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Abstract

We examine the role of boundaries and the structure of nontrivial duality functions for
three non-conservative interacting particle systems in one dimension that model epidemic
spreading: (i) the diffusive contact process (DCP), (ii) a model that we introduce and call
generalized diffusive contact process (GDCP), both in finite volume in contact with boundary
reservoirs, i.e., with open boundaries, and (iii) the susceptible-infectious-recovered (SIR)
model on Z. We establish duality relations for each system through an analytical approach.
It turns out that with open boundaries self-duality breaks down and qualitatively different
properties compared to closed boundaries (i.e., finite volume without reservoirs) arise: Both
the DCP and GDCP are ergodic but no longer absorbing, while the respective dual processes
are absorbing but not ergodic. We provide expressions for the stationary correlation functions
in terms of the dual absorption probabilities. We perform explicit computations for a small
sized DCP, and for arbitrary size in a particular setting of the GDCP. The duality function is
factorized for the DCP and GDCP, contrary to the SIR model for which the duality relation
is nonlocal and yields an explicit expression of the time evolution of some specific correlation
functions, describing the time decay of the sizes of clusters of susceptible individuals.

1 Introduction

In the context of Markov processes, duality is a remarkable tool to analyze a model of interest
using another model, its dual, via an observable for both models called duality function. For
interacting particle systems, there are various ways of deriving a duality relation : using analyt-
ical tools via computations on generators or intensity matrices, through pathwise methods via a
graphical representation, or by an algebraic approach. A nonexhaustive list of books or surveys
that deal with duality is [30, 29, 20, 39, 44, 7], see also references therein.

In this article, we study three different non-conservative interacting particle systems de-
fined on a one-dimensional lattice, namely (i) the diffusive contact process (see for instance
[25]) on a finite lattice, abbreviated below by DCP, (ii) a generalization thereof with a vari-
able death rate, abbreviated below by GDCP which like the DCP is a special case of a broad
class of reaction diffusion systems surveyed with a view on duality in [37, 46, 45], and (iii)
the susceptible-infectious-recovered (SIR) model on Z (as in [40]). All these particle systems,
described informally below and defined formally in terms of their generators in Sections 2–4,
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are Markovian models for the spreading of infectious diseases, but with different microscopic
dynamics. For each of these models we prove a duality relation using analytical tools.

Informative duality relations are, in general, rare and exceptional. They occur, for example,
in conservative particle systems in the presence of non-Abelian symmetries of the generator, as
first pointed out in [36] and further developed in [18], or when the time evolution of n-point
correlations is fully determined by k-point correlations of lower or equal order k ≤ n [37, 16].
This is not the case in general for models such as ours, where the total number of particles
is not conserved by the bulk dynamics, and the evolution of correlations involves higher order
correlations.

The main novelty of our discussion of duality in the DCP and the GDCP are open boundaries
that allow for particle exchanges with external reservoirs at the boundary sites of the one-
dimensional finite lattice, much like in the paradigmatic open simple exclusion process [43, 41,
10, 6, 13]. In the papers [37, 46] such reservoirs are not considered and in [45] they are actually
explicitly ruled out as they include spontaneous creation of particles which invalidates the results
obtained in that paper. Reservoirs have been considered in [42], but at generic lattice sites and
for the purpose of establishing ergodic theorems, while we focus on boundary reservoirs and
study their effect on correlations.

Indeed, it turns out that open boundaries lead to qualitatively different properties: For closed
boundaries the empty configuration is an absorbing state, so the invariant measure is unique and
completely explicit. It is the trivial Dirac measure concentrated on the empty configuration.
Moreover, both the closed DCP and closed GDCP are self-dual [25, 45]. In contrast, when
adding reservoirs of particles, which can remove or insert particles into the system at random
times, three new features arise: (i) The empty configuration is no longer an absorbing state,
as the reservoirs maintain the process “alive”. (ii) Self-duality is lost. The dual process has
absorbing sinks which are additional sites at the edges of the one-dimensional lattice which
absorb particles without ever releasing them. (iii) The dual process is not ergodic. As time
tends to infinity, the limiting measure depends strongly on the initial configuration.

Despite these differences some features of duality persist in the presence of reservoirs. This
is the factorization of the duality function, meaning that the global duality function is a product
over local duality functions on each lattice site. Such a duality is long-known for the contact
process [29] both on Z and for closed boundaries and appears also in the closed DCP and GDCP
[25, 45]. Here we prove – somewhat unexpectedly – that apart from extra boundary terms the
same factorized duality function can be used also for the open DCP and open GDCP and yields
information about the invariant measure in terms of absorption probabilities of the dual process.
In a special case of the GDCP, it also yields explicit results for the time-dependent one-point
function for arbitrary initial states.

Duality functions that factorize into local duality functions for each lattice site appear also
in the general discussions of duality for reaction-diffusion systems of [37, 46, 16, 45] and thus
factorization appears to be a natural feature of informative dualities [34]. For the SIR model on
Z, the main novelty is the appearance of a non-factorized kind of duality, that we call cluster
duality, since the duality function relates the particle configuration in a cluster of neighboring
sites to the dual process which involves the boundaries of the cluster. This type of non-local
duality function, reminiscent of the so-called empty-interval method used to study correlations
in reaction-diffusion processes [5, 1], appears to be unexplored in the context of duality in
interacting particle systems and may have further applications to other models. Also, note that
although we treat each model separately, we aim, in future work, at a unified treatment of such
models, via an algebraic approach.

We now briefly describe the three models studied in this work, that are one-dimensional
interacting particle systems, either on Z or on ΛN := {1, .., N} with N ≥ 1 sites, and the results
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we obtain for them through duality. Let us first recall the definition of duality between two
Markov processes.

Definition 1 (Definition 3.1 in Chapter II of [30]). Let X = (Xt)t≥0 and Y = (Yt)t≥0 be two
continuous time Markov processes with state spaces Ω and Ωdual, respectively. We say that X
and Y are dual with respect to a local duality function D : Ω× Ωdual → R if

ExD(Xt, y) = EyD(x, Yt) (1.1)

for all (x, y) ∈ Ω × Ωdual and t ≥ 0. In equation (1.1), Ex (respectively Ey) is the expectation
w.r.t. the law of the process X initialized at x (respectively the process Y initialized at y).

In the diffusive contact process on ΛN (DCP), each lattice site can be occupied by at most
one particle. Its dynamics is the superposition of the (basic) contact process (CP) with birth
rate λ > 0, with the symmetric simple exclusion process (SSEP), a particle exchange dynamics
parameterized by a diffusion coefficient D ≥ 0. In the CP, a particle on site x on the lattice
“dies” (i.e., disappears from the lattice) with rate 1 and “infects” (i.e. attempts to create another
particle), with rate λ > 0, on a neighboring site, provided the latter is empty; otherwise the
creation attempt fails. In the SSEP, particles attempt to jump to nearest neighbor sites, at rate
D ≥ 0, provided the chosen target site is empty; otherwise the jump attempt fails, see [30, 29]
for a precise definition of both the CP and the SSEP.

The goal of using duality for the DCP, is to get a better understanding of its stationary
state, when in contact with boundary reservoirs. In Section 2, we establish in Theorem 1 a
duality result between the DCP with an open boundary, and the DCP with a purely absorbing
boundary. From this duality relation, we provide a new expression for the correlation functions
of the invariant measure in terms of absorption probabilities, and compute them for small sized
systems in appendix A.2. We also comment briefly on the fast stirring limit, in which the process
effectively reduces to a birth-death chain on the integers {0, 1, . . . , N}. Note that fast stirring
limits have been much investigated for infinite volume systems in Zd, to establish bounds on the
critical value of the contact process, see e.g. [26, 3, 28, 33] and also with a rescaling of time to
study hydrodynamic limits, see e.g. [8, 11].

The generalized diffusive contact process on ΛN (GDCP) has the same structure as the
DCP, namely the superposition of a SSEP with diffusion coefficient D, and a generalization of
the contact process, that is, a process with infection rate λ > 0, but with death rates depending
on the occupation variables on the neighboring sites, instead of being constant equal to 1. In
Section 3, we derive in Subsection 3.2 a duality relation for the GDCP, and focus on a particular
case that induces a dual process with no birth rate. As an application of the latter dual relation,
we compute in Subsection 3.3 the one-point function in the invariant measure for a general
lattice of N sites. Moreover, we obtain a system of ordinary differential equations for the
time-dependent one-point function, for arbitrary initial distributions. After some elementary
transformations, this system of ODE’s becomes – again somewhat surprisingly – identical to
that of the SSEP with open boundaries, which has no nonconservative bulk processes.

The one-dimensional susceptible-infectious-recovered (SIR) model, that goes back to the
partial differential-equation model for epidemics introduced in [24], describes the evolution on
the infinite lattice Z (hence without reservoirs), of three species of individuals: susceptible (in
state S), infectious (I), recovered (R). An infectious individual infects a susceptible neighbor
at rate β > 0, it recovers and becomes immune (that is, it remains forever in state R) at rate
γ > 0. This process has an interesting feature in common with the classical problem of random
sequential adsorption [12] which is a discrete version of Rényi’s random space filling problem
[35]: an ongoing fragmentation of the state space into independent ergodic components occurs
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as the process evolves in time. This is accompanied by a strong dependence of the limiting
measure on the initial configuration.

