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Abstract
This paper deals with the optimization of the short-term production planning of a real cascade of10

run-of-river hydropower plants. Water inflows and electricity prices are subject to data uncertainty
and they are modeled by a finite set of joint scenarios. The optimization problem is written with a
two-stage stochastic dynamic mixed-integer linear programming formulation. This problem is solved
by replacing the value function of the second stage by a surrogate model. We propose to evaluate
the feasibility of fitting the surrogate model by supervised learning during a pre-processing step.15

The learning data set is constructed by latin hypercube sampling after discretizing the functional
inputs. The surrogate model is chosen among linear models and the dimension of the functional
inputs is reduced by principal components analysis. Validation results for one simplified case study
are encouraging. The methodology could however be improved to reduce the prediction errors and
to be compatible with the time limit of the operational process.20

1 Introduction
Managing a cascade of hydropower plants involves planning in advance its total power generation, espe-
cially for bidding the production on power markets. Short-term production planning of the cascade refers
to the detailed operational scheduling of the hydropower plants within a time horizon of a few days and
with a high time resolution [12]. A short-term production plan of the cascade is established to allocate25

the production between the hydropower plants and over the time horizon. This problem is part of the
operational process of the cascade.

The total power generation of the cascade is sold on power markets. Short-term production planning
is in relation with the day-ahead market in which contracts are hourly power generation for physical
delivery the following day. Market participants submit their bids for each hour of the following day,30

before the market closing. The hourly day-ahead prices for the following day are settled just after the
closing time by the market clearing to meet the balance between sale and purchase offers, reflecting the
need of balance between supply and demand on the power grid during the following day. The hourly
day-ahead commitments are then defined according to the day-ahead bids and prices, and they are added
to the long-term commitments (e.g., bilateral contracts). Real-time operation of the cascade is performed35

to ensure physical delivery of the commitments to the extent possible. Deviations between real delivery
and commitments are called imbalances, and they are financially penalized.

If the power modulation capacity of the cascade is significant (large reservoirs), then hydrological flows
has little impact on the short-term hydropower production. In this case, the operational process could
consist in first deciding the day-ahead bids and then establishing the short-term production plan according40

to that decision while limiting imbalances. Otherwise, if the power modulation capacity of the cascade
is insignificant (perfect run-of-river hydropower plants), then the short-term hydropower production is
strongly influenced by hydrological flows. In this case, the operational process could consist in first
deciding the short-term production plan and then deducing the day-ahead bids by computing the hourly
total energy of the production plan. In this paper, we consider an intermediate case of a run-of-river45

hydropower cascade for which the decision of the day-ahead bids and the decision of the short-term
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production can both be obtained simultaneously. This is done by solving the optimization problem
that maximizes the total revenues obtained by selling the day-ahead bids and by penalizing imbalances,
while complying with the physical models (hydraulic modeling and hydropower generation) and with
operational requirements.50

Water inflows and day-ahead prices are parameters of the optimization problem. They are both subject
to data uncertainty because they inherit uncertainties of weather situations and market conditions over
the time horizon. The deterministic framework, based on a single estimation of the uncertain parameters,
may lead to a solution that is sub-optimal or even not feasible with the real-time observed parameters. Of
course, the operational process can deal with this issue by updating the production plan at several regular55

times every day as uncertainty information evolves over time. In the deterministic framework, however,
this updating process of the production plan according to data uncertainty cannot be anticipated. That is
rather the purpose of the stochastic framework, based on a mathematical representation of the uncertain
parameters, for which several approaches are presented in the literature for similar optimization problems
in the field of energy, e.g., in the reviews [18, 31, 34]. In this paper, we consider a two-stage stochastic60

dynamic programming formulation for which data uncertainty is modeled by a set of scenarios. The
first stage relates to the decision of the day-ahead bids and the reference production plan. The second
stage relates to the adaptation of the reference production plan with respect to the scenario, i.e., future
possible updates and re-optimizations of the production plan so that it is always applicable and optimal
as uncertainty information evolves over time. The two stages have a mixed-integer linear programming65

(MILP) formulation.

Solving this stochastic optimization problem within a time constrained operational process is, however,
quite challenging because of the size and complexity of the problem due to the detailed operational
constraints and to the number of scenarios. Several approaches are presented in the literature to tackle this
issue. They are often based on a decomposition scheme on the stages (e.g., L-shaped algorithm, Stochastic70

Dual Dynamic Programming) where the optimal value function of the second stage is approximated within
an incremental procedure during the solving step of the optimization problem [25,29, 30, 35]. They have
the advantage of being adaptive because they tend to reduce approximation errors of the value function
around the optimality region. Other decomposition schemes proposed in the literature are based on
the scenarios (e.g., Progressive Hedging [9]) or on space (e.g., Lagrangian decomposition [8, 33]). All75

these decomposition approaches are iterative algorithms. They are widely used for solving two-stage
stochastic programming problems in the linear framework, especially in the field of unit commitment
under uncertainty [34]. Some of them can be adapted to the integer framework, but with more restrictions
on the problem formulation, such as a binary first stage or a pure integer second stage [1, 7, 13, 19,
36]. Therefore stochastic integer programming problems are generally relaxed before using a linear80

decomposition algorithm. For our problem, a linear relaxation would require a strong approximation of
the underlying physical model, which could be unsuitable for real application in the operational process.

In this paper, we aim at evaluating the feasibility of using supervised learning during a pre-processing
step instead of using an existing decomposition approach. Most of the complexity of the problem is
deported to the pre-processing step. This has two main advantages:85

• the pre-processing step can be performed offline in advance and can fully exploit parallel computing,

• the underlying physical model is not approximated.

The pre-processing step consists of constructing a learning data set and fitting a surrogate model (also
called metamodel) of the optimal value function of the second stage. After the pre-processing step, the
stochastic optimization problem is solved by replacing the optimal value function of the second stage by90

the surrogate model. The proposed methodology is relevant if prediction errors of the surrogate model
are less than the requested MIP-gap for the optimal solution, and if computation time is compatible with
a use in real operations.

The inputs of the surrogate model are composed of the non-anticipative decision variables of the first
stage and the scenario. This raises two main issues for constructing the design of experiments and fitting95

the surrogate model. The first issue is due to the functional structure of the two inputs, which can be
tackled by dimension reduction [2,3,22,23]. The second issue is due to the non-explicit formulation of the
domain of the input related to the non-anticipative decision variables, since it is only defined by MILP
constraints. In the literature, the domain of the inputs is generally perfectly known or at least given by
a sample of observations.100
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(a) Rhône river. (b) Upper part of the Rhône river.
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(c) Scheme of the Rhône cascade.

