thermodynamic framework used is unsatisfactory, (see Sect. 6.6.3), and should be
extended.
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This compares directly to the equation, —iwp(w, k)v(w, k) = ikh(w, k), obtained by
combining, —iwd(w, k) = ikh(w, k), with the function d(w, k) = p(w, k)v(w, k),
which are respectively, the Fourier transform of (6.104.2) without source, and that
of (6.105.1). The comparison yields the following expression of the density Fourier

kernel: )
4 k
plw. k) = po + (?’7 + c) - (6.126)

—iw

Next eliminating the excess temperature between (6.124) and (6.125), we find

—pocpiw (-%h(a}, k) — éb(w, k) —

+BoToiwh(w, k) — Kk (—mh(u}, k) — b, k)> ,
Bo Bo

and after straightforward calculation using the thermodynamic identity (6.5) and
definition (6.18.3) we get

v—1 iw
14 —& b(w, k).
—iw + 2

h(w, k) =—xp' | 1 -

PoCy

This compares directly to the Fourier transform of (6.106), which is given by
h(w, k) = —x~"(w, k)b(w, k), showing that, for the bulk-modulus Fourier kernel:

K 2
-1
X k) =g [ 1-1 - Pocv__ . (6.127)
I —iw+ k2
PoCy
From (6.119) and (6.114), the operators in the relations
p(t,x) = /X,,(t —t,x —xHv({t', x"dt'dx’, (6.128)
m(t,x) = /X;,(t —t,x —x"b(t', x")dt'dx’, (6.129)
inspired by (6.84) and (6.85), are found to be such that:
4 k2 1 - K
Xo(w k) = (;” +c> S k) =Y P (6.130)
—lw —iw + k2

pPoCv
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These expressions are simple and illustrate the mentioned separation of viscous
and thermal “polarization” effects, automatically performed by using the acoustic
Heaviside-Poynting identification (6.113).

The consistency of the obtained expressions (6.126) and (6.127) of the kernels
p(w, k) and X_l (w, k), can be checked as follows. Passing over to the Fourier trans-
form of (6.104)—(6.106) without source, we have

—iwb = —ikv, —iwd = ikh, (6.131)
d = p(w, k)v, h=—x"'(w, k)b, (6.132)

from which we derive the dispersion relation
plw, k) x(w, k)w? = k2. (6.133)

Putting in (6.133) the expressions (6.126) and (6.127), we can check that the result-
ing dispersion relation is nothing but Kirchhoff-Langevin’s characteristic equation
(6.52), rewritten in a nice factorized form.

In the above Fourier-transform calculations no source term was introduced. Now,
if our electromagnetic analogy is fruitful, we should find that the same expressions
(6.126) and (6.127) of the density and bulk-modulus Fourier kernels, are obtained in
presence of an arbitrary external density of bulk longitudinal force. Basically, what
we have to check is that, in presence of an external density of bulk longitudinal force
f varying like e "“"+k* \yith w and the components of k all independently chosen
with values taken in the complex plane, the response of the fluid is still described
in terms of the functions p(w, k) and x~!(w, k) given by (6.126) and (6.127). Since
w and the components of k are now arbitrarily chosen in the complex plane, these
functions actually are the analytic continuation of the preceding.

To check this, let us apply the external longitudinal body force f = —0P, P =
Pe~wr+ikx with w and k, independent and possibly compley, @‘ﬁlle upper complex
plane to ensure physical excitation). With this source inserted in the equations (6.67)—
(6.70), the response fields have the form f (¢, x) = f(w, k)e™'“'*** and we find

—iwb(w, k) = —ik - v(w, k), (6.134)
—poiwv(w, k) =ikh(w, k) — (4n/3 4+ () wkb(w, k) — ikP, (6.135)
—vxoh(w, k) = b(w, k) + Bo7(w, k), (6.136)
—pocpiwT(w, k) = BoToiwh(w, k) — kk>T(w, k), (6.137)

which leads, after straightforward calculations, to the equations:

2
—iw [po + (4?" + g) k—] v(w, k) = ikh(w, k) — ikP, (6.138)

—iw

and
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v—1 PoCv

T —iw+ "
poCy

k2

h(w, k) =—xp' | 1 - b(w, k). (6.139)

At the same time, setting in (6.104), (6.105), f = —0{P = Pe~'“!+ik*} and taking
fields having the form, a(t, x) = a(w, k)e ™"+ k¥ we find:

—iwb(w, k) = —ik - v(w, k), —iwd(w, k) = ikh(w, k) — ikP, (6.140)
d(w, k) = pw, k)v(w, k), h(w, k) = —x " "(w, k)b(w, k), (6.141)

where we have set, (in fact, because of convergence problem to define p(¢, x) this
calculation for the density should be done with the inverse operator and kernels)

pw, k) = / pt, x)e R gry
(6.142)
X w. k) = / N, x)e R gy

By comparison of (6.140.2, 6.141.1) with (6.138), and (6.141.2) with (6.139), we see
that, as intended, the expressions of the kernels (6.126) and (6.127) obtained without
source still apply in the same way, in the presence of source. This justifies the analogue
way of reasoning which made us directly postulate the nonlocal pattern (6.104)—
(6.1006) of longitudinal acoustic equations, from the nonlocal pattern of macroscopic
electromagnetic equations.