As in the previous sections, our goal is to compute correlation functions which, like in
random sequential absorption, remains a non-trivial task despite the fragmentation of the state
space. However for the SIR model, this is quite different to the DCP and the GDCP where we
were interested in the invariant measure. Here, the state space is not irreducible and there are
infinitely many invariant measures (that are Dirac measures on blocked states), so the asymptotic
behavior of the system is highly dependent on the initial condition. We are rather interested in
the time evolution of correlation functions according to the initial state of the system. In Section
4, we study the “n-point cluster functions”, named as such in [40], which are quantities written
in terms of higher order correlation functions. Thanks to these cluster functions, we derive in
Subsection 4.1 a duality relation between the SIR model and a two dimensional random walk on
two layers with a trap. From that, using a probabilistic approach, we provide in Subsection 4.2
an explicit expression of the average of these cluster functions at any time. This new treatment
of the model allows us to extend the results for translation invariant initial distributions derived
in [40], to the case of non translation invariant initial distributions.

The paper is organised as follows. In Section 2, we study the DCP, adding in Appendix A.1
computations that do not rely on duality. In Section 3 we study the GDCP, and in Section 4,
we study the SIR model. The proofs for all results are provided at the end of their respective
sections.

2 The diffusive contact process (DCP)

In physical interacting particle systems that at their edges are in contact with external particle
reservoirs, the particle exchange with such reservoirs is commonly modelled by so-called open
boundaries. This means that particles at the edge sites of the lattice on which the particle
system is defined are created and annihilated at certain rates. The reservoirs themselves do not
enter the mathematical description of the process. In this section, we define the DCP with open
boundaries, and establish the duality relation with the DCP with purely absorbing boundaries.
These are edge sites from which particles jump into auxiliary sites that correspond to sinks
from which no particle can escape. In contrast to the reservoirs envisaged in the open boundary
setting, these sinks become part of the dual process by enlarging the dual state space (compared
to the state space of the DCP with open boundaries) to keep track of the number of absorbed
particles.

A duality relation which turns reservoirs into sinks is quite common in interacting particle
systems. We refer to [42] for an early result where absorbing sites in dual processes are discussed
with a view on establishing ergodic theorems. Such a duality also appears in the SSEP on a
discrete segment with two open boundaries, see [43, 6, 13]. However, the analysis of the effect of
reservoirs on the stationary state of the DCP substantially differs from the case of conservative
particle systems such as the SSEP, where the system is driven out of equilibrium due to a
current of particles produced by the effect of reservoirs tuned differently, see [9, 38, 19]. In our
non-conservative setting, the system is constantly out of equilibrium.

2.1 The model

For N ≥ 1, denote by ΛN = {1, . . . , N} the one dimensional finite chain of size N , which we
refer to as the bulk. A site of ΛN is either empty (in state 0), or occupied (in state 1). Therefore,
the state of the system is described by an element η = (η1, . . . , ηN ) ∈ ΩN := {0, 1}ΛN such that
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for x ∈ ΛN ,

ηx =

{
1 if x is occupied

0 if x is empty.
(2.1)

In the bulk, the dynamics considered is the superposition of a contact process with parameter
λ > 0 (CP), with a symmetric simple exclusion process (SSEP). Both these dynamics are of
nearest-neighbor type and are defined as follows. For x, y ∈ ΛN , x ∼ y means that x and y are
neighboring sites in ΛN .

In the CP, a site x ∈ ΛN becomes occupied at rate λ
∑

y∼x ηy if it is empty, and becomes
empty at rate 1 if it is occupied. The generator of this dynamics acts on f : ΩN → R as follows,
for η ∈ ΩN [29]:

LCPf(η) =
N−1∑
x=2

[
ηx + λ

(
1− ηx

)(
ηx−1 + ηx+1

)][
f(ηx)− f(η)

]
+
[
η1 + λ

(
1− η1

)
η2
][
f(η1)− f(η)

]
+
[
ηN + λ

(
1− ηN

)
ηN−1

][
f(ηN )− f(η)

]
.

(2.2)

where for x, y ∈ ΛN ,

ηxy =

{
ηy if y ̸= x
1− ηx if y = x

(2.3)

represents the flip of the occupation variable at site x ∈ ΛN . Notice that this generator can be
re-written as follows:

LCPf(η) =
η1
2

[
f(η1)− f(η)

]
+

N−1∑
x=1

LCP
x,x+1f(η) +

ηN
2

[
f(ηN )− f(η)

]
(2.4)

with the bond generator

LCP
x,x+1f(η) =

1

2
ηx
[
f(ηx)− f(η)

]
+ λ(1− ηx)ηx+1

[
f(ηx)− f(η)

]
+

1

2
ηx+1

[
f(ηx+1)− f(η)

]
+ λ(1− ηx+1)ηx

[
f(ηx+1)− f(η)

]
.

(2.5)

In the SSEP, particles jump to one of their neighboring sites, under the exclusion rule, namely
each site can accommodate at most one particle, and the direction of the jump is not biased to
the left or right. The generator of this dynamics acts on f : ΩN → R as follows, for η ∈ ΩN :

LSSEPf(η) =
N−1∑
x=1

LSSEP
x,x+1f(η), (2.6)

with

LSSEP
x,x+1f(η) = ηx(1− ηx+1)

(
f(ηx,x+1)− f(η)

)
+ ηx+1(1− ηx)

(
f(ηx+1,x)− f(η)

)
, (2.7)

where for x, y ∈ {1, . . . , N}, if ηx(1− ηy) = 1,

ηx,yz =


ηz if z /∈ {x, y}
ηx − 1 if z = x
ηy + 1 if z = y.

(2.8)

and ηx,y = η otherwise.
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α

γ

δ

β

{
contact + exclusion

1 2 . . .3 N

Figure 1: Contact + exclusion process on ΛN with reservoirs.

We study the open boundary version of the DCP, namely we imagine reservoirs of particles
at each edge of the system, which insert or remove a particle on sites 1 and N . These reservoirs
are parameterized by four positive parameters α, γ, β, δ. A particle is inserted at site 1, resp.
N , at rate α, resp. δ, provided the site is empty. A particle is removed from the system at site
1, resp. N , at rate γ, resp. β, provided the site is occupied (see Figure 2.1). The associated
generators of these boundary dynamics act on f : ΩN → R as follows, for η ∈ ΩN :

L−f(η) = α
(
1− η1

)[
f(η1)− f(η)

]
+ γη1

[
f(η1)− f(η)

]
(2.9)

and L+f(η) = δ
(
1− ηN

)[
f(ηN )− f(η)

]
+ βηN

[
f(ηN )− f(η)

]
. (2.10)

Notice that we do not put an index ‘DCP’ in these generators since they are not specific to our
dynamics.

Finally, the generator for the open DCP is given by

LDCP = L− + LCP +DLSSEP + L+, (2.11)

where D ≥ 0 is the diffusion parameter. The dynamics of the DCP is irreducible and as the
state space ΩN is finite, the process admits a unique invariant measure νDCP, which depends on
α, δ, γ, β,D and λ. When α = γ = β = δ = 0 we speak of closed boundaries. In this case the
empty configuration is an absorbing state which means that the invariant measure is the trivial
Dirac measure concentrated on the empty configuration. As soon as α ̸= 0 or δ ̸= 0, the empty
configuration is no longer an absorbing state and νDCP cannot be found by direct computations
when N is large.

Matrix formulation

Since the DCP and the GDCP are particle systems on a finite lattice, and therefore with a finite
state space, the duality function can be written as a matrix and the Markov generators of the
processes can be written as intensity matrices [31]. This matrix approach with the choice of
basis (2.13) below is often a convenient tool to treat interacting particle systems with countable
state space [21, 32, 38, 18] and will be used below alongside with the more traditional generator
treatment used above.
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Recall that an intensity matrix L is such that

L(x, y) ≥ 0 for x ̸= y and
∑
y

L(x, y) = 0 .

For x ̸= y, L(x, y) represents the rate to go from state x to state y.

Remark 1 (Countable state space). If in Definition 1 both the original process X = (Xt)t≥0

and the dual process Y = (Yt)t≥0 are Markov processes with a countable state space, the duality
relation can be written in matrix notation as [46]

LD = D
(
Ldual

)T
(2.12)

where L is the intensity matrix corresponding to the Markov generator L of X, Ldual is the inten-
sity matrix corresponding to Ldual and the superscript T denotes matrix transposition. Equiva-
lently one could choose to adopt the quantum Hamiltonian representation [32, 38] of the intensity
matrix, namely H = −LT , and in this case duality reads HTD = DHdual, see [36].

Therefore, as the state space of the DCP is finite, one can encode the dynamics in a finite
sized matrix. To write these matrices in the canonical basis (ei)1≤2N of R2N , to each vector ei,
we associate the unique configuration ηi = (ηi1, ..., η

i
N ) such that

i = 1 +

N∑
k=1

2N−kηik. (2.13)

For example, for N = 2, the order is

e1 = (1, 0, 0, 0) associated to (0, 0), e2 = (0, 1, 0, 0) associated to (0, 1),

e3 = (0, 0, 1, 0) associated to (1, 0) and e4 = (0, 0, 0, 1) associated to (1, 1).

With this ordering of configurations, the bulk dynamics matrix writes

LCP +DLSSEP =
N−1∑
x=1

ℓx + ℓ̃1 + ℓ̃N , (2.14)

where for x = 1, . . . , N − 1, denoting by ⊗ the Kronecker product and 1 the two-dimensional
unit matrix,

ℓx := 1⊗(x−1) ⊗ ℓ⊗ 1⊗(N−1−x), (2.15)

with ℓ corresponding to LCP
x,x+1 +DLSSEP

x,x+1:

ℓ =


0 0 0 0
1/2 −(1/2 +D + λ) D λ
1/2 D −(1/2 +D + λ) λ
0 1/2 1/2 −1

 ,

and, for x = 1 and x = N , ℓ̃1 and ℓ̃N correspond to the first and last terms in the right hand
side of (2.4) with,

ℓ̃1 := ℓ̃⊗ 1⊗(N−1) and ℓ̃N := 1⊗(N−1) ⊗ ℓ̃ (2.16)

where

ℓ̃ =

(
0 0
1/2 −1/2

)
.
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Regarding the boundary dynamics the matrices ℓ−1 and ℓ+1 correspond respectively to L− in
(2.9) and L+ in (2.10), with

ℓ−1 := ℓ− ⊗ 1⊗(N−1), and ℓ+N := 1⊗(N−1) ⊗ ℓ+, (2.17)

where

ℓ− =

(
−α α
γ −γ

)
, ℓ+ =

(
−δ δ
β −β

)
.