Figure 1: CNR’s hydropower plants along the Rhône river.

The outline of this paper is the following. Section 2 introduces the case study used throughout the
paper, and it describes the mathematical formulation of the optimization problem and the role of the
surrogate model. Sections 3 and 4 present the methodological approach for fitting the surrogate model
by using the case study for illustrative purposes, considering respectively the design of experiments and
the metamodeling process. Section 5 raises some discussions about the proposed methodology for solving105

the stochastic optimization problem.

2 Methodological approach
2.1 Motivating case
The methodology described in this paper is strongly related to real operations carried out by CNR
(Compagnie Nationale du Rhône1), a french renewable electricity producer that operates in particular a110

cascade of 18 hydropower plants along the Rhône river (see Figure 1), representing around 3,000 MW of
installed capacity (in 2021).

Apart from the first upstream hydropower plant, the other hydropower facilities are run-of-river, i.e.,
they can store a very limited amount of water compared to their average daily flow. The run-of-river
hydropower plants allow only a very limited modulation of their outflows in comparison with their inflows115

for producing a bit more or less energy during a few hours. The power modulation capacity of each
hydropower plant is small but sufficient to consider short-term economical optimization of the overall
cascade in the day-ahead market. Since the hydropower plants influence each other through hydraulic
propagation and water balance equations, the challenge for economical optimization is to synchronize
discharges at each hydropower plant so that the total power generation of the cascade is in line with120

electricity prices to maximize total revenues [24]. Economical optimization is performed in advance
through short-term production planning of the cascade, which is repeated every day at several regular
times with an updated situation (input data, initial conditions of the Rhône river and user parameters).
A numerical optimizer for decision support can be used for this purpose.

In this paper, we consider the case study defined by the historical situation on 2014-04-26 at 11:00 a.m.125

(local time) for illustrative purposes. The case study is simplified by considering only the upper part of
the Rhône river, i.e., the first I = 6 upstream hydropower plants (see Figure 1b). Production plans of
the 12 other hydropower plants of the cascade are supposed to be fixed but their power generation are
counted in the total power generation. Let I = {1, . . . , I} denote the set of indices of every hydropower

1https://www.cnr.tm.fr/
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plant along the cascade.130

The time horizon is supposed to be discretized into T = 360 regular time buckets of duration δt = 10 min.
Let T = {1, . . . , T} denote the set of indices of every time bucket. We assume that the production plan
cannot be changed for the next hour after the present time because of the time delay required for
establishing the production plan and making changes in operations. Thus the time horizon begins on
2014-04-26 at 12:00 a.m. and it ends at the end of 2014-04-28 (+60 h). For simplification, we consider135

that water inflows and day-ahead prices forecasts start on 2014-04-26 at 12:00 a.m. like the time horizon,
and that values between the present time (2014-04-26 11:00) and the beginning of the time horizon (2014-
04-26 12:00) are observations. In the operational process, the forecasts would have started at the present
time. Note that, due to time delay of water propagation, a past time horizon is necessary in practice to
define initial conditions of the cascade.140

Data uncertainty on water inflows at each hydropower plant over the time horizon is estimated by a
uniformly distributed sample of 50 elements in RIT derived from an ensemble forecast of the hourly
measured inflows of the 6 main natural tributaries taking part in the upper Rhône river that ensures
reliability and correlations in space and time [4] (see Figure 2a). Data uncertainty on unmeasured inflows
is not considered in this paper. Likewise, data uncertainty on day-ahead prices is estimated by a uniformly145

distributed sample of 50 elements in RT from a simple quantile error model that ensures reliability and
temporal auto-correlations (see Figure 2b). Note that day-ahead prices are constant on every hour of
the time horizon since they have hourly values. The two samples are then independently combined to
build a uniformly distributed sample of N = 50 ·50 = 2,500 joint scenarios. Therefore data uncertainty is
modeled by a finite random variable Ξ̂ on some probability space (Ω, F ,P) with values in RIT ×RT . We150

denote by ξn = (an, πn) ∈ RIT ×RT , for n ∈ {1, . . . , N}, the joint scenarios (elements of Ξ̂(Ω)) with their
corresponding probabilities pn = P[Ξ̂ = ξn] = 1/N . Throughout the paper, E stands for the expectation
with respect to the probability space (Ω, F ,P).

2.2 Short-term production planning
2.2.1 Feasible solutions155

A solution to the short-term production planning is a decision of the couple of

• the next day-ahead bids, i.e., the hourly production to be sold in the day-ahead market and that
would be added to the commitments,

• the hydropower production plan, i.e., the allocation of every variable that takes part in physical
models and operational requirements (imbalances, discharges, stream flows, powers, storage volumes160

etc.) at each hydropower facility (see Figure 1c) and over the time horizon.

The next day-ahead bids and the production plan are mutually dependent through imbalances, i.e.,
deviations between production and commitments, that are allowed but financially penalized.

All variable values that define a solution are combined into a large vector x ∈ Rr, where r ∈ N is the
problem size (i.e., the number of decision variables), r is O(IT ). For the case study, r ≈ 500,000.165

A solution is said to be feasible if its hydropower production plan complies with physical models, oper-
ational requirements, and its next day-ahead bids. These conditions are written as constraints on the
solution. Some parameters depend on the scenario because water inflows appear in water balance equa-
tions that ensure physical continuity of the cascade in time and space. For example of typical constraints
for hydropower production planning, see Appendix A or more generally the references in [34].170

In this paper, constraints are supposed to be mixed-integer linear. In particular, hydropower generation
is supposed to be piecewise linear with water discharges, and the net water heads are supposed to be
independent of volumes. It should be noted that those strong assumptions may lead to non-negligible
evaluation errors on power generation, but these deviations are acceptable in practice for the case study.
Moreover, water time delays, bounds on volumes and minimal final volumes are considered as parameters,175

i.e., they do not vary with the solution. Let X (ξ) ⊂ Rr denote the (closed) set of all feasible solutions
with respect to a generic scenario ξ = (a, π) ∈ RIT × RT . In the sequel, the set X (ξ) is assumed to be
bounded for every ξ ∈ RIT × RT , and also nonempty if ξ ∈ Ξ̂(Ω) = {ξ1, . . . , ξN }.
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(a) Water inflows from the 6 natural tributaries taking part in the upper Rhône river over the time horizon.
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(b) Day-ahead electricity prices over the time horizon.