To conclude, it is interesting to complete our discussion in relation to the physical-
mathematical deficiencies of our thermodynamic framework that have been left in
the background. We can first explicitly show that the result (6.130.2) determines a
definite, but physically unsatisfactory, original-space kernel function x;(¢, x). For
the purpose of simplifying the discussion, we will make the calculation for the 1D
case where the propagation is along a single direction x. In that case the dependencies
over k and x are replaced by dependencies over k and x, and in (6.121), the integral
[ dk/(2m)? and variations e’** are replaced by [ dk/(27) and e**. In original-space
the bulk modulus kernel is written as

X7t x) = xg 00 (x) — X (2, X), (6.143)

where, according to (6.130.2)

/jkz —iwt+ikx 144
(1) = x;'a e LA T

with, « = (v — 1)/, and 8 = k/(pocy). Because of the exponentials, the double
integral converges. Simple use of online integral calculator WolframAlpha yields the
following result in closed form:
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a x?

Xo(t, x) = Xng (2/% —xz) exp |:_4_I[5ti| . (6.145)
It looks nice but is not completely physical: with finite propagation speeds, a truly
physical kernel in original space would have to vanish exactly at sufficiently large
values of x, (here, |x| > cot); the above kernel doesn’t respect this condition in a way
characteristic of diffusive, not propagative, processes. This reveals the unsatisfactory
nature of our local-thermodynamic-equilibrum framework, just extended in the most
basic manner, out of equilibrium, to include Stokes’ and Fourier’s constitutive laws.
In the same framework, if we now try to compute in similar manner the density
kernel, p(t, x) = pod(t)d(x) + X, (¢, x), where according to (6.130.1)

4 dw [dk K . .
Xolt, x) = <?’7+§>/ﬁ 9B & priwrriks, (6.146)

2m —iw

we have an even more severe problem: the integral over k is not convergent. That
over w is defined and convergent, but only in the sense of Cauchy’s Principal Value.
Therefore, while Fourier’s law, through (6.130.2), leads to defined but partially
unsatisfactory original-space kernels, Stokes’ law, through (6.130.1), is unable to
produce an existing original-space density kernel. (As mentioned before this prob-
lem does not occur for the inverse density operator). Direct comparison between
(6.146) and (6.144), however, shows that the integral over kK would become con-
vergent, and that over w would become simply defined, if we extend the Stokes
law in such a way to substitute, in place of the denominator —iw, the denomina-
tor —iw + 'k, with 3’ a new and supposedly small physical constant of same

dimensions as (3, i.e. 3 =€ (? + C) /po, with € < 1 a small numerical constant.
By inspection it can be seen that this substitution would correspond replacing, in
the motion equation, the term (‘% + () 9%v leading to — (% + C) k*v, by a term

_ (‘% n C) K2v/ (1 + iTk:) i.e. by an expansion

a2 a2\ 2 a2\ 3
—<4—n+c>k2v<1+ ﬁ,k +< Bk) +(ﬁ> +)
3 —iw —iw —iw

That is, in Stokes law it would correspond replacing the term (ﬂl + C) O,v by a

more complex term with “more space and time memory”

4 t t t
<_’7 +g) v +ﬂ’a§/ dr'v(t’, x) +ﬁ/28f/ dt// di"v(t", x)+...].
3 —00 —00 —00

This modification of Stokes law would give a definite kernel in original space
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(t, x) = p_ 1 (28t —xz) ex _x_2
Xoll, X) =~ 8 /732152 P\ T agr |

but of course it is not intended to be an accurate modification. It only indicates the
direction of the revisions to be made: extend the description by introducing more
spatial and temporal memory effects in the constitutive laws.

6.12.4 Summary: Action-Response Problem to Determine the
Acoustic Kernels p(w, k) and x~1(w, k)

For later use and generalization in the next chapter, it is useful to reformulate here,
what we have seen in the calculations with source in the preceding subsection. We
have seen that, for arbitrary values of w and k and when fixed by the Acoustic
Heaviside- Poynting’s condition (6.113), the effective nonlocal density p(w, k), and
the effective nonlocal bulk modulus x‘l(w, k), can be determined by means of a
simple action-response problem, in which work is performed on the system, in the
form of external longitudinal bulk force f acting on it:

Action-response problem to determine p(w, k) and y ™' (w, k):
(i) Let us subject the fluid to the action of a longitudinal body force f = —0P
per unit fluid volume, deriving from a potential P varying as:

P = ﬁe—iwﬂ—ikx’ 75 — Cst. (6.147)

(ii) Let us find the response of the fluid to this action. We seek fields in the
form v = v(w, k)%e—iwt+ik-x, b= b(w, k)e—iwt+ik~x’ p= p(w, k)e—iwt+ik~x,

7 = 7(w, k)e ™Hikx satisfying the longitudinal motion equations

Ob+0-v=0, (6.148)
po0iv = —0p — (4n/3 4+ ) 90,b + f, (6.149)
YXop = b+ Por, (6.150)

pocpO,T = BoTod; p + KO, (6.151)

and whose amplitudes in (w, k) are proportional to P.

(iii) There is unique solution v(w, k), b(w, k), p(w, k) and 7(w, k), to this action-
response problem, and we can easily write it by straightforward calculations.
Then, the effective density p(w, k) of (6.126) is obtained through the definition

— iwp(w, k)v(w, k) = —ik (p(w, k) + 75) , (6.152)
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and the effective compressibility x(w, k) of (6.127) is obtained through the
definition
pw, k) = x""(w, k)bw, k). (6.153)

Note that we do not put f into bracket in (6.149), as it is here necessarily present
as the forcing term creating the observed response motion. The physical content
of the above procedure is just equivalent to stating that the acoustic equations can
be put in the form (6.104)—(6.105), which expresses the electromagnetic analogy,
with in addition, the h—field taken according to the acoustic Heaviside-Poynting’s
thermodynamic identification (6.113).