In total, the intensity matrix of the DCP dynamics is given by

LDCP =
N−1∑
x=1

ℓx + ℓ̃1 + ℓ̃N + ℓ−1 + ℓ+N . (2.18)

2.2 Duality for the DCP

The open DCP has a diffusive and contact bulk dynamics with spontaneous creation and an-
nihilation of particles at sites 1 and N due to the presence of two reservoirs in ghost sites 0
and N + 1 which, as discussed above, do not appear in the process. Theorem 1 shows that
the dual DCP preserves the same dynamics in the bulk while the boundary mechanism is quite
different. The dual process is defined on an extended lattice which includes sites 0 and N + 1
where particles are permanently absorbed, thus describing particle sinks. Because of this the
dual state space is different,

Ωdual
N = N0 × {0, 1}ΛN × N0, (2.19)

where N0 = {0, 1, 2, · · · } is the set of non-negative integers, while N = {1, 2, · · · }.

Theorem 1. The open DCP (ηt)t≥0 with generator (2.11) is dual to a purely absorbing contact
process (ξt)t≥0 with duality function D : ΩN × Ωdual

N → R, given by

D(η, ξ) =
( γ

α+ γ

)ξ0
H(η, ξ)

( β

β + δ

)ξN+1

, (2.20)

where the bulk duality function is:

H(η, ξ) =
∏

x∈A(ξ)

(1− ηx) =
∏

x∈ΛN

(1− ηx)
ξx , (2.21)

with A(ξ) =
{
y ∈ {1, ..., N}, ξy = 1

}
. The dual generator is given by

LDCP,Dual = LDual
− + LCP +DLSSEP + LDual

+ , (2.22)

where LCP is the generator of the contact process defined in (2.2), LSSEP is the generator of the
exclusion process defined in (2.6) and the action at the boundary on function f : Ωdual

N → R is

LDual
− f(ξ) = (α+ γ)ξ1

[
f(ξ1,0)− f(ξ)

]
(2.23)

LDual
+ f(ξ) = (δ + β)ξN

[
f(ξN,N+1)− f(ξ)

]
. (2.24)

As pointed out in the introduction, both the contact and the exclusion processes with closed
boundary conditions are self-dual with duality function (2.21), see in particular [30, Chapter 3,
Section 4] and [25, Chapter 5]. This leads to a self-duality relation for the bulk of the DCP [45],
namely we have that for any η, ξ ∈ ΩN ,(

LCP + LSSEP
)
H(η, .)(ξ) =

(
LCP + LSSEP

)
H(., ξ)(η) . (2.25)
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α + γ β + δ

{
contact + exclusion

1 2 3 . . . N0 N + 1

Figure 2: Dual diffusive contact process with sinks at sites 0 and N + 1.

Remark 2. (a) It was noticed in [39] that for the symmetric simple exclusion process with either
closed or periodic boundary conditions, the function

H̃(η, ξ) =
∏

x∈ΛN

[a1 + a2ηx]
a3+a4ξx , ai ∈ R, i ∈ {1, 2, 3, 4} (2.26)

is a self-duality function for any choice of the parameters ai. The case a1 = 1, a2 = −1, a3 = 0
and a4 = 1 yields H̃ = H, the self-duality function for the contact process.

(b) The bulk duality functions (2.21) and (2.26) have a locally factorized form, namely

G(η, ξ) =
∏

x∈ΛN

g(ηx, ξx)

which corresponds to a duality matrix of the form G⊗N , for a local duality matrix

G =

(
a b
c d

)
, (2.27)

where for the symmetric simple exclusion process the matrix elements are arbitrary, while for
the contact process we have a = b = c = 1, d = 0.

From now on the letter η ∈ ΩN will be relative to a DCP and ξ ∈ Ωdual
N to the dual process

introduced in Theorem 1.

2.3 Correlation functions via duality

In order to provide a better understanding of the invariant measure νDCP of the DCP with ab-
sorbing boundaries, we study its correlation functions thanks to the duality relation established
in Theorem 1. The dual process is seemingly simpler, as it almost surely becomes extinct. We
are thus able to express the correlation functions of the original process in terms of absorption
probabilities of the dual process. This allows to get an upper bound for the one-point function,
see subsection 2.3.1. However, the explicit computation of correlation functions relies on solv-
ing large systems of linear equations, see subsection 2.3.2, and it is not clear whether they are
simpler to solve than the ones obtained in Appendix A.1 through a more standard approach.
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In the following, the one-point function is the expectation ρDCP
1 (y) := EνDCP [ηy] of the

occupation number ηy w.r.t. the invariant measure of the DCP. For 2 ≤ ℓ ≤ N , the ℓ-point
correlation function of νDCP is the function ρDCP

ℓ defined by

∀x1 < ... < xℓ ∈ ΛN , ρ
DCP
ℓ (x1, ...xℓ) := EνDCP

[
ηx1 ...ηxℓ

]
. (2.28)

Introduce the extinction time τN of the DCP (ξ(t))t≥0 with purely absorbing boundaries:

τN := inf
{
t ≥ 0, ∀x ∈ {1, ..., N}, ξx(t) = 0

}
. (2.29)

Also, introduce the total number of particles absorbed on the left and right hand side boundary:

ξ0(∞) := lim
t→∞

ξ0(t), and ξN+1(∞) := lim
t→∞

ξN+1(t), (2.30)

where the limits are almost sure. As the process almost surely becomes extinct, τN , ξ0(∞) and
ξN+1(∞) are almost surely finite and ξ0(∞) = ξ0(τN ), ξN+1(∞) = ξN+1(τN ) almost surely. To
state and prove the results it is convenient to denote

c− :=
γ

α+ γ
and c+ :=

β

β + δ
, (2.31)

which are related to the left (resp. right) reservoir densities 1− c− (resp. 1− c+).

2.3.1 One-point function

For y ∈ ΛN , denote by δy the element of Ωdual
N where there is a particle in site y ∈ ΛN and all

other sites x ̸= y are empty.

Proposition 1. The one-point function of νDCP is given by

∀y ∈ ΛN , ρ
DCP
1 (y) = 1− Eδy

[
c
ξ0(∞)
− c

ξN+1(∞)
+

]
= 1− Eδy

[
c
ξ0(τN )
− c

ξN+1(τN )
+

]
. (2.32)

Although the dual process is seemingly simpler than the original one, it remains a non-
conservative process and the total number of particles absorbed by the reservoirs can reach
arbitrary values. Therefore, we are not able to provide an explicit expression of the right hand
side term in (2.32), contrary to the case of conservative particle systems where exact formulas
are available. We refer to section 2.3 of [15] and Theorem 2.2 of [14], where a closed formula for
the n points correlation is found in the non-equilibrium steady state of two models with open
boundary and the same purely absorbing dual.

However, note that the dual process (ξ(t))t≥0 either dies out before any particle lying in
the bulk has had time to reach the boundary, or, it dies out and at least one particle has been
absorbed by the boundary reservoirs. Thanks to this observation, the following upper bound
holds:

Lemma 1. For y ∈ ΛN , denote by Ay(∞) the following event:

Ay(∞) =
(
ξ(0) = δy, c

ξ0(∞)
− c

ξN+1(∞)
+ < 1

)
,

that is, starting from a single dual particle at site y, at least one particle is absorbed by the
boundary of the system. Then,

ρDCP
1 (y) ≤ Pδy

[
Ay(∞)

]
. (2.33)

Remark 3. This inequality is of interest if the upper bound is small, that is, that starting from
a particle at y, it is unlikely that the process reaches the boundary before it becomes extinct.
Heuristically, if the time of extinction τN of the process is small, corresponding to a small birth
rate λ, then, the particle should not have time to reach the boundary. Precisely, an estimate of
τN is known in the case of a subcritical contact process on ΛN (without exclusion), and we refer
to [29, Part 1, Theorem 3.3].
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2.3.2 Higher order correlation functions

The idea of relating the ℓ-point correlations using the dual absorption probabilities goes back to
[17] for a model of stochastic diffusion of energy. In the same spirit as in Proposition 2 in [17] we
can show the following results for the DCP. Given 2 ≤ ℓ ≤ N and sites 1 ≤ x1 < ... < xℓ ≤ N ,
denote by δx1,x2,...,xℓ

, the element of Ωdual
N where there is a particle at sites x1, ..., xℓ, and none

elsewhere.

Proposition 2. For any 1 ≤ ℓ ≤ N and any 1 ≤ x1 < ... < xℓ ≤ N ,

EνDCP

[ ℓ∏
j=1

(
1− ηxj

) ]
=

ℓ∑
k=0

(−1)k
∑

1≤i1<...<ik≤ℓ

ρDCP
k (xi1 , ..., xik)

=
∑

m,n≥0

Pδx1,x2,...,xℓ

[
ξ0(∞) = m, ξN (∞) = n

]
cm−c

n
+.

(2.34)

If we consider a small bulk, we can explicitly compute the above absorption probabilities.
The idea is to perform a conditioning on the first step of the dual dynamics. We leave to
Appendix A.2 the explicit computations for N = 1 and N = 2.