Figure 2: Example of the ensemble forecasts (grey lines) taking part in the case study, the deterministic
forecasts (thick blue lines) and the observations that were known at the present time (red lines). The
ensemble forecasts for water inflows and day-ahead prices have 50 members each. The vertical dashed lines
represent the beginning of the time horizon on 2014-04-26 12:00 (local time). For reasons of confidentiality,
the forecast values of day-ahead prices are arbitrarily scaled.
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Figure 3: Example of the planned total power generation of a solution x ∈ X (ξ) over the time horizon for
the case study (red line) in comparison with the planned day-ahead bids bt(x) (blue horizontal hatched
area) and with commitments c(t) (green diagonal hatched area). The vertical dashed line represents the
beginning of the time horizon on 2014-04-26 12:00 (local time). The vertical grey lines separate the days
of the time horizon. For reasons of confidentiality, the power values are arbitrarily scaled.

2.2.2 Total revenues

Let x ∈ X (ξ) ⊂ Rr be a feasible solution for a generic scenario ξ = (a, π) ∈ RIT × RT . Subtracting a180

constant from the total revenues if necessary, we may assume that the entire total power generation of
the cascade is sold in the day-ahead market and long-term commitments are set to zero (see Figure 3).
Defining the total revenues then involves two types of interdependent decision variables: next day-ahead
bids and imbalances. Their planned values are given by some components of the solution x. Let bt(x) ∈ R,
for t ∈ T , denote the values of the components related to the next day-ahead bids of the solution x over185

the time horizon. Let e+
t (x) ∈ R+ and e−

t (x) ∈ R+, for t ∈ T , denote the values of the components
related to respectively positive and negative imbalances over the time horizon. These decision variables
are linked together by the constraints in Appendix A.3.

The total revenues f(x, ξ) ∈ R of the solution x ∈ Rr for the scenario ξ = (a, π) ∈ RIT × RT is then
defined by190

f(x, ξ) = δt
∑
t∈T

(
π(t)bt(x) + π+(t)e+

t (x) − π−(t)e−
t (x)

)
, (1)

where π+ = (π+(t))t∈T ∈ RT and π− = (π−(t))t∈T ∈ RT are respectively positive and negative imbalance
prices, supposed to be evaluated by downgrading day-ahead prices π ∈ RT that come from the scenario
ξ, i.e., π+ = (1 − κ+)π and π− = (1 + κ−)π, with (κ+, κ−) ∈ (0, 1)2. For the case study, κ+ = κ− = 0.05.

It should be noted that the total revenues defined in Equation (1) is linear with the solution, since bt,
e+

t and e−
t , for t ∈ T , are linear projections onto some components of Rr. For instance, for every t ∈ T ,

there exists some j0 ∈ {1, . . . , r} such that

bt(x) = xj0 , ∀x = (xj)1≤j≤r ∈ Rr.

The same applies with e+
t and e−

t , for t ∈ T .

2.2.3 Optimization problem195

The deterministic short-term production planning problem consists in finding a feasible solution that
maximizes the total revenues, with respect to a single reference scenario ξ0 = (a0, π0) ∈ RIT × RT . In
practice, the reference scenario is obtained from operational deterministic forecasts which are completed
with expertise (see blue curves in Figure 2). The mathematical formulation is then the following MILP
problem200

max
x0∈X (ξ0)

f(x0, ξ0), (2)
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where X (ξ0) ⊂ Rr is supposed to be nonempty. For the case study, the MILP problem (2) is implemented
in GAMS and solved with the CPLEX MIP solver. This optimizer is used within CNR’s operational
process as a numerical decision support tool.

Even in the stochastic framework, we want the optimizer to give a unique feasible solution with respect
to the reference scenario ξ0 = (a0, π0) ∈ RIT × RT used in the deterministic framework (Equation (2)).205

The reason of this choice is that the reference scenario is composed of operational deterministic forecasts
that are completed with expertise, while providing expertise for probabilistic forecasts is an ongoing
research [10]. In consequence, data uncertainty is not considered in the constraints that define the set
of feasible solutions, but only in the total revenues to account for the impact of adapting the production
plan with respect to the effective scenario. More precisely, the stochastic formulation considered in this210

paper is the following two-stage stochastic dynamic programming problem

max
x0∈X (ξ0)

{
α0f(x0, ξ0) + (1 − α0)E[Q(b(x0), Ξ̂)]

}
, (3)

where:

• b : Rr → R24 is the function that gives the upcoming hourly day-ahead bids of a solution, i.e., the
linear mapping defined by

b(x) =

 bh1(x)
...

bh24(x)

 ∈ R24, ∀x ∈ Rr,

where (h1, . . . , h24) ∈ T 24 are the first time buckets of every hour of delivery of the upcoming
day-ahead bids. For the case study, hj = 73 + 6(j − 1), for j ∈ {1, . . . , 24}.

• Q : R24 × (RIT × RT ) → [−∞, +∞) is the optimal value function of the second stage defined by215

Q(b0, ξ) = max
x∈X (ξ)
b(x)=b0

f(x, ξ), ∀(b0, ξ) ∈ R24 × (RIT × RT ). (4)

The optimal value function Q represents the optimal total revenues that can be achieved from a
given decision of the upcoming day-ahead bids under the assumption that a given scenario effectively
occurs. It should be noted that the optimal value function Q depends on the situation and user
parameters, just like the scenario and the set of feasible solutions.

• α0 ∈ [0, 1] is a weight for the reference scenario ξ0, that can be computed, for example, as the220

weight of a central cluster of the scenarios in Ξ̂(Ω). If α0 = 1, then the stochastic and deterministic
formulations merge. If α0 = 0, then the reference scenario is not used in the objective function,
leading to a more classical stochastic formulation. If α0 ∈ (0, 1), then the objective function is a
compromise between the total revenues when no update of the production plan is required (i.e.,
when the reference scenario perfectly occurs) and the optimal total revenues after adapting the225

production plan for the scenarios. For the case study, the weight of the reference scenario ξ0 is
arbitrarily set to α0 = 0.5.

The stochastic problem in Equation (3) can be written with the following equivalent large MILP problem

max
x0∈X (ξ0)

xn∈X (ξn), 1≤n≤N
b(xn)=b(x0), 1≤n≤N

{
α0f(x0, ξ0) + (1 − α0)

N∑
n=1

pnf(xn, ξn)
}

, (5)

which is too large to be tractable for the case study with the CPLEX MIP solver.