Finally, we note that the use we made here, in acoustics, of the Heaviside-Poynting
thermodynamic identification, can be seen as an indirect confirmation of our analysis
of macroscopic electromagnetic equations, even if we do not currently have the
thermodynamics necessary to specify the corresponding notion of “energy current
density carried out in electromagnetic form”. Nevertheless, to finish and conclude
we now examine what would have been obtained if we had transposed here, the
expedients traditionally used in electromagnetic literature, (Sect. 6.11.3).

6.12.5 Acoustics Translation of the Customary Viewpoint

Using the same approach as used in conventional nonlocal electromagnetics, we
would have considered, that, by definition, m = 0:

ob od
o TOv=0 5 =+ 1r] (6.154)
d(t,x) =pv(t,x) = /p(t —t,x —xHv({, x"dt'dx’, (6.155)
h(t, x) = —xg 'b(t, x). (6.156)

The set of these formal equations (6.154)—(6.156), joined to the detailed longitudinal
equations (6.67)—(6.70), allow determining the density operator in unique manner.
Straightforward calculations show that the kernel coefficients

p(w, k) :/p(t, x)e kT grax

are given by
2

k
P, k) = plw. k) + — x5 = x7 @, 0] (6.157)

where in the right, the quantities p(w, k) and x~!(w, k) are those previously deter-
mined, given by (6.126) and (6.127). As before, the calculation can be done directly
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by passing over to the Fourier transform, without source; it can also be done with
source by means of the following action-response problem.

Action-response problem to determine p(w, k):

(i) Let us subject the fluid to the action of a longitudinal bulk force f = —O0P per
unit fluid volume, deriving from a potential P varying as:

P = ﬁe—iwt—kikx’ 75 — Cst. (6.158)

(i) Let us find the response of the fluid to this action. We seek fields v =
v(w, k)%e—iwt-Hk-x’ b= b(w, k)e—iwt-Hk-x, p= p(w’ k)e—in—ik-x’ T =T1(w, k)

e iwiHikx satisfying the longitudinal motion equations
Ob+0-v=0, (6.159)
poOiv = —0p — (4n/3+ () 00,b + f, (6.160)
TXop = b+ foT, (6.161)
pocpO,T = BoTod; p + KO, (6.162)

and whose amplitudes in (w, k) are proportional to P.

(iii) There is unique solution v(w, k), b(w, k), p(w, k) and 7(w, k), to this action-
response problem, and we can easily write it by straightforward calculations.
Then, the effective density p(w, k) in (6.154)—(6.156), is obtained through the
definition

—iwp(w, k)v(w, k) = —ik (Xib(w, k) + 79> . (6.163)
0

The reader can easily check that this gives (6.157). The physical content of the
above procedure is just equivalent to stating that the acoustic equations can be put
in the form (6.104)—(6.106), which expresses the electromagnetic-acoustic analogy,
with in addition, the 4 —field taken according to the definition

h = —b/xo0, (6.164)

that is in fact artificial in presence of thermal conduction. Obviously, the dispersion
equation that is obtained in this conception

2
[p(w, k) + k—2 (o' —xw k))] Xow? = k2, (6.165)
w

is yet another way to rewrite the same Kirchhoff-Langevin’s characteristic equation
(6.133).
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Therefore, this conception leads to exactly the same characteristic wavenumbers,
but not the same characteristic impedances. Indeed this view, that mixes the different
effects, (viscous, inertial, thermal, and elastic), into one abstract nonlocal density
p(w, k), with adiabatic compressibility, is not physical like the previous one, that
places separately, inertial and viscous effects in the effective nonlocal density p(w, k),
and elastic and thermal effects in the effective nonlocal bulk modulus ¥~ (w, k). It
provides a deep thermo-acoustic illustration of the unsatisfactory character of the
current definitions in macroscopic nonlocal electromagnetics. We believe that, when
generalized in acoustics to materials having finite dimensions, (as done in the next
chapter as a first step, for rigid-framed and unbounded materials), the Heaviside-
Poynting conception will allow us to overcome the so-called problem of “additional
boundary conditions” in nonlocal media, encountered in electromagnetics [16].

Appendix: Electromagnetic-Acoustic Analogy

We present here the general form of our electromagnetic-acoustic analogy.

In electromagnetics we consider a distribution of electrons and nuclei, which can
be structured at different levels, but appears homogeneous at some outer macroscopic
level. Regarding the macroscopic averaging operation, we assume that we can con-
ceive it in Lorentz’s form [4], operating a spatial convolution of the considered field
with a test function of suitable finite spatial extent [10, 15], or, with some advantages,
in the Gibbs form of expectation values, obtained using a suitable ensemble of real-
izations of the environment: we imagine that the configuration of the microscopic
charges, currents, as well as the structuring up to the outer macroscopic level, are
appropriately varied to define a relevant average, over all the realizations.

In acoustics, we consider here (this is the subject of this chapter) a homogeneous
fluid.*! For the Lorentz conception we imagine that we have one sample, defined
by one configuration of molecules, and that macroscopic averages are performed
using a test function of spatial extent sufficiently large compared to mean distances
between molecules and small compared to wavelengths; for the Gibbs conception
we imagine that we have a suitable ensemble of configuration of molecules, and look
at the expectations values over the configurations.