For N sites notice that there are

N∑
k=1

(
N

k

)
= 2N − 1

nontrivial initial dual configurations. We define MN to be the 2N − 1 square matrix given by
the condition on the first steps starting from the dual initial configuration. Then our goal is to
show that MN is invertible so that all the absorption probabilities – and so the corresponding
correlation functions – are determined as solutions of a linear system. For k ≥ 0, denote by
xki = Pξi

[
ξ0(∞) = k

]
the absorption probabilities of k dual particles starting from the initial

configuration ξi, 1 ≤ i ≤ 2N − 1 that we want to find. The order of these unknown variables
is chosen in an arbitrary way and one option to systematically ordering them is the following,
defined recursively for N sites. There are 2N − 1 total number of non trivial configurations: the
first 2N−1 unknown variables have a particle at site 1 and the rest is completed by a configuration
from the N −1 th ordering. The 2N−1−1 coordinates left are the ones such that site 1 is empty
and the rest is completed by a configuration from the N − 1 th ordering.

More explicitly, for N = 2 sites we have ξ1 = δ1, ξ
2 = δ1,2, ξ

3 = δ2 which is the order we
used, see Fig. 3. For N = 3, this rule would give us the ordering ξ1 = δ1, ξ

2 = δ1,2, ξ
3 = δ1,2,3,

ξ4 = δ1,3, ξ
5 = δ2, ξ

6 = δ2,3, ξ
7 = δ3 and so on.

Also, for ξ ∈ Ωdual
N , introduce A(ξ) the set of configurations containing at least one particle

and resulting from ξ after the jump, birth or death of a particle in η (but not an absorption
in the left side reservoir). Denote by (p(ξi, ξj))1≤i,j≤n the transition probabilities between con-
figurations. Then for any 1 ≤ i ≤ 2N − 1 and for any k ≥ 2, the following recurrence relation
holds:

xki =

2N−1∑
j=1

ξj∈A(ξi)

p(ξi, ξj)xkj +

2N−1∑
j=1

ξj∈ΛN\A(ξi)

p(ξi, ξj)xk−1
j .

For k = 0, 1 the recurrence relation remains the same modulo some changes on the second sum
in the right hand side. Therefore, denoting Ck the column vector (xki )1≤i≤2N−1, for any k ≥ 0,
there is a matrix of size 2N − 1 of the form MN = I2N−1 − P such that

MNCk = Rk,

11



Figure 3: Ordering of configurations

where Rk is a column vector involving some constant terms for k = 0, 1 and terms from Ck−1

for k ≥ 2, and where
P =

(
p(ξi, ξj)1ξj∈A(ξi)

)
1≤i,j≤2N−1

.

By the Perron-Frobenius Theorem, as P is the transition matrix of an irreducible dynamics, one
has that MN is invertible and

M−1
N =

∑
k≥0

P k .

2.3.3 Fast stirring limit

It is interesting to consider the fast stirring limit, that is, D → ∞ for the DCP model. Unlike
in hydrodynamics, here, we discuss the setting where time is not rescaled when performing this
limit.
When D → ∞, the DCP reduces to a birth-death chain on the lattice {0, 1, . . . , N}. This can be
seen by considering a configuration η(t) with n(t) particles, where 0 ≤ n(t) ≤ N , and where the
process n(t) is defined in a way that is analogous to the derivation of the reaction term in the fast
stirring limit of a reaction-diffusion processes, as discussed in [8, 11]. More precisely, between
any attempt to create or annihilate a particle in the bulk or at the boundaries, the process is
just a SSEP with infinite rate, which has the uniform measure as its stationary distribution.
This means that in between any creation/annihilation event of a particle (death, infection,
and reservoir events), any configuration η(t) with n(t) particles, moves uniformly to another
configuration η′(t) with n′(t) particles, so that on the time scale of the creation and annihilation
processes, the following transitions occur: any given configuration with n(t) particles will turn
uniformly into another one with n(t)± 1 particles. The invariant measure of the process in this
limit thus becomes a convex combination of uniform measures on configurations with n particles,
where the weights are given by the stationary weights of the birth-death chain that describes
the transitions between configurations of n and n± 1 particles.

12



Specifically, the rate at which a particle dies in the closed DCP at a given site (transition
n(t) → n(t) − 1), is n/N (which is the probability of finding an occupied site in the uniform
distribution), and since there are N sites where particles can die, the rate of transition is n.
In the open DCP, particles can also die at the boundary sites with rates γ, and β respectively.
Hence the transition rate from a configuration with n(t) particles to a configuration with n(t)−1
particles is n + (β + γ)n/N . Likewise, the rate at which a particle is created in the DCP by
infection at a bond, is given by the probability of finding an occupied site with a vacant neighbor
in the uniform distribution (which is n(N − n)/(N(N − 1)) times the number of bonds (which
is N − 1) times λ (since at each bond the infection can occur with rate λ/2 from a particle on
the right or on the left site of the bond). In the open DCP particles can also be created at the
boundary sites with rates α, and δ respectively. Hence the transition rate from a configuration
with n(t) particles to a configuration with n(t)− 1 particles is λn(1−n/N)+ (α+ δ)(1−n/N).
Thus, the DCP degenerates into a birth-death chain n(t) with the following transition rates:

n→ n− 1, at rate n[1 + (β + γ)/N ], n→ n+ 1, at rate [λn+ (α+ δ)](1− n/N). (2.35)

Without reservoirs, n = 0 is an absorbing state, but not when α ̸= 0 or δ ̸= 0.
Since the arguments that lead to these rates are analogous to those of [8, 11] we refrain

from providing a formal proof. For the stationary probabilities and general properties of this
birth-death chain we refer to [23]. Again, we point to Appendix A.2 where we compute explicitly
the absorption probabilities for N = 2 under the fast stirring limit.

2.4 Proofs for Section 2

2.4.1 Proofs for Section 2.2

First, notice that in our case Definition 1 is equivalent to the following relation involving the
corresponding Markov generators of the processes:

Proposition 3. ([31, Theorem 3.42]) Given X a process with generator L and Y , with generator
Ldual, then X and Y are dual with local duality function D if

(LD(·, x)) (y) =
(
LdualD(y, ·)

)
(x) . (2.36)

for all x ∈ Ω and y ∈ Ωdual.

Proof of Theorem 1. Taking into account Proposition 3, and by equation (2.25), we are left to
show that (

L− + L+

)
D(., ξ)(η) =

(
LDual
− + LDual

+

)
D(η, .)(ξ),

where we recall that LDual
− is defined in (2.23), LDual

+ in (2.24), L− in (2.9) and L+ in (2.10).
Without loss of generality, we prove the result for the left reservoir, i.e.

L−D(., ξ)(η) = LDual
− D(η, .)(ξ),

and the proof that L+D(., ξ)(η) = LDual
+ D(η, .)(ξ) follows the same steps. We have

L−D(., ξ)(η) = α
(
1− η1

)[
D(η1, ξ)−D(η, ξ)

]
+ γη1

[
D(η1, ξ)−D(η, ξ)

]
.

Now,

D(η1, ξ) = cξ0− c
ξN+1
+

∏
x∈A(ξ)

(1− η1x)

= cξ0− c
ξN+1
+

∏
x∈A(ξ)\{1}

(1− ηx)η111∈A(ξ) +D(η, ξ)11/∈A(ξ).
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Therefore,

D(η1, ξ)−D(η, ξ) = D(η1, ξ)−D(η, ξ)11∈A(ξ) −D(η, ξ)11/∈A(ξ)

= cξ0− c
ξN+1
+

∏
x∈A(ξ)\{1}

(1− ηx)η111∈A(ξ) −D(η, ξ)11∈A(ξ)

= cξ0− c
ξN+1
+ (2η1 − 1)

∏
x∈A(ξ)\{1}

(1− ηx)11∈A(ξ).

Finally, we are left with

L−D(., ξ)(η) = α
(
1− η1

)
(2η1 − 1) cξ0− c

ξN+1
+ prodx∈A(ξ)\{1}(1− ηx)11∈A(ξ)

+ γη1(2η1 − 1) cξ0− c
ξN+1
+

∏
x∈A(ξ)\{1}

(1− ηx)11∈A(ξ)

= −αD(η, ξ)11∈A(ξ) + γ cξ0− c
ξN+1
+

∏
x∈A(ξ)\{1}

(1− ηx)η111∈A(ξ)

= −(α+ γ)D(η, ξ)11∈A(ξ) + (α+ γ) cξ0+1
− c

ξN+1
+

∏
x∈A(ξ)\{1}

(1− ηx)11∈A(ξ)

= (α+ γ)ξ1

[
D(η, ξ1,0)−D(η, ξ)

]
,

which is exactly the dual absorbing generator of the left boundary.

2.4.2 Proofs for Section 2.3

Proof of Proposition 1. By definition (2.20) of the duality function D given in Theorem 1, if we
choose as dual process ξ(t) = δy(t), we have

D(η, δy) = 1− ηy .

The duality relation (2.36) then yields that for any t ≥ 0,∫
Eη

[
D(η(t), δy)

]
νDCP(dη) =

∫
Eδy

[
D(η, ξ(t))

]
νDCP(dη). (2.37)

By invariance of νDCP, the left hand side in (2.37) does not depend on t and equals∫
Eη

[
D(η, δy)

]
νDCP(dη) = 1− EνDCP [ηy] , (2.38)

while the right hand equals∫
Eδy

[
D(η, ξ(t))

]
νDCP(dη) −→

t→∞
Eδy

[
c
ξ0(∞)
− c

ξN+1(∞)
+

]
, (2.39)

since for t→ ∞ all dual particles will eventually be absorbed at the boundary. Collecting (2.38)
and (2.39) yields the result.