The stochastic formulation is similar to that of two-stage stochastic programming (with recourse) because230

it is based on a scenario tree with 2 stages. The first stage involves the reference scenario to define the
production plan and the bids in the upcoming day-ahead market. The second stage involves all the
probabilistic scenarios, without transition, to anticipate the future possible updates and re-optimizations
of the production plan in view of the decision of the day-ahead bids made at the first stage. The non-
anticipativity constraints appear in the bids in the upcoming day-ahead market that have to be compatible235

with the reference scenario. The dependence of the second stage with the first stage is also the basis of
stochastic dynamic programming. The optimization problems of the 2 stages only differ by the choice of
the scenario and by fixing the bids in the upcoming day-ahead market in the second stage.
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2.3 Proposed methodology
The main issue in solving the stochastic programming problem in Equation (3) is that the function Q needs240

to be evaluated a lot of times with different upcoming day-ahead bids in B0 = b(X (ξ0)) = {b(x0), x0 ∈
X (ξ0)} ⊂ R24 and different scenarios in Ξ̂(Ω) = {ξ1, . . . , ξN } ⊂ RIT × RT , while an evaluation of the
function Q requires significant computation time for solving a large MILP problem (see Equation (4)).

This paper focuses on fitting a real-valued surrogate model Q̂ on R24 ×(RIT ×RT ) that is fast to evaluate,
and that is an approximation of Q on B0 × Ξ̂(Ω),245

Q̂(b0, ξn) ≈ Q(b0, ξn), ∀(b0, ξn) ∈ B0 × Ξ̂(Ω). (6)

The condition in Equation (6) ensures in particular that

E[Q̂(b0, Ξ̂)] ≈ E[Q(b0, Ξ̂)], ∀b0 ∈ B0,

thus the problem
max

x0∈X (ξ0)

{
α0f(x0, ξ0) + (1 − α0)E[Q̂(b(x0), Ξ̂)]

}
(7)

is an approximation of the stochastic problem in Equation (3).

For a fixed scenario ξn ∈ Ξ̂(Ω), b0 7→ Q(b0, ξn) is the value function of the MILP problem in Equation (4),
so it is piecewise linear with a finite number of discontinuity break points [6, 15]. More details about
the structure of this kind of functions are presented in [26]. If the surrogate function Q̂ is chosen among250

piecewise linear functions, then the problem in Equation (7) has a MILP formulation with a much smaller
dimension than the large MILP problem in Equation (5).

In this paper, we propose to fit the surrogate model Q̂ every new situation during a pre-processing step
by supervised learning based on a limited collection of evaluations of the function Q. The issue is that
the computation time of the pre-processing step and solving the problem in Equation (7) has to be255

compatible with the operational process. The pre-processing step is divided into two main successive
substeps: constructing the learning data set (Section 3) and fitting the surrogate model (Section 4).

The learning data set is composed of couples of B0 × Ξ̂(Ω) at which the optimal value function Q is
evaluated. The issue is that the set B0 = {b(x0), x0 ∈ X (ξ0)} of acceptable upcoming day-ahead bids
is not known with an explicit formulation but with the MILP constraints of the set X (ξ0). It is then260

difficult to characterize the elements of B0 or to draw some of them. Thus we aim at approximating the
set B0 by a simpler set B̂0 ⊂ R24. A design of experiments is then constructed to select some couples of
the input data set B̂0 × Ξ̂(Ω) at which the optimal value function Q is evaluated. The difficulty is that
the inputs have a functional structure, and the set of selected points needs to properly describe the input
data set while being small enough to restrain computation time.265

The type of the surrogate model is chosen according to its implementation in Equation (7), the structure
of the exact function Q, and computation time of fitting. The issue is that the inputs have a large
dimension, making it difficult to fit a model on a small learning data set. A dimension reduction of the
inputs is then performed and the surrogate model is fitted on the reduced inputs.

3 Computational design270

3.1 Discretization of day-ahead bids
We propose to approximate the set B0 by a finite set B̂0 = {b1, . . . , bM } ⊂ R24, where (b1, . . . , bM ) ∈
(R24)M (M ∈ N) is a sample obtained by selecting the effective day-ahead bids associated to M past
historical situations that are close to the situation at hand among a set of consecutive previous historical
situations. This sampling process is inspired by analogue-based weather forecasting [5,20] and it mainly275

consists in comparing situations one with another.

Since a lot of parameters change from a situation to another, it is crucial to carefully assess what param-
eters are to be considered for the distance used to compare similarities among situations. Moreover, the
sampling size M is arbitrary and it has to be carefully chosen. In the sequel, the methodology to make
these choices is described for the hydropower cascade of the case study defined in Subsection 2.1, but it280

can be adapted to another hydropower cascade.
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In order to measure similarities among situations, we choose to separately test the three following pa-
rameters:

1. the hourly observation of total active power during the previous day,

2. the hourly deterministic forecast of cumulative measured water inflows of all tributaries along the285

Rhône river for the following day,

3. the hourly deterministic forecast of day-ahead prices for the following day.

The first parameter is related to the initial conditions of the situation while the other two are related to
the deterministic scenario of the situation. The three above parameters can partly explain the production
of the following day, then the upcoming day-ahead bids. Different situations can be compared according290

to their distance with respect to one of the three above comparison parameters. The distance is based
on the L1-norm in R24 for the first two parameters and on the L2-norm in R24 for the third parameter.
The L1-norm is convenient for power and water flow because it provides physical values, respectively an
energy and a volume.

The M closest situations to the situation at hand with respect to the chosen comparison distance are295

selected among the set of the 1,000 consecutive previous historical situations. The sample (b1, . . . , bM ) ∈
(R24)M is then obtained by getting the effective day-ahead bids associated to the M selected situations.

In this paper, the quality of discretization of the set B0 refers to the statistical consistency of the sample
(b1, . . . , bM ) with the effective day-ahead bids b̃ ∈ R24 of the situation at hand. For verification, we
compute the continuous ranked probability score (CRPS), a classical score used in probabilistic weather
forecasting [14,16,21]. The CRPS compares the empirical cumulative density function of the sample with
that of the observation, i.e., the effective day-ahead bids here. More precisely, the CRPS is the positive
score defined by

CRPS((b1, . . . , bM ), b̃) = 1
24

24∑
h=1

∫ +∞

−∞

(
1

M

M∑
m=1

H(u − bmh) − H(u − b̃h)
)2

du ∈ [0, +∞),

where H : R → {0, 1} is the Heaviside function defined by H(u) = 1 if u ≥ 0 and H(u) = 0 otherwise,
for u ∈ R. The closer the CRPS is to zero, the better the quality of discretization is.