We consider, wave propagation of infinitesimal-amplitude electromagnetic or
acoustic perturbations, either in the situation of free motion (no external source),
or forced motion (an external current density or force density, is imposed, with same
forcing in the different realizations when using Gibbs’ conception). We work in the
inertial, rest, reference-frame attached to the ambient medium. Moreover, we work
here with arbitrary 3-space Gauss coordinates x', i = 1,2, 3. Working with Gauss
coordinates, and expressing the different equations and quantities in an invariant

41 As just mentioned, however, the analogy extends to a medium that can be structured at dif-
ferent levels and becomes homogeneous at some outer macroscopic level; the next chapter (fluid
permeating a rigid solid) will illustrate this.



260 D. Lafarge

form under a general change of these coordinates, (general covariant notations), is a
valuable heuristic tool, which will help us to detect both the affinities and differences
appearing between the electromagnetic and acoustic equations and quantities.

For the acoustics of a viscothermal fluid, the electromagnetic-acoustic analogy
will highlight thermodynamic deficiencies in our current acoustic laws, which pre-
vent quantities and equations from appearing entirely in a well-formed manner; for
macroscopic electromagnetics, it will highlight the absence of thermodynamic foun-
dation of the notions of electric and magnetic polarizations and Maxwell’s H and
D fields, also preventing the concrete expression of the complete form of quanti-
ties and equations. These insufficient aspects of the current descriptions can only be
overcome when substantial progress has been made in the corresponding fields of
irreversible thermodynamics. Nevertheless, in acoustics we expect that the formal
pattern of quantities and equations hypothesized here for a simple fluid, will find
concrate application when considering structured fluid-solid materials, that become
homogeneous at an outer macroscopic scale, with nonlocalities coming principally
from the structuration. For such structured materials the missing thermodynamics
should not impede making, in forthcoming work, successful illustrations of the full
pattern of quantities and equations postulated here, (see discussion around (6.210)).

Macroscopic Electromagnetics in Covariant Notations

Because we work in the rest reference-frame attached to the ambient medium, we are
not concerned with the fact that, according to relativity theory, the electromagnetic
potential is a four-vector. By using Weyl’s gauge, (see footnote 37), we can set
to zero its time component and thus associate, to the microscopic electromagnetic
field, a covariant 3-vector potential field a; (¢, x). From this 3-vector, the electric and
magnetic fields, e; (¢, x) and b;; (¢, x), are derived as follows, where the semicolon ;
denotes the covariant derivative in the Gauss coordinates:
é)ai 1

—E, bij = E (aj;[ - Cli;j) . (6166)

e =

The usual pseudovector, b = 9 x a, of the standard Gibbs-Heaviside vector nota-
tions, is obtained by working with Cartesian direct-system coordinates and setting,
by = 2b;;, where ijk is a circular permutation of 123; the factor of two in (6.166.2)
and previous relation, is introduced for later convenience. By averaging, using a
Gibbs’ or Lorentz’s conception, we will define corresponding macroscopic fields,
A; = (a;), E; = {(e;), Bij = (b;;). They will automatically satisfy

0A;

E; = (e;) = o

(Aji— Ay, (6.167)



6 Acoustic Wave Propagation in Viscothermal Fluids 261

as there is direct switching (commutation) between the averaging operation () and
the time or spatial derivative /0t or ; i:

0/0t(.) = (9/0t.), (i = (). (6.168)

The first switching is obvious. The last is also evident with Gibbs’ conception: the
covariant derivative of the expectation values of the field and the expectation values
of its covariant derivative are involved at the same spatial point, thus, the order of
the operations can be interchanged, (with Lorentz’s conception the justification is a
little longer).

To obtain the macroscopic electromagnetic equations appropriate to describe time-
variable space-variable phenomena, we first start with the following microscopic
equations, where g;; is the metric tensor of coordinates xi,g =g ;|1s the determinant
of the metric tensor, g'/ is the inverse matrix of the metric tensor, (g;;g’* = &F, &
is the Kronecker symbol, which is a true mixed tensor), and €y and p, two scalar
constants, are the electric and magnetic permittivities, (here and in the following we
use Einstein’s summation convention on repeated indices — one contravariant one
covariant):

by 1 ad’

_ R .
I B S U 6169
d =éle;, R = pg " My, (6.170)
Gé)j _ €0g1/2gi‘i, ualijkl — Malgl/zz (gikgjl _ gilgjk) . (6171)

The usual pseudovector, h = b/ 1, is obtained by working in Cartesian coordinates
and defining, this time, 2A; = h;;, in order that (6.169.2) assumes the known form,
0d /0t = 0 x h — j, in Gibbs-Heaviside notations. The factor of two in the rela-
tion between Ay and h;; is chosen so that (6.169.2), like the above known relation,
looks simple. We note that, in order for (6.169.2) to be consistent with the additional
known field equation, dfi = p, and the conservation of charge, 0p/0t + j;ii =0, the
introduced field 4"/ must be taken antisymmetric: 2"/ = —h’/!. We next complete
these first equations by giving additional equations, specifying how the electromag-
netic current j' is related to the motion of punctual charges ¢, (electrons and nuclei)
located at x,, (J is the Dirac delta function):

j'= ;qa d;;& [x — xa (D], (6.172)

and how their dynamics is related to the EM fields e and b:
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d dxj dxk ijimoa
-, |:maij |:_] ] =dqa [ei + bik I:_] ] . mozij = g] 0 .
dt dt |, dt |, | _ & [Md_xz]

2 | dt dt
(6.173)

where m, are the rest masses of the particles labelled by the index o = 1,2, ...,
and c is the lightspeed constant. Finally, given the above microscopic equations, we
have to average them up to the final outer macroscopic level.