Proof of Lemma 1. We have

Eδy

[
c
ξ0(∞)
− c

ξN+1(∞)
+

]
= Pδy

[
Ay(∞)c

]
+ Eδy

[
c
ξ0(∞)
− c

ξN+1(∞)
+ 1Ay(∞)

]
= 1− Pδy

[
Ay(∞)

]
+ Eδy

[
c
ξ0(∞)
− c

ξN+1(∞)
+ 1Ay(∞)

]
,

therefore,

ρDCP
1 (y) = 1− Eδy

[
c
ξ0(∞)
− c

ξN+1(∞)
+

]
≤ Pδy

[
Ay(∞)

]
.
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Proof of Proposition 2. For simplicity, we consider that only the left reservoir interacts with the
bulk, that is, δ = β = 0, but the reasoning remains the same if that is not the case. Our goal is
therefore to prove that for any 1 ≤ x1 < ... < xℓ ≤ N ,

EνDCP

[ ℓ∏
j=1

(
1− ηxj

) ]
=

∑
k≥0

Pδx1,x2,...,xℓ

[
ξ0(∞) = k

]
ck−. (2.40)

In this case, it follows that the duality relation (1.1) holds with duality function

D(η, ξ) = cξ0−
∏

x∈ΛN

(1− ηx)
ξx . (2.41)

In other words, the initial process is dual to a DCP with an absorbing sink with rate α + γ.
Then, proceeding as in the proof of Proposition 1, we consider the duality relation (1.1) under
the invariant measure for the original process and, taking ξ = δx1,x2,...,xℓ

, we have:

EνDCP

[
(1− ηx1) (1− ηx2) . . . (1− ηxℓ

)
]
= Eδx1,x2,...,xℓ

[
c
ξ0(∞)
−

]
. (2.42)

Expanding both sides of (2.42), we are left with

ℓ∑
k=0

(−1)k
∑

1≤i1<...<ik≤ℓ

ρDCP
k (xi1 , ..., xik) =

∑
k≥0

Pδx1,x2,...,xℓ

[
ξ0(∞) = k

]
ck− ,

where Pδx1,x2,...,xℓ

[
ξ0(∞) = k

]
is the probability that k dual particles are absorbed in the sink

when the dual process is initialized with ℓ particles in sites 0 < x1 < . . . xℓ.

3 Generalized diffusive contact process (GDCP)

In this section, we introduce a generalized diffusive contact (GDCP) on ΛN which also exhibits a
factorized duality property, similar to the one for the DCP. For a specific choice of the parameters
of the GDCP on a finite one-dimensional lattice with reservoirs, one can extract an explicit
expression of the one-point function for its invariant measure. This is in contrast with the
DCP, where we were not able to extract explicit expressions of the correlation functions from
the duality result provided by Theorem 1. For time-dependent correlations, duality leads to
a closed system of first-order ordinary differential equations with constant coefficients. This is
demonstrated in explicit form for the one-point function.

3.1 The model

Here, as for the DCP, particles evolve on the open one-dimensional finite lattice ΛN . The
reservoir dynamics is the same as in Section 2, given by the generators L− and L+ defined in
(2.9) and (2.10). The exclusion dynamics is the same as for the DCP, given by the generator
LSSEP defined in (2.6).

What differs is the contact dynamics which is here more general. The birth rate is λ > 0,
while the death rates, instead of being 1, depend on the occupation variables in the nearest
neighbor sites: a particle dies with rate 2µ1 when both neighbors are empty, with rate µ1 + µ2
when one of the two neighbors is empty and the other is occupied, and with rate 2µ2 when both
neighbors are occupied. We refer (3.9) for a description of the rates in a tabular form. The
generator of the generalized diffusive contact processes is given by

LGDCP = L− + LGCP +DLSSEP + L+. (3.1)
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Above, L−, resp. L+, is the left, resp. right hand side reservoir generator, and is given by (2.9),
resp. (2.10), with the boundary rates α̃, β̃, γ̃, δ̃ for the GDCP, instead of α, β, γ, δ for the DCP.
As before, D ≥ 0 is the diffusion parameter which tunes the exclusion dynamics described by
LSSEP in equation (2.6). While LGCP is the generator of the generalized contact process, whose
action on a given function f : ΩN → R, is, for η ∈ ΩN

LGCPf(η) =
N−1∑
x=1

LGCP
x,x+1f(η), (3.2)

with the bond generator

LGCP
x,x+1f(η) = ηx

[
µ2ηx+1 + µ1(1− ηx+1)

][
f(ηx)− f(η)

]
+ λ(1− ηx)ηx+1

[
f(ηx)− f(η)

]
+ ηx+1

[
µ2ηx + µ1(1− ηx)

][
f(ηx+1)− f(η)

]
+ λ(1− ηx+1)ηx

[
f(ηx+1)− f(η)

]
.

(3.3)

That is,

LGCPf(η) =
[
η1
(
µ1 + (µ2 − µ1) η2

)
+ λ

(
1− η1

)
η2
][
f(η1)− f(η)

]
+

N−1∑
x=2

[
ηx
(
2µ1 + (µ2 − µ1) (ηx−1 + ηx+1)

)
+ λ

(
1− ηx

)(
ηx−1 + ηx+1

)][
f(ηx)− f(η)

]
+
[
ηN

(
µ1 + (µ2 − µ1) ηN−1

)
+ λ

(
1− ηN

)
ηN−1

][
f(ηN )− f(η)

]
.

(3.4)

Remark 4. (1) One can recover an open DCP with boundary parameters α, β, γ, δ, from an
open GDCP with boundary parameters α̃, β̃, γ̃, δ̃, and death parameters µ1, µ2, by taking

µ1 = µ2 =
1

2
, α̃ = α, γ̃ = γ +

1

2
, δ̃ = δ, and β̃ = β +

1

2
. (3.5)

(2) For µ2 = 0, the GDCP reduces to a biased voter model with stirring by symmetric simple
exclusion, and when µ2 = 0 and µ1 = λ, this is the usual voter model with stirring, studied
in [2] for asymmetric simple exclusion with step initial condition on Z, and [27] for totally
asymmetric simple exclusion on ΛN and open boundaries with γ̃ = δ̃ = 0.

As for the DCP, since the state space is finite, one can encode the dynamics in a finite sized
matrix. In this setting, the intensity matrix of the GDCP in the bulk writes as the following
2N -sized matrix

LGCP +DLSSEP =
N−1∑
x=1

ℓx, (3.6)

where for x = 1, . . . N − 1
ℓx := 1⊗(x−1) ⊗ ℓ⊗ 1⊗(N−1−x), (3.7)

with the two-dimensional unit matrix 1, and the local intensity matrix

ℓ =


0 0 0 0
µ1 −(µ1 +D + λ) D λ
µ1 D −(µ1 +D + λ) λ
0 µ2 µ2 −2µ2

 . (3.8)

The intensity matrices of the boundary dynamics are the same as for the DCP dynamics, see
(1) in Remark 4.

16



The bond transition rates for neighboring sites (x, x + 1) can be schematically represented
in tabular form as

Initial F inal Rate

01 → 00 µ1

01 → 10 D

01 → 11 λ

10 → 00 µ1

10 → 01 D

10 → 11 λ

11 → 01 µ2

11 → 10 µ2

(3.9)

3.2 Duality results for the GDCP

In this section we establish in Theorem 2 a duality relation for the GDCP. A special case, derived
in Corollary 1 will be of interest for applications, as it allows to find a dual process with no
birth rate. This means that the sum in the equation (2.40) for correlations is finite, and can be
explicitly computed for a general bulk of N sites.

Theorem 2. Assume D + µ1 − µ2 ≥ 0 and λ + µ2 − µ1 ≥ 0. The open GDCP with generator
(3.1) is dual with a purely absorbing GDCP with generator

LGDCP,Dual = LDual
− + LGCP,Dual + D̂LSSEP + LDual

+ , (3.10)

w.r.t. the duality function (2.20) obtained for the open diffusive contact process. We have that
LGCP,Dual is the generator (3.4) of the generalized contact process with birth rate λ̂ = λ+µ2−µ1
and death rates exchanged, that is,

LGCP,Dualf(ξ) =

N−1∑
x=2

[
ξx
(
2µ2 + (µ1 − µ2) (ξx−1 + ξx+1)

)
+ (λ+ µ2 − µ1)

(
1− ξx

)(
ξx−1 + ξx+1

)][
f(ξx)− f(ξ)

]
+
[
ξ1
(
µ2 + (µ1 − µ2) ξ2

)
+ (λ+ µ2 − µ1)

(
1− ξ1

)
ξ2
][
f(ξ1)− f(ξ)

]
+
[
ξN

(
µ2 + (µ1 − µ2) ξN−1

)
+ (λ+ µ2 − µ1)

(
1− ξN

)
ξN−1

][
f(ξN )− f(ξ)

]
,

(3.11)

D̂ = D + µ1 − µ2 is the diffusion parameter of the exclusion dynamics, and LDual
− , LDual

+ are

defined in (2.23), (2.24) with rates α̃, β̃, γ̃, δ̃, in place of α, β, γ, δ.

The proof of Theorem 2 is given in subsection 3.4. A special case of the above setting is
elucidated in the Corollary below.