To limit computation time required when considering a new situation, we aim at finding the comparison300

parameter and the sampling size that provide the best overall quality of discretization for every situation
(and not only for the particular situation at hand). For this purpose, the sampling process of day-ahead
bids is repeated on a testing data set of daily situations in 2019 (365 days), considering successively the
three comparison parameters and different values of the sampling size M . The testing criterion is the
mean of CRPS on the testing data set that we aim to minimize. The results are presented in Figure 4.305

It turns out that the best quality is attained with the distance based on the L1-norm of the cumulative
water inflows (second comparison parameter) and with M = 21. For convenience, however, the sampling
size is set to M = 20, without having a significant impact on the mean of CRPS.

It should be noted that the finite set B̂0 = {b1, . . . , bM } ⊂ R24 obtained by the sampling process is not
necessarily included in B0. In consequence, evaluating the second stage (4) on B̂0 × Ξ̂(Ω) may lead to310

significant imbalances on the following day compared to those obtained by the deterministic optimization
problem in Equation (2).

The sample obtained for the case study is presented in Figure 5. We observe that the sampled day-ahead
bids have globally the same shape (peaks around 9 a.m. and 9 p.m. like day-ahead prices) since they
are historical effective day-ahead bids that were mostly made according to day-ahead prices. One curve315

is characterized by being below the others with a small peak in the morning.

3.2 Design of experiments
The size MN of the sampled input data set B̂0 × Ξ̂(Ω) = {b1, . . . , bM } × {ξ1, . . . , ξN } is too large to
evaluate the function Q at each point, since an evaluation requires solving a large MILP problem which is
time consuming. Therefore we aim at evaluating the function Q at some selected input points (bmd

, ξnd
) ∈320

B̂0×Ξ̂(Ω), for d ∈ {1, . . . , D}, with D ≪ MN , md ∈ {1, . . . , M} and nd ∈ {1, . . . , N}. The selected points
have to be well distributed in the set B̂0 × Ξ̂(Ω) to ensure that the numerical values Q(bmd

, ξnd
) ∈ R, for

d ∈ {1, . . . , D}, give enough information about the global structure of the function Q.
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Figure 6: Example of the scaled scalar representation of the inputs for the case study.

The input data are strongly correlated because upcoming day-ahead bids, water inflows and day-ahead
prices have a functional structure and possibly correlations between each other. Since sampling such325

input data is quite challenging, the surrogate model is constructed with the following assumptions:

• the acceptable upcoming day-ahead bids are supposed to be independent of the scenarios,

• the water inflows and the day-ahead prices that compose the scenarios are supposed to be indepen-
dent of each other,

• the upcoming day-ahead bids, the water inflows and the day-ahead prices are each reduced to a330

scalar to remove their functional structure.

After scaling, these assumptions lead to three independent inputs in [0, 1]. For the case study, the
reduction of each functional input to a scalar is performed by getting the L1-norm for upcoming day-
ahead bids and water inflows and the L2-norm for day-ahead prices (see Figure 6), in order to be consistent
with the distance used in Subsection 3.1. Of course, these assumptions are strong because, in practice,335

the effective day-ahead bids are decided with respect to the distribution of the scenarios and because a
scalar cannot accurately represent a functional data. They might however be sufficient to construct an
adequate surrogate model.

We propose to construct the design of experiments by the use of a 3 dimensional latin hypercube sampling
(LHS) with D points and optimal with respect to the maximin criterion [28]. Based on the independence340

assumption on the three inputs, this approach provides a set H(D) of D points in [0, 1]3 whose empirical
distribution is close to the uniform distribution on [0, 1]3. Since each input is not necessarily uniformly
distributed in [0, 1] (see Figure 6), the design of experiments is obtained by applying the empirical quantile
function of each input at the associated component of every point in H(D). Let (bmd

, ξnd
) ∈ B̂0 × Ξ̂(Ω),

for d ∈ {1, . . . , D}, denote the selected points with their functional structure. Removing some points if345

necessary, we may assume that the selected points are all different.

The size D of the design of experiments is arbitrary. In practice, it is chosen according to the computing
power at our disposal and the complexity (degrees of freedom) of the surrogate model. For the case study,
we choose D = 1,000, a very large size compared to the complexity of the surrogate model (see Section 4)
but computation time is available in study phase.350

3.3 Data set
The data set is obtained by evaluating the function Q at each point of the design of experiments. Let
Qd = Q(bmd

, ξnd
) ∈ R for d ∈ {1, . . . , D}. This requires solving D independent large MILP problems.

The data set is specific to the situation at hand and it has to be computed at each new situation since
the design of experiments and the function Q change from a situation to another.355

The data set is split into a learning data set with indices Dc ⊂ {1, . . . , D} and a validation data set with
indices Dv = {1, . . . , D} \ Dc. The choice of the ratio of the data set that is used for fitting is arbitrary.
For the case study, the chosen ratio is 60%.
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(c) Day-ahead prices

Figure 7: Cumulative explained variance as a function of the selected number of principal components in
decreasing order of their explained variance. The horizontal dashed lines represent the threshold of 95%
cumulative explained variance.

4 Metamodeling
In this paper, the surrogate function Q̂ is chosen among linear models. In this case, however, the360

structure of the function Q might not be completely represented since the function Q is piecewise linear
(see Subsection 2.3).

4.1 Dimension reduction
A dimension reduction of the inputs is necessary since their initial dimension is too large for fitting a
linear model with regard to the size D of the learning data set. A common approach consists in using365

the coefficients of the decomposition of the inputs onto an orthonormal family with a small size. Several
approaches for constructing the orthornomal family are presented in the literature (wavelets, splines,
principal components analysis etc.) [11, 17, 23, 27, 32]. For the case study, numerical tests, which are not
presented in this paper, show that principal components analysis (PCA) provides the best compromise
between the reduction error and the size of the family. As PCA is data-driven, the dimension reduction370

is described for the case study defined in Subsection 2.1.