Before proceeding we note that the additional equations (6.172)—(6.173) carry the
non-quantum notion of “particles trajectories”; also, the summation over o is sym-
bolic as the electrons are indistinguishable in the quantum vision. These equations
are therefore written within a semi-classic, incomplete vision, which do not describe,
in particular, spin and the quantum collective behaviour of electrons and nuclei. Here
they only superficially play the role of additional fundamental quantum equations,
which should be written to complete (6.169)—(6.171).

Aside from its flaws, the expression (6.172) allows us to see that the variance of
j! is that of a contravariant vector density of weight —1. Its contravariant variance
comes from the differentials dxfl; its weight comes from the ¢ and the true scalar

nature of charges ¢,.*> From (6.169.2) and (6.170) it then follows that d’, h'/, ESi ,
Ho Lij kl, are contravariant tensor densities of weight —1.

From then on, to write the (6.170)—(6.171), we only have to assume that the den-
sity fields, d' (¢, x) and antisymmetric h% (¢, x), are, resp., directly related to the true
tensor fields, e; (¢, x) and b;; (¢, x), expressed at the same time and space position, i.e.
there is no temporal or spatial dispersion in void space. The only available tensors to
construct the contravariant tensor densities of weight —1, ;' and 1, Lijk , in the rela-
tions (6.170), are introduced in the problem by the arbitrary choice of coordinates.
This immediately gives the expressions (6.171),* since we must have antisymmetry
of the coefficients /1, i kl, not only over k[ but also over i j. We note that the result-
ing eff is automatically symmetric, egi = eéi, and likewise, the resulting 1, AN
autf)m?tically1 i?{mmetric under the exchange of the first and second pair of indices,
o = g

We now consider taking the Gibbs’ or Lorentz’s averages () of the microscopic
quantities and equations. For simplicity, it is advantageous to work with Gibbs’
averages, however, the results will also be valid (but at long wavelengths only) and
look the same, with Lorentz’s averaging.

Because of the switching (6.168) itis immediate to average the equations (6.169)—

(6.170) to write**:

42 Since f O[x —xal d3x = 1, and the differential element of volume d>x is a scalar density of
weight 1, the § has the nature of a scalar density of weight —1.

43 The numerical constants in (6.171) are chosen so that these relations reduce, in Cartesian coor-
dinates and in Gibbs-Heaviside’s notation, to proportionality relations, d = epe, and h = b/ .

44 We obviously have (eg ej) = eg (ej), etc., as we use identical Gauss coordinates in the different
realizations.
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% - % (Ej = Eju) % = Héfj — (", (6.174)
D6 — ESi Ej, Hé’j — Mglijkl By, (6.175)

where we have set
Ei=le),  By=(by)  Dy=)  H =@ (6176

In (6.175), the index 0 over D and H, is put to reserve notations D and H for the
final macroscopic fields that will appear below, (and that are not the direct averages
of underlying d and # fields). For the macroscopic current {j'), we view it as the
sum of an external impressed macroscopic current denoted [J i], (by defination the
same in the different realizations), and an intrinsic macroscopic polarization current

denoted J ;;01:
G =da+[7] (6.177)

This macroscopic polarization current reflects the initiation of irreversible thermody-
namic processes, trigged by the presence of the disturbance macroscopic fields E and
B, zero in the equilibrium state, and nonzero in the disturbed state. It is present even if
the forcing [J i] is absent. We certainly cannot truly express it from the semi-classical
simplistic vision of the additional equations (6.172)—(6.173) that we have posed. We
can also hardly express it by direct averaging from a complete microscopic quantum
vision, because the laws that would link the macroscopic mean magnitudes together,
being thermodynamic in nature, (in the sense of a macroscopic out-of-equilibrium
statistics), would be difficult to obtain from the basic laws of QED.® Finally, as the
corresponding thermodynamics of the motion of an “electronic fluid” in the lattice
of nuclei, remains to be developed, a thermodynamic analysis and expression of J ,imz
is at present not feasible. Nevertheless, according to a division that we call Lorentz-
splitting, we can always try to write this current as a spatial derivative, and a temporal
derivative term: opi

ol = o + M;'j, (6.178)
with P, and antisymmetric M/, two unknown fields conventionally named the
electric and magnetic polarization fields. The antisymmetry of M/ is guessed on
the basis of the characteristic antisymmetry observed in electromagnetic quantities
and equations. Inserting (6.177)—(6.178) in (6.174.2) will provide a macroscopic
equation having the form

oD' ;
W_H;j - [77]. (6.179)

45 By the way, fully explaining how the transition from a quantum microscopic level to a classical
macroscopic level takes place, should be a difficult task, already because of the special physical
position of quantum physics which requires the classical limit for its own formulation [19].
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D' =¢jE; + P, HY = ;"M By — MY (6.180)

The antisymmetry of M implies antisymmetry of the introduced H field. Because
we consider infinitesimal perturbations, the macroscopic polarizations P and M
appear as linear responses to the macroscopic electromagnetic field represented by E
and B. There must be as a consequence, through (6.180), constitutive thermodynamic
relations having, in the most general manner, the following linear form, (for small
perturbations)

t
D'(t, x) :/ dt’/d3x/eij(t—t’,x,X')Ej(t',X')Jr---
—o0 . (6.181)
/ dt’/d3x’ﬁijk(t — ', x, x")Bj(t', x"),
—00

t
H(t, x) =/ dt’/d3x’u_”jkl(t—t’,x,x’)Bkl(z",x’)—i—...
e . (6.182)
/ dt’ / APxXN*@ =1 x, XVEp(t, x)).
—00

The integrations over time will describe temporal dispersion effects, and those over
space, spatial dispersion effects. But under the first field equation (6.174.1), which
in harmonic regime implies —iwBjx = (E;x — Ex.;) /2, it is always possible, by
virtue of the presence of spatial dispersion, to incorporate in (6.181), the effect of the
second integral term into the first, by appropriately redefining the nonlocal kernel
function €'/ (¢, x, x). We can therefore generally simply rewrite

t
Di(t,x) = eV E;(t, x) = / dt' / d*x' €Tt —t', x, xXVE;(t',x').  (6.183)
—0o0
Concerning (6.182), the second integral term is similarly useless, so that

t

HU(t,x) = "M By(r, x) = / dr’ / Ax' VMG — 1 x, x)By (', x).