Corollary 1 (Annihilating dual process). Under the same hypothesis as before, setting µ1 =
λ + µ2, the dual GDCP has birth rate λ̂ = 0, i.e. no particle is ever created. The intensity
matrix associated to the local dual generator is given by

ℓDual =


0 0 0 0
µ2 −(D + λ+ µ2) D + λ 0
µ2 D + λ −(D + λ+ µ2) 0
0 λ+ µ2 λ+ µ2 −2(λ+ µ2)

 . (3.12)
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3.3 Application of duality: computing correlations

As for the DCP, the dynamics of the GDCP is irreducible and the state space is finite so there is
a unique invariant measure νGDCP for the GDCP, which depends on the birth, death, exchange
and boundary rates. For a particular choice of these rates, the one-point function of νGDCP

can be explicitly computed, see Proposition 5. Furthermore, some information on the time-
dependent one-point function for arbitrary initial distributions can be obtained using duality.
To this end, consider ξ = δx1,...,xK namely the dual configuration with K particles respectively
on sites 0 < x1 < . . . < xK < N + 1 and none elsewhere, then the duality function reads

D(η, δx1,...,xK ) =
∏

x∈A(ξ)

(1− ηx) =
K∏
i=1

(1− ηxi) , (3.13)

where A(ξ) = {x1, . . . , xK}. Then one can write the time-dependent K-points correlations via
duality as

Eη [D (η(t), δx1,...,xK )] = Eη

 ∏
x∈A(ξ)

(1− ηx(t))

 = Eδx1,...,xK

cξ0(t)− c
ξN+1(t)
+

∏
x∈A(ξ(t))

(1− ηx)


=

∞∑
n−=0

∞∑
n+=0

∑
ζ∈ΩN

c
n−
− c

n+
+

M∏
i=1

(1− ζyi)pt
(
(0;x1, . . . , xK ; 0), (n−; y1, . . . , yM ;n+)

)
where pt

(
(0;x1, . . . , xK ; 0), (n−; y1, . . . , yM ;n+)

)
is the probability that, starting with a dual

configuration δx1,...,xK , at time t there are n− dual particles absorbed in the left sink in site 0,
n+ dual particles absorbed in the right sink in site N +1, and a dual particle in sites y1, . . . , yM .

3.3.1 Invariant measure

For 1 ≤ ℓ ≤ N, the ℓ-point correlation function ρGDCP of νGDCP is the function ρGDCP
ℓ defined

by
∀x1 < . . . < xℓ ∈ ΛN , ρ

GDCP
ℓ (x1, . . . , xℓ) = EνGDCP

[
ηx1 . . . ηxℓ

]
. (3.14)

From now on, we denote by

c̃− :=
γ̃

α̃+ γ̃
, and c̃+ :=

β̃

β̃ + δ̃
. (3.15)

As for the DCP, the dual (ξ(t))t≥0 of the GDCP (we keep the same notation ξ to refer to the dual
process) becomes extinct almost surely and, recall that the total number of particles absorbed
on the left, resp. right hand side boundary is:

ξ0(∞) := lim
t→∞

ξ0(t), resp. ξN+1(∞) := lim
t→∞

ξN+1(t), (3.16)

where the limits are almost sure.

Following the same lines as for the proof of Proposition 2, one can prove the following general
formula for the correlation functions of the GDCP:

Proposition 4. For any 1 ≤ ℓ ≤ N , and any 1 ≤ x1 < ... < xℓ ≤ N ,

EνGDCP

[ ℓ∏
j=1

(
1− ηxj

) ]
=

ℓ∑
k=0

(−1)k
∑

1≤i1<...<ik≤ℓ

ρGDCP
k (xi1 , . . . , xik)

=
∑

m,n≥0

Pδx1,x2,...,xℓ

[
ξ0(∞) = m, ξN (∞) = n

]
c̃ m
− c̃ n

+ ,

(3.17)
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In the particular setting of Corollary 1, the one-point function can be computed explicitly.

Proposition 5. Consider a GDCP with birth rate λ > 0, diffusion coefficient D > 0, boundary
rates α̃, β̃, γ̃, δ̃ and death rates µ1 and µ2, with µ1 = µ2 + λ. Then,

ρGDCP
1 (x) = ux(1− c̃−) + vx(1− c̃+),

where with the constants

ã :=
α̃+ γ̃

α̃+ γ̃ +D + λ+ µ2
, b̃ :=

D + λ

α̃+ γ̃ +D + λ+ µ2
,

c̃ :=
β̃ + δ̃

β̃ + δ̃ +D + λ+ µ2
, d̃ :=

D + λ

β̃ + δ̃ +D + λ+ µ2

(3.18)

and

A :=
D + λ

D + λ+ µ2
, r± :=

1±
√
1−A2

A
, (3.19)

BN := r−(1− b̃r−)(1− d̃r−1
+ ) + rN− r

1−N
+ (̃br+ − 1)(1− d̃r−1

− ), (3.20)

B′
N := ã(c̃N + 1− c̃) + (1− 2ã)c̃, (3.21)

the terms ux and vx are given by, for all x ∈ {1, . . . , N},

ux =


ã

BN
[(1− d̃r−1

+ )rx− + (d̃r−1
− − 1)rN− r

x−N
+ ] µ2 > 0

ã

B′
N

[1− c̃+ c̃(N − x)] µ2 = 0,

(3.22)

vx =


c̃

BN
[(̃br+ − 1)]r1−N

+ rx− + r−(1− b̃r−)r
x−N
+ µ2 > 0

c̃

B′
N

[1− ã+ ã(x− 1)] µ2 = 0.

(3.23)

Remark 5. (a) For µ2 > 0 one finds that the stationary bulk density

ρGDCP
bulk (s) := lim

N→∞
ρ1([sN ]) (3.24)

vanishes for all s ∈ (0, 1). A non-trivial exponentially decaying density profile appears near the
boundaries.

(b) In contrast, for µ2 = 0 a linear bulk density profile emerges,

ρGDCP
bulk (s) =

α̃

α̃+ γ̃
(1− s) +

β̃

β̃ + δ̃
s =

α̃

α̃+ γ̃
− α̃δ̃ − β̃γ̃

(α̃+ γ̃)(β̃ + δ̃)
s (3.25)

This phenomenon is reminiscent of a superposition of shock measures appearing in the voter
model with totally asymmetric stirring (rather than symmetric stirring as in the present case)
on ΛN and open boundaries with γ̃ = δ̃ = 0 [27]. The invariant measure of that model is a convex
combination of shock product measures with marginals µ(ηx) = 1 for 1 ≤ x < xs and µ(ηx) = 0
for xs ≤ x ≤ N and uniform distribution of the microscopic shock position xs ∈ ΛN which leads
to a linear stationary density profile and a simple form of the two-point correlation function
computed in [22]. For the present more complicated case of symmetric stirring and arbitrary
boundary parameters we leave a detailed investigation of the two-point correlation function for
future work.

(c) Moreover, computing higher order correlations is in general a complicated task. For these
models, the difficulty lies in the fact that if there are two or more dual particles, the death rates
depend on the configuration. We leave this for future work.
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3.3.2 Time-dependence of the one-point function

For the choice µ1 = λ+µ2 the absence of particle birth or insertion in the dual process guarantees
that the duality function yields a finite inhomogeneous system of ordinary differential equations
(ODE’s) for the one-point function.

Proposition 6. We assume that µ1 = λ+µ2. Denoting by ηx := ηx − ρ1(x) centered variables,
and defining the function

g(x, t) := e2µ2t⟨ ηx ⟩, (3.26)

where ⟨ · ⟩ means expectation at time t for an arbitrary initial measure ν, we have

d

dt
g(x, t) = (D + λ)(g(x+ 1, t) + g(x− 1, t)− 2g(x, t)), 1 < x < N,

d

dt
g(1, t) = (D + λ)(g(2, t)− g(1, t))− (α̃+ γ̃ − µ2)g(1, t), (3.27)

d

dt
g(N, t) = (D + λ)(g(N − 1, t)− g(N, t))− (β̃ + δ̃ − µ2)g(N, t).

In the system (3.27), we recognize the ODE’s for the time-dependent centered one-point
function of the open SSEP with diffusion coefficient D̂ = D + λ, and reservoir rates α̂, β̂, γ̂, δ̂,
satisfying

α̂+ γ̂ = α̃+ γ̃ − µ2, and β̂ + δ̂ = β̃ + δ̃ − µ2. (3.28)

Following [38], this system can be solved in a closed form by a discrete Fourier transformation
with a reflected wave, in the special cases obtained from the four combinations of reservoir
parameters given by α̃+ γ̃ ∈ {µ2, µ2 +D+ λ} and β̃ + δ̃ ∈ {µ2, µ2 +D+ λ}. We find surprising
that the system of equations (3.27) matches the one for the space time empirical profile of an
open SSEP, see equation (19) and below in [19]. In particular, the choice α̃ + γ̃ = β̃ + δ̃ = µ2
corresponds to α̂ = β̂ = γ̂ = δ̂ = 0 for the boundary parameters of the SSEP (i.e. κ = 0 in [19])
and leads to the same system of equations, both for the SSEP with reflecting boundary which
conserves the total number of particles and for our GCDP which does not conserve the total
number of particles due to positive birth and death rates. We believe it would be interesting
to prove the hydrodynamic limit for this non-conservative process with open boundary, in the
same spirit as for the open finite volume SSEP.