Since upcoming day-ahead bids, water inflows and day-ahead prices are assumed to be independent of
each other in constructing the surrogate model, PCA is separately applied on each of the three inputs.
The values of each input are centered to ensure that PCA is based on explained variance, but they
are not scaled to preserve the functional structure of the inputs. If the inputs were not assumed to be375

independent of each other, then the orthonormal family should have been common for the three inputs.
Moreover, some values of water inflows (respectively day-ahead prices) are redundant since they are not
defined with time steps of duration δt = 10 min but with half-hourly (respectively hourly) time steps.
The redundant values are removed before applying PCA.

Let ϕ1 ∈ L(R24,RK1) denote the linear mapping that gives the coefficients of the decomposition of
upcoming day-ahead bids onto the orthonormal family composed of the K1 first principal components
in decreasing order of their explained variance (K1 ∈ {1, . . . , 24}). Let ϕ21 ∈ L(RIT ,RK21) (respectively
ϕ22 ∈ L(RT ,RK22)) denote the similar linear mapping for water inflows (respectively day-ahead prices)
after removing redundant values, with K21 ∈ {1, . . . , 6 · 120} (respectively K22 ∈ {1, . . . , 48}). Then let
ϕ2 ∈ L(RIT × RT ,RK2), with K2 = K21 + K22, be the linear mapping defined by concatenating ϕ21 and
ϕ22, i.e.,

ϕ2(ξ) =
(

ϕ21(a)
ϕ22(π)

)
∈ RK2 , ∀ξ = (a, π) ∈ RIT × RT .

For the case study, K1, K21 and K22 are chosen to be the minimal number of principal components such380

that the cumulative explained variance is greater than 95% of the total explained variance (see Figure 7).
The threshold of 95% is arbitrary. We get K1 = 6, K21 = 7 and K22 = 13 (K2 = 7 + 13 = 20).

12



4.2 Fitting
The linear model Q̂ is defined by

Q̂(b0, ξ) = β0 + β⊤
1 ϕ1(b0) + β⊤

2 ϕ2(ξ), ∀b0 ∈ R24, ∀ξ ∈ RIT × RT ,

where β0 ∈ R, β1 ∈ RK1 and β2 ∈ RK2 are the coefficients of the linear regression (least squares
problem solved by the QR decomposition method) on the learning data set defined by the indices Dc385

after dimension reduction of the inputs, and the superscript ⊤ stands for the transpose operator.

4.3 Validation criteria
The quality of the linear model Q̂ is assessed by its prediction errors on the validation data set defined
by the indices Dv. Prediction errors are evaluated on individual total revenues (see Equation (6)) by two
scores:390

• the predictivity coefficient Q2, i.e., the coefficient of determination computed on the validation data
set by

Q2 = 1 −

∑
d∈Dv

∣∣∣Qd − Q̂d

∣∣∣∑
d∈Dv

∣∣Qd − Q
∣∣ ∈ (−∞, 1], with Q = 1

|Dv|
∑

d∈Dv

Qd ∈ R,

where Q̂d = Q̂(bmd
, ξnd

) ∈ R, for d ∈ Dv, are the values of the surrogate model on the validation
data set.

• the mean absolute error on the validation data set of the normalized total revenues with respect to
the total revenues of the deterministic optimal solution x∗

det ∈ X (ξ0) of the problem in Equation (2),
i.e.,

MAE = 1
|Dv|

∑
d∈Dv

∣∣∣Qd − Q̂d

∣∣∣
f(x∗

det, ξ0) ∈ [0, +∞).

It should be noted that the two scores can be evaluated by cross validation instead of using a validation
data set, especially if the size D of the data set is small.

4.4 Results395

The results for the case study are presented in Figure 8. The predictivity coefficient is Q2 = 0.9813,
which is above the arbitrary threshold of 0.95 used for the case study. The mean absolute error of the
normalized total revenues is MAE = 0.39%, which is below the relative MIP-gap of 2% used for the case
study. It turns out that the linear model is quite relevant for the case study. Thus the piecewise linear
function b0 7→ E[Q(b0, Ξ̂)] is reasonably linear on the set B̂0 of the sampled day-ahead bids.400

5 Discussion
The stochastic optimization problem in Equation (3) is solved with the proposed methodology and com-
pared to the deterministic optimization problem in Equation (2) for the case study. We recall that the
truly optimal solution of the stochastic optimization problem in Equation (3) is not accessible with the
CPLEX MIP solver and the computing power at our disposal (4 cores, 3.8 GHz and 16 Go of RAM).405

5.1 Computation time
For an operational use in our case, the total computation time of solving the stochastic optimization
problem has to be less than 3 times that of solving the deterministic optimization problem. The total
computation time is composed of that of the pre-processing step and that of solving the MILP problem
in Equation (7).410

The computation time of the pre-processing step is due to that of evaluating the optimal value function
Q on the design of experiments, since the computation time of discretizing the day-ahead bids and that
of fitting the linear surrogate model Q̂ are negligible. Let τd ∈ R+, for d ∈ {1, . . . , D}, denote the
computation time of evaluating the optimal value Qd = Q(bmd

, ξnd
) over that of solving the deterministic
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Figure 8: Prediction errors computed on the validation data set for the case study.

MILP problem in Equation (2). Their distribution for the case study is presented in Figure 9. In average,
evaluating the optimal value function Q at a point of the design of experiments requires a computation
time 39.41% greater than that of the deterministic solution (reference value of τdet = 1):

τ = 1
D

D∑
d=1

τd = 1.3941.

We also observe that some evaluations of the optimal value function Q require extreme computation time
up to almost 20 times greater than that of the deterministic solution:

max
1≤d≤D

τd = 19.3595.

If the values Qd, for d ∈ {1, . . . , D}, of the data set can all be computed in parallel for the case study
(i.e., unlimited access to parallel computing), then the normalized total computation time of the pre-
processing step is around 20 times greater than the computation time of solving the deterministic problem
in Equation (2). Once the surrogate model Q̂ is fitted, the normalized computation time of solving the
MILP problem in Equation (7) is τopti = 1.0547, i.e., only 5.47% higher than the computation time of
solving the deterministic problem in Equation (2). Therefore the normalized total computation time for
the case study,

max
1≤d≤D

τd + τopti = 19.3595 + 1.0547 = 20.4142,

is largely determined by the computation time of the pre-processing step and it is too large for an
operational use (far above the acceptable threshold of 3 for our case).