* (6.184)
It corresponds to expressing P; as a nonlocal linear response to the electric field, and
M;; as a nonlocal linear response to the magnetic field; it justifies the denomination
“electric” for P and “magnetic” for M.

There is still to be observed that the introduction of polarizations P and M,
through the Lorentz-splitting (6.178), carries an essential ambiguity: an arbitrary
response term &7, with @'/ an antisymmetric tensor of weight —1, can always be
added to P?, if, simultaneously, a term 0@/ /Ot be subtracted to M. Because of
this indetermination, the fields D and H, and thus also the operators € and [fl, are
ambiguous and still need to be resolved. I assert that this inherent ambiguity would
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be removed, i.e. all quantities above would become uniquely defined in principle, if
one were able to give a precise thermodynamic content to the notion of the current
density of energy transported in usable electromagnetic form, (by opposition to
energy transported in degraded form). Given this notation, one then could require
that, by definition of H'/, this current density of energy be given by a Poynting-
Heaviside vector S, such that

Si(t,x) = —H/'(t, x)E;(t, x) = H'(t, x)E;(t, x). (6.185)

In the context of general nonlocal response of the media, the form of (6.185) is
remarkable, in that, the current density of energy transported in electromagnetic form,
at a given time and position, is expressed as the contraction of two fields evaluated ar
the same time and position. In fact, the corresponding remarkable choice of the field
H'/ will determine, how is to be made the precise separation of the global effects,
into the actual “time dispersion effects” per se, and “spatial dispersion effects” per
se.

In electromagnetics of material media, we do not dispose of the necessary ther-
modynamic laws of motion of the system, comprising the electrons and solid nuclei
structured lattice, to precise these notions and arrive at a definition of the electric
polarization, magnetic polarization, field H%/, field D, and operators ¢ and /i~!. By
thermodynamic arguments of a general nature, however, it can be shown that € and
[~ " are “generalized susceptibilities” that satisfy the general symmetry relations [13,
20]:

€Vt x,x") =€, x', x), p R x, xy = M g X x). (6.186)

Finally, in presence of spatial dispersion, it is customary in electromagnetic liter-
ature to consider that, M/ = 0,i.e. H/ = y, ikl p | This leads to the definition of
conventional D field and e kernel, certainly slightly different from the true physical
ones.

We believe that, future developments crossing the boundaries of present thermo-
dynamics, could allow the introduction of the necessary thermodynamic variables,
associated to the motion of “electronic fluid” interacting with the nuclei structured
lattice, from which, in particular. glle electromagnetic current density of energy, S,
could be expli itlo\{cc%ggg%cted. l:'tr-s a sequence of successive determinations of the
type$ illustratedviii gects (6.122.3) it would then imply, precise, and unambiguous,
definition of H'/ field, M field, D' field, P’ field, operator ¢, and operator /i~

We summarize our discussion. Macroscopic electromagnetic equations have the
following covariant (invariant) pattern in all coordinate systems fixed to the ambient
medium:

1 oD' ;
- =3 =H" -[J7], (6.187)

B =

(Eij — Eji),

t
D(t, x) :éijE,-(t,x):/ dt//d3x/eij(t—t/,x,x/)Ej(t/,x/), (6.188)
—00
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t
HY(t,x) = '8 By (¢, x) =/ dt’/d3x’u_”jkl(t—t’,x,x/)Bkz(t’,x’),
| ) * ” (6.189)
S'(t, x) = HY (1, x)Ej(t,x) = —H''(t, ) E; (1, x), (6.190)

where a thermodynamic knowledge is assumed, (though currently missing), that
could be used to construct the Heaviside-Poynting vector S’, specifying the current
density of energy transported in electromagnetic form. We name “Lorentz fields” the
true tensor fields B;; = (b;;) and E; = (e;), and “Maxwell fields” the tensor density
fields H/ and D'. The first are the direct averages of the corresponding microscopic
fields. The second are not. They include an additional polarization part.

Let us now consider the acoustic wave propagation in our simple homogeneous
fluid, (directly a macroscopic wave propagation phenomenon), and let us try to write,
by analogy, the most general pattern of macroscopic equations, that would manifest
both temporal dispersion and spatial dispersion.

Acoustics in Covariant Notations

In electromagnetics, working in the rest frame of the medium, we have introduced
a 3-vector covariant macroscopic field A;(t, x) = (a;)(¢, x), allowing to build the
macroscopic electric and magnetic fields, E, B, according to (6.167). Here in acous-
tics, by analogy, we want to test the idea that, working in the rest frame of the fluid,
we also have, at the macroscopic level, at least in Cartesian coordinates, an obvi-
ous 3-vector field existing at any point and time and associated with an acoustic
disturbance: the macroscopic displacement a of the fluid particles.