3.4 Proofs for Section 3

3.4.1 Proofs for Subsection 3.2

Proof of Theorem 2. In order to show the matrix duality relation of equation (2.12), as the
generator acts on two sites, it is enough to show that

ℓG⊗2 = G⊗2
(
ℓDual

)T
, (3.29)

for G, ℓ defined respectively in (2.27) and (3.8); we have

G⊗2 =


a2 ab ba b2

ac ad bc bd
ca cb da db
c2 cd dc d2

 . (3.30)
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For any choice of the parameters a, b, c, d, this defines a self-duality function for the SSEP (see
Remark 2), and we only have to take into consideration the action of the GCP. The left hand
side of equation (3.29) becomes

ℓG⊗2 =


0 0 0 0

x[aµ1 − cλ] ayµ1 − dxλ−∆D bxµ1 − cyλ+∆D y[bµ1 − dλ]
x[aµ1 − cλ] bxµ1 − cyλ+∆D ayµ1 − dxλ−∆D y[bµ1 − dλ]

2cxµ2 (dx+ cy)µ2 (dx+ cy)µ2 2dyµ2

 , (3.31)

where ∆ := ad− bc, x := a− c and y := b−d. For the right hand side of (3.29), we first consider
a local generator ℓDual which describes a GDCP with possibly different rates: D̃ is the diffusion
coefficient, λ̃ the birth rate while µ̃1 and µ̃2 are the death rates. This gives the following dual
local intensity matrix

ℓDual =


0 0 0 0

µ̃1 −(D̃ + λ̃+ µ̃1) D̃ λ̃

µ̃1 D̃ −(D̃ + λ̃+ µ̃1) λ̃
0 µ̃2 µ̃2 −2µ̃2

 . (3.32)

Computing the right hand side of (3.29), we get

G⊗2
(
ℓDual

)T
= (3.33)

0 z(aµ̃1 − bλ̃) z(aµ̃1 − bλ̃) 2µ̃2bz

0 awµ̃1 − dzλ̃−∆D̃ czµ̃1 − bwλ̃+∆D̃ (bw + dz)µ̃2
0 czµ̃1 − bwλ̃+∆D̃ awµ̃1 − dzλ̃−∆D̃ (bw + dz)µ̃2
0 w[cµ̃1 − dλ̃] w[cµ̃1 − dλ̃] 2dwµ̃2

 ,

where z = a− b and w = c− d. Since we are aiming to match expressions (3.31) and (3.33), we
first notice that equality in the first column requires x = 0, i.e. a = c, while equality in the first
row requires z = 0, i.e. a = b. Thus a = b = c yields ∆ = −a(a− d), and we are left with

ℓG⊗2 = (a− d)


0 0 0 0
0 aµ1 + aD −aλ− aD aµ1 − dλ
0 −aλ− aD aµ1 + aD aµ1 − dλ
0 aµ2 aµ2 2dµ2

 (3.34)

for the left hand side, and

G⊗2
(
ℓDual

)T
= (a− d)


0 0 0 0

0 aµ̃1 + aD̃ −aλ̃− aD̃ aµ̃2
0 −aλ̃− aD̃ aµ̃1 + aD̃ aµ̃2
0 aµ̃1 − dλ̃ aµ̃1 − dλ̃ 2dµ̃2

 (3.35)

for the right hand side.
Consider d = 0 in both equations (3.34) and (3.35). Then, the identity holds if we set

µ̃2 = µ1 and µ̃1 = µ2, D̃ = D + µ1 − µ2 and λ̂ = λ + µ2 − µ1. Furthermore, without loss of
generality, choosing a = 1, we are left with the duality matrix

G =

(
1 1
1 0

)
, (3.36)

21



which corresponds to the duality function

G(η, ξ) =
∏

x∈ΛN

(1− ηx)
ξx . (3.37)

Note that G is the same duality function as in (2.21) (see Remark 2). Since the bulk duality
function is the same as the one for the diffusive contact process, we can extend the result to the
GDCP with the corresponding boundary parameters. Hence, the duality function has the same
form as for the diffusive contact process, that is: D : ΩN × Ωdual

N → R given by

D(η, ξ) =
( γ̃

α̃+ γ̃

)ξ0 ∏
x∈ΛN

(1− ηx)
ξx
( β̃

β̃ + δ̃

)ξN+1

. (3.38)

Notice that for µ1 = µ2 =
1
2 , we recover Theorem 1.

The proof of Corollary 1 follows from Theorem 2.

3.4.2 Proofs for subsection 3.3

Proof of Proposition 4. In this setting, by Corollary 1, the dual process of the GDCP is a GDCP
with no birth rate, diffusion coefficient D+λ, boundary rates 0, α̃+ γ̃, 0, β̃+ δ̃ (purely absorbing
boundaries), and death rates µ2 and λ+µ2. Thus, the generator of the dual process is given by

LGDCP,Dual = LDual
− + LGCP,Dual +

(
D + λ

)
LSSEP + LDual

+ ,

where we recall that LDual
− and LDual

+ are defined in (2.23) (with α̃+ γ̃ instead of α+γ and β̃+ δ̃
instead of β + δ) and,

LGDCP,Dualf(ξ) =

N−1∑
x=2

[
ηx
(
2µ2 + λ (ξx−1 + ξx+1)

)][
f(ξx)− f(ξ)

]
+
[
ξ1
(
µ2 + λξ2

)][
f(ξ1)− f(ξ)

]
+
[
ξN

(
µ2 + λξN−1

)][
f(ξN )− f(ξ)

]
.

By Theorem 2 the duality function D : ΩN×Ωdual
N → R is the same as for the DCP, that is, given

by (3.38). The same reasoning as in the proof of Proposition 1 yields that for x ∈ {1, . . . , N},

EνGDCP

[
1− ηx] = Pδx

[
ξ0(∞) = 1 ∩ ξN+1(∞) = 0

]
c̃−

+ Pδx

[
ξ0(∞) = 0 ∩ ξN+1(∞) = 1

]
c̃+

+
(
1− Pδx

[
ξ0(∞) = 1 ∩ ξN+1(∞) = 0

]
− Pδx

[
ξ0(∞) = 0 ∩ ξN+1(∞) = 1

])
=: uxc̃− + vxc̃+ + (1− ux − vx).

Therefore,
ρGDCP
1 (x) = ux(1− c̃−) + vx(1− c̃+).

In this case the sum (3.17) is finite due to the fact that the rate of birth is zero, so ξ0(∞) and
ξN+1(∞) can be at most equal to one.

Proof of Proposition 5. To prove Proposition 5, we are now left to compute (ux)1≤x≤N and
(vx)1≤x≤N . By conditioning on the first possible event (jump, birth, death, or absorption by
a reservoir) of the process starting from a particle at site x, we have the following discrete
equations
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• For (ux)1≤x≤N :

u1 = ã+ b̃u2

ux =
A

2
(ux−1 + ux+1) ∀x ∈ {2, . . . , N − 1}

uN = d̃uN−1,

with the constants ã, b̃, d̃, and A defined in (3.18) and (3.19).

• For (vx)1≤x≤N :

v1 = b̃v2

vx =
A

2
(vx−1 + vx+1) ∀x ∈ {2, . . . , N − 1}

vN = c̃+ d̃vN−1,

with the constants b̃, c̃, d̃, and A defined in (3.18) and (3.19).

Both recurrence relations are of the form

w1 = a+ b̃w2

wx =
A

2
(wx−1 + wx+1) ∀x ∈ {2, . . . , N − 1}

wN = c+ d̃wN−1

(3.39)

with a = ã, c = 0, for (ux)1≤x≤N and a = 0, c = c̃, for (vx)1≤x≤N . The properties of the solution
of this recursion depend on µ2 as follows.

Case 1: µ2 > 0
To solve the general recurrence relation, notice that the constants defined in (3.19) satisfy A < 1,
r− < 1 and r+ > 1. Then, there are p, q ∈ R such that for 2 ≤ x ≤ N − 1,

wx = prx− + qrx+, (3.40)

which follows from the bulk part of the recurrence relation (3.39). Furthermore, the recurrence
relation involving sites 1 and 2 yields pr− + qr+ = a + b̃[pr2− + qr2+], therefore pr−(1 − b̃r−) =

a+ qr+(̃bqr+ − 1). Since 0 < r− < 1 and b̃ < 1, for both ux and vx, one obtains

p =
a+ qr+(̃br+ − 1)

r−(1− b̃r−)
.

In a similar fashion, the recurrence relation involving sites N and N − 1 yields prN− + qrN+ =

c + d̃[prN−1
− + qrN−1

+ ], therefore prN− (1 − d̃r−1
− ) = c + qrN+ (d̃r−1

+ − 1). Since r+ > 1 and d̃ < 1,
for both ux and vx, one obtains

q =
c− prN− (1− d̃r−1

− )

rN+ (1− d̃r−1
+ )

.

Finally, for BN defined in (3.20) one finds

q =
1

BN
[cr−(1− b̃r−) + arN− (d̃r−1

− − 1)]r−N
+ (3.41)

p =
1

BN
[a(1− d̃r−1

+ ) + cr1−N
+ (̃br+ − 1)]. (3.42)
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This result yields (3.22) and (3.23) for µ2 > 0.

Case 2, µ2 = 0

In this case, A = 1 and the bulk part of the recurrence relation (3.39) can be written ∆wx = 0,
where ∆ is the discrete one-dimensional Laplacian. The general solution is the linear function

wx = p′ + q′x. (3.43)

The boundary condition at site 1 yields p′ + q′ = a + b̃(p′ + 2q′) and therefore p′(1 − b̃) =
a+(2b̃− 1)q′. Likewise, the boundary condition at site N yields p′+ q′N = c+ d̃(p′+ q′(N − 1))
and therefore p′(1− d̃) = c− q′[(1− d̃)N − d̃]. We then discuss the following cases:

(i) b̃ = d̃ = 1. In this case, we have closed boundary conditions, and the empty lattice is the
absorbing state, implying without further computation ux = vx = ρGDCP

1 (x) = 0 for all
x ∈ {1, . . . , N}.

(ii) b̃ = 1, d̃ < 1. This corresponds to a closed left boundary, with ã = 0, but with open right
boundary, leaving the invariant measure non-trivial. The recurrence for wx yields q′ = 0
and one obtains ux = 0, vx = 1 for all x ∈ {1, . . . , N}.