The computation time of the pre-processing step can however be improved by stopping calculation of
the evaluation of the optimal value function Q if it exceeds an acceptable time limit (a normalized time
limit of around 2 for our case). The extreme points of the design of experiments are then removed, but
on the other hand this process may subsequently have an impact on the quality of the surrogate model.
Moreover, with a limited access to parallel computing of nt ∈ N cores, the normalized computation time
of the pre-processing step is estimated in average by

τ1 + · · · + τD

nt
= Dτ

nt
.

The number D of points in the design of experiments has then to be carefully chosen so that the com-
putation time of the pre-processing step is below an acceptable time limit (a normalized time limit of
around 2 for our case). However, reducing the number D of points in the design of experiments may415

require reducing the dimension of the inputs, and it also may subsequently have an impact on the quality
of the surrogate model.
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Figure 9: Boxplot of the normalized computation time of evaluating the optimal value function of the
second stage at every point of the design of experiments for the case study.
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(b) Scaled values

Figure 10: Upcoming day-ahead bids obtained for the case study from the deterministic solution (in
blue) and the stochastic solution (in red) in comparison with the sample B̂0 (in grey). For reasons of
confidentiality, the temporal values of day-ahead bids are arbitrarily scaled.

To improve computation time, the pre-processing step could be performed offline in advance, with data
available at a former situation (e.g., a couple of hours beforehand), to update the surrogate model at
regular intervals. Only the MILP problem in Equation (7) would be solved during the operational process420

with the last updated surrogate model. The total computation time would then consist only of τopti, the
same order of magnitude as for the deterministic model.

5.2 Quality of the stochastic solution
Let bdet = b(x∗

det) ∈ B0 and bsto = b(x∗
sto) ∈ B0 denote the upcoming day-ahead bids for respectively the

deterministic optimal solution x∗
det ∈ X (ξ0) of the problem in Equation (2) and the stochastic optimal425

solution x∗
sto ∈ X (ξ0) of the problem in Equation (7). They are presented in Figure 10 in comparison

with the set B̂0 = {b1, . . . , bM } of day-ahead bids obtained in Subsection 3.1. We observe that bdet and
bsto are globally similar. They are at the edge of the lower boundary of the region delimited by the set
B̂0, even outside during the 6 first hours.

The quality of the surrogate model Q̂ is evaluated on {bdet}×Ξ̂(Ω) and {bsto}×Ξ̂(Ω) with the same scores430

as in Subsection 4.3. The results are presented in Figure 11 for the case study in comparison with the
results obtained on the validation data set in Subsection 4.4. We observe that the quality of the surrogate
model Q̂ is acceptable with the day-ahead bids bdet and bsto (predictivity coefficient Q2 above 0.95 and
mean absolute error below 2%), even if it is slightly lower than with the discretized day-ahead bids in
B̂0. Thus the approximate mapping Ê : b0 ∈ B0 7→ E[Q̂(b0, Ξ̂)] does not significantly over-estimate the435

mapping E : b0 ∈ B0 7→ E[Q(b0, Ξ̂)] around the optimal region of the optimization problem. There is no

15



●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●●

●
●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

0.90 0.95 1.00 1.05 1.10

0.
90

0.
95

1.
00

1.
05

1.
10

Observations (normalized total revenues)

P
re

di
ct

io
n 

(n
or

m
al

iz
ed

 to
ta

l r
ev

en
ue

s)

● validation data set (Q2=0.9813 ; %MAE=0.39%)
alpha0=1 (Q2=0.9685 ; %MAE=0.52%)
alpha0=0.5 (Q2=0.9745 ; %MAE=0.46%)

Figure 11: Prediction errors computed on the upcoming day-ahead bids of the deterministic solution (in
blue) and the stochastic solution (in red) for the case study.

guarantee, however, that the approximate mapping Ê does not significantly under-estimate the mapping
E on B0 \(B̂0 ∪{bdet, bsto}), which could misleadingly force the optimal region to be inside B̂0 ∪{bdet, bsto}.

The similarities between bdet = b(x∗
det) and bsto = b(x∗

sto) may be a sign that the deterministic solution
x∗

det and the stochastic solution x∗
sto are similar. For verification, the stochastic objective function is eval-

uated at the deterministic solution and the deterministic objective function is evaluated at the stochastic
solution. For the case study, we obtain

α0f(x∗
det, ξ0) + (1 − α0)E[Q(bdet, Ξ̂)]

α0f(x∗
sto, ξ0) + (1 − α0)E[Q(bsto, Ξ̂)]

= 1.0047 and f(x∗
sto, ξ0)

f(x∗
det, ξ0) = 0.9933,

so, with respect to the relative MIP-gap of 2%, the deterministic solution x∗
det ∈ X (ξ0) is also optimal

for the stochastic optimization problem and the stochastic solution x∗
sto ∈ X (ξ0) is also optimal for the440

deterministic optimization problem. For the case study, the differences between the deterministic and
stochastic objective functions are then insignificant with respect to the relative MIP-gap of 2%. This is
due to the fact that the mapping E : b0 ∈ B0 7→ [Q(b0, Ξ̂)] is globally constant, so independent of the
decision variable, as illustrated in Figure 12.

6 Conclusion445

The stochastic framework of the short-term production planning of a run-of-river hydropower cascade
takes into account uncertainty on forecasting water inflows and electricity prices. The problem is formu-
lated as a mixed-integer linear two-stage stochastic dynamic programming problem. Solving this problem
with a classical decomposition approach, such as a L-shaped algorithm, would require a linear relaxation
of the problem and an iterative algorithm. Instead, we evaluate the feasibility of using supervised learn-450

ing during a pre-processing step of the optimization. The optimal value of the second stage is replaced
by a linear model so that the stochastic optimization problem becomes a tractable mixed-integer linear
programming problem.

The proposed methodology is mainly based on constructing a learning data set from historical effective
day-ahead bids and on reducing the dimension of the functional inputs. Validation results for one sim-455

plified case study are encouraging but the methodology needs to be improved to be compatible with the
time limit of the operational process. Further results on other case studies are needed to draw general
conclusions since the optimization problem is quite sensitive to the situation of the studied hydropower
cascade.