An immediate objection to the possibility of such an analogy is that a finite
displacement is not a vector when using Gauss’ general coordinates. However, as
we restrict here to considering infinitesimal perturbations, we can consider that the
associated displacement fields a' will behave as coordinates differentials dx‘, that
is, as true contravariant vectors. We can thus try to pursue a deep electromagnetic-
acoustic analogy, where the macroscopic electromagnetic covariant potential field
A;, will be replaced by a contravariant displacement field @’ . From this basic acoustic
contravariant 3-vector a’, we derive the velocity and (opposite and linearized) strain
fields*® v’ and b'/:

. Od

l

V= b =—3 (@ +a’"). (6.191)

46 1n spite of the macroscopic nature of our quantities v and b here, we use small letters for them,
because in the next chapter the medium will be structured, (with solid parts), and these quantities
will have to be averaged up to some outer macroscopic level, then becoming the outer macroscopic
quantities V = (v) and B = (b).
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In these definitions, the characteristic electromagnetic antisymmetry, B;; = —Bj;,
becomes a characteristic acoustic symmetry, b'/ = b/': therefore, there is no sense
to try to compare the choice of overall signs in (6.167) and (6.191). Here, we have
introduced for convenience positive sign in (6.191.1) and negative sign in (6.191.2)
in order that b! = b, the condensation.*’

We see by construction that, from (6.191), the following equation is satisfied

b | P o
= —— (VB ) 6.192
o 5 (v + /) ( )
It will play the role of the first electromagnetic equation (6.187).
Now, by analogy with the electromagnetic macroscopic equations (6.174), (6.175),
and (6.177), we can guess that, when the fluid is forced by an arbitrary external force
density [F i] (t, x), its motion will be governed by equations having the form:

obli 1. 0D} ” ;
(it Jii 0 _gY 4 F! 6.193
ot 2 (v +v7), ot 05 T ( )
Dy; = poijv’, Hyjj = _Xai;klbkl’ (6.194)
Fi=F, +[F], (6.195)

with, this time, we assume, a symmetric Hé‘i . Again, because of the interchange of
symmetry there is no sense to compare signs in electromagnetic and acoustic equa-
tions. The signs appearing are chosen for later convenience. [F i ] is the external
force density (force per unit volume) impressed on the fluid, and F), , is an induced
polarization force density, which reflects the initiation of irreversible thermodynamic
processes of any kind, coming in response to the presence of the disturbance macro-
scopic fields v and b, zero in the equilibrium state, and nonzero in the disturbed
state.

With regard to force densities [F i], F ;ml, we view them as contravariant vectors
with a weight density of —1, (identical to that of electromagnetic current densities),
and this variance comes, for example, from a comparison with a Newton’s law term,
pOv' /0t, where p is an expression of type, p = (}_, m,d [x — x,(#)]), the sum is
on the molecules, and the masses m,, are true scalars.

Therefore, Do;, Ho;j, poij and x,, iljk,, are also tensor densities of weight —1. The
equations (6.194) state that the “Maxwell” densities Do; and Hy;; are, respectively,
directly related to the *“ Loventz” true fields v' and b/, expressed at the same time
and space position. This is because all temporal and spatial dispersion effects, (all
irreversible thermodynamic processes coming in response to the presence of the
disturbance macroscopic fields), express, by definition, via the induced polarization
force density F 1’;0 ;- As the fluid is time invariant, homogeneous, isotropic, and invari-

47 We recall that the lowering or raising of indices is done by contraction with the metric tensor or
its inverse, (here, b = g;;b"/ = g b;;).
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ant in spatial reflections, the only available tensors to construct the coefficients py;;
and iljkl, are the metric tensor g;; or its inverse g%, and the associated density of
weight —1, g!/2. Moreover, as b*' is symmetric, and we assume that Hyy; is also
symmetric, £, [1/. « Must be symmetric, not antisymmetric, on indices ij and k/. With

this exchange of symmetry, the only possible expressions are:

_ _ 2
Poij = Pogl/zgij, XOilj'kl = Xo 1gl/zgijgkl + 10g'"? (gikgjl + 8il&jk — ggijgkl) .
(6.196)

Note that we could have written
i i i i ik
D(;—Poljvjv Hy = —xo ub",

in place of (6.194), and
i 1/25i . —Llij -1 _1/2 _ij 1/2 k ¢l 1 ¢k 2 ij
Poj = Po& 5/1X0 W =Xo & "8'8u Tt Mg 5i5j +555/‘ - gg 8kl ) >

in place of (6.196). In Cartesian coordinates the above expressions of the x,, ! tensor
yield Frenkel’s conjectured tensor (6.42).

The true scalar constants, pg, X, Land Lo, interpret as the ambient density, the adi-
abatic bulk modulus, and the adiabatic Frenkel-Lamé shear coefficient: remarkably,
the addition of the latter coefficient is a direct result of the transformation of anti-
symmetry to symmetry, when we pass from electromagnetic equations to acoustic
equations.

Next, in the same manner as, in electromagnetics, we assumed Lorentz’s splitting
of the induced polarization current, here, we assume a similar splitting of the induced
polarization force:

1
F;wz = —Ba—}; +Mf;, (6.197)
with P, and symmetric M"/, some “acoustic polarization” fields, (again, because
of the interchange of symmetry there is no sense to try to compare signs in (6.178)
and (6.197), and the sign — is introduced as inspired by (6.101)). Inserting (6.195,
6.197) in (6.193.2) will provide an equation

T = 4 [F], (6.198)

where .
D; = poijv’ + P, Hij = —xo1ub" + My;. (6.199)
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The field D' will be an “effective acoustic momentum” field, and the field H%/
an “effective acoustic stress” field. As the polarizations appear in linear response
to the infinitesimal acoustic field represented by v and b, there must be constitutive
thermodynamic linear relations having, in the most general manner, the form

t
D;(t,x) = / dt’/d3x’p,-j(t — ', x, xW @ X))+ ...
—o0 t | (6.200)
/ dt//d3x’ﬁijk(t — ¢, x, x"B*(, X)),
—0o0

t
Hij(t,x) = _/ dﬂ/d%’x,;,il(t—t/,x,x’)bkl(t’,x’)+...
™ (6.201)
/ dt’/d3x/)\ijk(t — ¢, x, x"Wk, x").
—00

But under the first field equation (6.193.1), which in harmonic regime implies
iwb* = (vik +v%7) /2, it is always possible, by virtue of the presence of spa-
tial dispersion, to incorporate in (6.200) the effect of the second integral into the
first, by appropriately redefining the kernel p;;. We can therefore generally simply
rewrite

t
Di(t, x) = pijv! (t, x) = / dt’/d3x’p,-j(t — ' x, x W@, x).  (6.202)
—0o0

Concerning (6.201), the second integral is similarly useless, so that we can also
simply rewrite

t

Hij(t, x) = =X;ub" (6, x) = — / dr' / dx' X @ =1 x, X, X,

- (6.203)
Itamounts to say that P; is nonlocal response to the velocity field, and M;; is nonlocal
response to the strain field.

Finally and again, the introduction of polarizations P* and M" through the split-
ting (6.197), carries an essential ambiguity: an arbitrary response term &,%, with @/
a symmetric tensor of weight —1, can always be added to P?, if, simultaneously, a
term 0P /0t be added to M. Because of this indetermination, the fields D and H,
and thus also the operators p and ¥ !, are ambiguous and still need to be resolved. I
assert that the ambiguity would be removed, i.e. all quantities above would become
uniquely defined in principle, if one were able to give a precise thermodynamic con-
tent to the notion of the current density of energy transported in usable acoustic form,
(by opposition to energy transported in degraded form), given this nofgtion, one then
could require that, by definition of H%, this current density of energy be given by a
“Poynting-Heaviside”, or here, “Umov” vector, such that
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S'(t.x) = —Hj (1. x)v’ (1, %), (Hj = gjH" = ¢ Hyp).  (6.204)

Atpresent time, we do not dispose of the necessary thermodynamic laws of motion, to
fully precise this notion and arrive at a wholly satisfactory construction of the acous-
tic polarizations, acoustic fields H"/ and D', and acoustic kernels p;; (¢, x, x) and
X;i/iz (t, x, x"). By thermodynamic arguments of a general nature, however, we know
that p and y~! are “generalized susceptibilities” that satisfy the general symmetry
relations [13, 20]:

pl](ta -xa-x/) == pji(ta-x/ax)5 X[_jllcl(t’x’x/) = X]:l}j(t’x/’x)' (6205)

Within the usual near-equilibrium Navier-Stokes-Fourier thermodynamic frame-
work, what is obtained is that we must identify the effective acoustic stress field
H;; with —pg'/?g;;, (to respect Heaviside-Poynting’s identification (6.112), and the
covariant writing of the (6.113), namely, S = g'/?pv’, where p interprets here as a
scalar equal to the thermodynamic pressure), but this leads to degeneracies partic-
ularly apparent in the description of shear motions: for these motions, no pressure
arises and the corresponding Maxwell stress field H;; is then identically equal to
zero. It highlights clearly the thermodynamic insufficiencies of this framework.

We summarize our discussion. Acoustic equations have the following covariant
pattern in all coordinate systems fixed to the ambient medium:

1o oD . .
=50+, o H +[F'], (6.206)

o
ot

t
Di(t,x) = pijv’(t, x) :f dt//d3x’p,-j(t—t’,x,x/)vj(t/,x'), (6.207)
—00

t
Hij(t, x) = —X;ub" (6, x) = —/ dt’/d3x’xi_ﬂld(t—t’,x,x/)bkl(t/,x'),
| - (6.208)
S'(t, x) = —Hi(t, x)v/ (t, x), (6.209)

where a thermodynamic knowledge is assumed, (though currently missing), that
could be used to construct the “Heaviside-Poynting” or else “Umov” vector S".
When the medium is structured, the analogy suggests to replace v and b by aver-
ages V = (v) and B = (b) that will be named the acoustic Lorentz fields. New
acoustic Maxwell fields D and H, “Umov” vector S, and operators p and X!, will
appear, respecting the same equation pattern as above. The mentioned deficiencies
of the thermodynamic framework will not hinder the construction of a viable non-
local description. Indeed, the nonlocal effects resulting from the structuring of the
environment will be the ones that will be important to consider first. They will be
sufficiently well described in the available imperfect thermodynamic framework. An
highlighting, reduced exemplification of this, will be considered in the next chapter.
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The full (nonreduced) nonlocal pattern of quantities and equations will arise for
structured media, e.g. media having connected fluid and solid phases. For example,
consider the case where the stress-strain relations in the solid are idealized as the
following lossless relations, 0;; = —X;.}klbkl , with X;,}kl given by (6.196), and x,, !
and i replaced by x;! and g, (the constants in the solid phase). Then, the full
above nonlocal pattern of equations will appear, replacing v’ and b/ by Vi = (v')
and BY = (b'/), and defining the H;; field through the generalized energetic “Umov”
or “Heaviside-Poynting” relation, (making it a continuous field):

§'(t, x) = (—a'v/)(t, x) = —H[(t, x)V/ (1, x), (6.210)

with 0;;, equal to —pg'/?g;; in the fluid, where p is the thermodynamic excess
pressure. In short, it should be possible to describe any fluid-saturated poroelastic
material as a suitable nonlocal elastic solid.*® We expect that this principled position
of the problems will be verified in future detailed studies.
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