The linear model could be replaced by a piecewise linear model to account for the structure of the460
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Figure 12: Boxplots of the normalized total revenues Q(bdet, Ξ̂)/f(x∗
det, ξ0) for the deterministic solution

(in blue) and Q(bsto, Ξ̂)/f(x∗
det, ξ0) for the stochastic solution (in red) in comparison with the boxplots

of Qd/f(x∗
det, ξ0), for d ∈ {1, . . . , D}, as a function of the scaled upcoming day-ahead bids (in grey). The

points stand for the expected values with respect to the scenarios. The horizontal dashed lines delineate
the region for which variations are insignificant with respect to the relative MIP-gap of 2%.

second stage value function while keeping a mixed-integer programming formulation of the optimization
problem. Moreover, in the same spirit of decomposition algorithms for solving a two-stage stochastic
programming problem, metamodeling could be used within an incremental optimization procedure in
which the surrogate model would be improved as approximate optimal solutions are added to the data
set at each iteration, starting from a very small data set. However, it seems more appealing to perform465

the pre-processing step offline in advance to update the surrogate model at regular intervals. In this
way, only the approximated mixed-integer linear programming model under uncertainty, defined with the
last updated surrogate model, would be solved during the operational process. The deterministic and
stochastic models would then have similar computation time.

Combined with intermittent energy sources (wind and solar) and electricity storage assets (e.g., renew-470

able hydrogen), the stochastic short-term production planning can be used not only for optimizing the
hydropower cascade but also the storage assets, while compensating for imbalances caused by forecasting
uncertainty on intermittent generation.

A Examples of main constraints
This Appendix introduces the main constraints that apply on a feasible solution x ∈ X (ξ) with respect475

to a generic scenario ξ = (a, π) ∈ RIT ×RT . Note that the feasible set X (ξ) is also defined by other more
detailed and specific constraints that are not presented in this paper. We continue to use the notations
introduced throughout the paper.

A.1 Hydraulic modeling
The following constraints are supposed to hold.480

• The conservation of water is written by the water balance equations

Qinit(x) = Qoutit(x) + Vit(x) − Vi,t−1(x)
δt

, ∀(i, t) ∈ I × T ,

where Qinit(x) ∈ R, Qoutit(x) ∈ R and Vit(x) ∈ R, for (i, t) ∈ I × T , are the values of the
components related to respectively the total inflows, the total outflows and the volumes of the
solution x over the time horizon computed at a specific location for each hydropower facility. If a
nonpositive index for the time bucket is involved, then it refers to a past value (observation).
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• The outflows are composed of discharges and spills after water propagation, so

Qoutit(x) = QUSi,t−τUS(i,i)(x) + QBRi,t−τBR(i,i)(x), ∀(i, t) ∈ I × T ,

where QUSit(x) ∈ R and QBRit(x) ∈ R, for (i, t) ∈ I × T , are the values of the components related485

to the flow over the time horizon through respectively the hydropower plant (discharge) and the
barrage (spill) that compose each hydropower run-of-river facility. The parameters τUS(i, i) ∈ R+
and τBR(i, i) ∈ R+, for i ∈ I, denote the time delays due to water propagation between the specific
location at which the balance equation is written and the physical location of respectively the plant
and the barrage. If a nonpositive index for the time bucket is involved, then it refers to a past value490

(observation).

• The inflows are composed of discharges and spills from the upstream facility and intermediate water
inflows (e.g., from tributaries), so

Qinit(x) = QUSi−1,t−τUS(i−1,i)(x) + QBRi−1,t−τBR(i−1,i)(x) + a(i, t), ∀(i, t) ∈ I × T ,

where the parameters τUS(i−1, i) ∈ R+ and τBR(i−1, i) ∈ R+, for i ∈ I, denote the time delays due
to water propagation between the location of respectively the plant and the barrage of the upstream
facility and the specific location at which the balance equation is written. If a nonpositive index for
the time bucket is involved, then it refers to a past value (observation). The inflows and outflows495

at i = 0 are supposed to be zero. The water inflows a ∈ RIT is the parameter that comes from the
scenario ξ.

• The power generations are computed from discharges, i.e.,

Pit(x) = φP i(QUSit(x)), ∀(i, t) ∈ I × T ,

where Pit(x) ∈ R, for (i, t) ∈ I×T , are the values of the components related to the power generation
of the solution x at each hydropower plant over the time horizon, and φP i, for i ∈ I, are concave
piecewise mappings obtained from experience. This constraint is consistent with a mixed-integer500

linear formulation.

A.2 Operational requirements
Operational requirements are mainly written as bounds on the decision variables. For instance,

V (i, t) ≤ Vit(x) ≤ V (i, t), ∀(i, t) ∈ I × T ,

where V (i, t) ∈ R and V (i, t) ∈ R, for (i, t) ∈ I × T are parameters. Similar notations apply for inflows,
outflows, discharges, spills and for the sum of discharges and spills at each facility.

A minimal bound is also applied on final volumes to keep enough water in the reservoirs for the days
after the horizon, i.e.,

ViT (x) ≥ V f (i), ∀i ∈ I,

where V f (i) ∈ R, for i ∈ I, are parameters.505

A.3 Objective function
The following constraints are supposed to hold.

• Next day-ahead bids are hourly contracts, so

bt(x) = bt−1(x), ∀t ∈ T \ H,

where H ⊂ T is the set of the first time bucket of every hour covered by the time horizon. For the
case study, H = {1 + 6h, 1 ≤ h ≤ 60} = {1, 7, 13, . . . , 349, 355}.

• The next day-ahead bids are only defined on time buckets for which the day-ahead market has not
yet been closed, so

bt(x) = 0, ∀t ∈ T0,

where T0 ⊂ T is the set of the time buckets for which the day-ahead market has already been closed510

(i.e., for which the day-ahead commitments are known at the present time). For the case study,
T0 = {1, . . . , tb} with tb = 72 the index of the time bucket that ends on 2014-04-26 24:00.
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• Imbalances are the difference between real power delivery and total commitments, so they can be
estimated by

et(x) =
∑
i∈I

Pit(x) − (c(t) + bt(x)), ∀t ∈ T ,

where et(x) ∈ R, for t ∈ T , are the values of the components related to the imbalances of the
solution x over the time horizon, and c(t) ∈ R, for t ∈ T , are the commitments that are known at
the present time (i.e., day-ahead commitments that were decided the previous day since long-term515

commitments are assumed to be zero).

• The hydropower production plan complies with the next day-ahead bids, so

e(t) ≤ et(x) ≤ e(t), ∀t ∈ T ,

where e(t) ∈ R− and e(t) ∈ R+, for t ∈ T , are respectively the minimal and maximal bounds on
imbalances.

• Positive and negative imbalances are deduced from imbalances by the following constraints that are
consistent with a mixed-integer linear formulation{

e+
t (x) = max(0, et(x)),

e−
t (x) = max(0, −et(x)),

∀t ∈ T .
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