(iii) d̃ = 1, b̃ < 1. This corresponds to a closed right boundary, with c̃ = 0, but with open left
boundary, leaving the invariant measure non-trivial. The recurrence for wx yields q′ = 0
and one obtains ux = 1, vx = 0 for all x ∈ {1, . . . , N}.

(iv) d̃ < 1, b̃ < 1. The recurrence yields

q′ =
c(1− b̃)− a(1− d̃)

B′
N

(3.44)

p′ =
a[(1− d̃)N + d̃] + c(2b̃− 1)

B′
N

, (3.45)

for B′
N defined in (3.21).

Hence, observing that for µ2 = 0, one has 1 = ã + b̃ = c̃ + d̃, we arrive at (3.22) and (3.23) for
µ2 = 0, which covers all four cases (i)-(iv).

Proof of Proposition 6. Assuming µ1 = λ+µ2 the duality function of the GDCP yields the finite
inhomogeneous system of ordinary differential equations (ODE’s)

d

dt
⟨ ηx ⟩ = (D + λ)(⟨ ηx+1 ⟩+ ⟨ ηx−1 ⟩ − 2⟨ ηx ⟩)− 2µ2⟨ ηx ⟩, 1 < x < N

d

dt
⟨ η1 ⟩ = (D + λ)(⟨ η2 ⟩ − ⟨ η1 ⟩)− (µ2 + α̃+ γ̃)⟨ η1 ⟩+ α̃, (3.46)

d

dt
⟨ ηN ⟩ = (D + λ)(⟨ ηN−1 ⟩ − ⟨ ηN ⟩)− (µ2 + β̃ + δ̃)⟨ ηN ⟩+ δ̃ .

The inhomogeneity arising from the constants α̃ and δ̃ can be removed by considering the
centered variables ηx := ηx − ρ1(x), and by noting that invariance of the measure yields α̃ =
(D+λ+µ2+ α̃+ γ̃)ρ1(1)− (D+λ)ρ1(2) and δ̃ = (D+λ+µ2+ β̃+ δ̃)ρ1(N)− (D+λ)ρ1(N −1).
With the recursion (3.39), which by linearity is also valid for ρ1(x), we conclude that

d

dt
⟨ ηx ⟩ = (D + λ)(⟨ ηx+1 ⟩+ ⟨ ηx−1 ⟩ − 2⟨ ηx ⟩)− 2µ2⟨ ηx ⟩, 1 < x < N,

d

dt
⟨ η1 ⟩ = (D + λ)(⟨ η2 ⟩ − ⟨ η1 ⟩)− (µ2 + α̃+ γ̃)⟨ η1 ⟩, (3.47)

d

dt
⟨ ηN ⟩ = (D + λ)(⟨ ηN−1 ⟩ − ⟨ ηN ⟩)− (µ2 + β̃ + δ̃)⟨ ηN ⟩,
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that is (3.27), which is a homogeneous system of first order ordinary differential equations.

4 The susceptible-infectious-recovered (SIR) model

We now consider another non conservative model, originally introduced in [24], in terms of a
nonlinear system of differential equations for the sizes of populations of three species of individ-
uals which are subject to an infection/recovery mechanism. The susceptible-infectious-recovered
(SIR) model describes propagation of infections in the following sense: a susceptible individual
(characterized by its state S) can become an infectious individual (characterized by its state
I), according to an infection rate β, if it is in contact with an infectious individual. An infec-
tious individual recovers (then it is characterized by its state R) with recovery rate γ; once an
individual has recovered it stays immune, that is, it remains in state R forever.

Despite the simplicity of the original mean-field type model, it is known to capture important
features of the temporal dynamics of an infection. However, only limited results are available if
fluctuations (which inevitably occur in a real system) are taken into account. This question was
addressed in the SIR model of [40] where particles evolve on a one dimensional space of sites,
as in the diffusive contact process. However, contrary to the diffusive contact process studied
in Section 2), the model is defined on the infinite translation invariant lattice Z, so that in
particular, there are no reservoirs. Notice that the parameters β and γ for the SIR model have
nothing to do with the reservoir parameters in the previous sections. The reason for which we
keep this notation is that it is canonically used in the literature on the SIR model.

The stochastic evolution of the collection of particles in the system is governed by a Markov
process denoted by {ηx(t), x ∈ Z, t ≥ 0}, with state space

S := {S, I,R}Z, (4.1)

so that for x ∈ Z, a ∈ {S, I,R}, ηx = a means that x is in state a. Using the notation in [40],
the (translation invariant) transition rates between nearest neighboring sites are given by

Initial F inal Rate

IS → II β

SI → II β

I → R γ

(4.2)

Note that this dynamics is not attractive (the necessary and sufficient conditions required for
attractiveness in [4] are not satisfied), so we cannot rely on monotonicity for this model. In view

of the duality result for the SIR model, see Theorem 3, we give an alternative definition of the
dynamics in terms of its generator LSIR. For f : S→ R,

LSIRf(η) =
∑
x∈Z

{
β ηIx η

S
x+1

[
f(T I

x+1η)− f(η)
]
+ β ηIx η

S
x−1

[
f(T I

x−1η)− f(η)
]

+ γ ηIx
[
f(TR

x η)− f(η)
]}

, (4.3)

where for x, y ∈ Z and a ∈ {S, I,R}
ηax = 1{ηx=a}, (4.4)

and T a
y is the operator acting on elements of Swhich flips the state of y into a, that is, for z ∈ Z,

(T a
y η)z =

{
ηz if z ̸= y
a if z = y.

(4.5)

Our first goal is to find a duality relation for the SIR model with generator (4.3).
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4.1 Clusters as duality function

This section is devoted to showing duality for the SIR model, for the purpose of studying the
expected population size, and correlations as a function of time for arbitrary initial distribu-
tions, rather than only for translation invariant ones, as studied in [40]. This is achieved using
a duality relation between cluster functions (defined below) with a bi-layered two-dimensional
random walk on two copies of the semi-infinite lattice N × Z that we shall label by G and J
respectively. The random walk is asymmetric on each lattice and lattice G is absorbing, i.e.,
once the random walker has left lattice H it cannot return to it. In addition, there is a further
(single) absorbing cemetery state that the random walker can reach from lattice G.

To make this qualitative picture of the dual process precise and obtain information about
the original process, we use the notation ⟨·⟩ν := Eν [ · ] to denote the expectation with respect to
some initial distribution ν, e.g. ⟨ηax(t)⟩ν is the expected state at site x and time t with respect to
ν. As already noticed in [40] quantities of interest are written in terms of high order correlation
functions, called n-point cluster functions, for n ∈ N, the set of strictly positive integers:

Gν(r, n, t) :=

〈
ηIr−1(t)

n−1∏
j=0

ηSr+j(t)

 ηIr+n(t)

〉
ν

(4.6)

Hν(r, n, t) :=

〈n−1∏
j=0

ηSr+j(t)

 ηIr+n(t)

〉
ν

, (4.7)

where in what follows, to lighten the notation we do not write the dependence in time explicitly.
Instead of the cluster H, it will be more convenient to define a different cluster which is of

the same size as G. Namely,

Jν(r, n, t) :=

〈
ηRr−1(t)

n−1∏
j=0

ηSr+j(t)

 ηIr+n(t)

〉
ν

. (4.8)

Using that for any x ∈ Z, ηSx + ηRx + ηIx = 1, the relation between these clusters is

Jν(r, n, t) = Hν(r, n, t)−Hν(r − 1, n+ 1, t)−Gν(r, n, t), (4.9)

so that given Jν(r, n, t) and Gν(r, n, t), the cluster function Hν(r, n, t) can be computed recur-
sively.

In particular, one can gather information about the correlations of the SIR model by choosing
short clusters, see also Remark 7 below. We are now ready to give the duality result for the SIR
model. To this end, denote by

Sdual :=
(
Z× N× {G, J}

)
∪ {∂}, (4.10)

where ∂ will be a trap for the dual evolution.

Theorem 3 (Duality relation for SIR). The SIR model (ηt)t≥0 with generator (4.3) is dual
to a two dimensional biased random walk on two layers (see Figure 4) with duality function
d : S×Sdual → R given by: for η ∈ S and ξ ∈ Sdual, if ξ = (r, n, i) ∈ Z× N× {G, J},

d(η, (r, n, i)) := ηIr−1η
S
r · · · ηSr+n−1η

I
r+n1i=G + ηRr−1η

S
r · · · ηSr+n−1η

I
r+n1i=J

=
[
ηIr−11i=G + ηRr−11i=J

]n−1∏
j=0

ηSr+j

 ηIr+n,
(4.11)
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and
d(η, ∂) := 0. (4.12)

The dual generator acts on local functions f : Sdual → R as follows: for ξ ∈ Sdual, if ξ = ∂,

Ldualf(∂) = 0, (4.13)

while if ξ = (r, n, i) ∈ Z× N× {G, J},

Ldualf(r, n, i) = β1i=G[f(r − 1, n+ 1, i)− f(r, n, i)
]
+ β[f(r, n+ 1, i)− f(r, n, i)

]
+ γ1i=J [f(r, n, ϕ(i))− f(r, n, i)

]
+ 2γ1i=G[f(∂)− f(r, n, i)

]
,

(4.14)

where we define the flip operator ϕ as

ϕ : {G, J} → {G, J}, such that ϕ(G) = J and ϕ(J) = G . (4.15)

Remark 6. By (4.13), ∂ is indeed a trap: once the process reaches ∂, it remains there forever.
Furthermore, the generator of the dual dynamics defines a bilayer random walk with the following
transitions on the dual state space, illustrated in Fig. 4:

(r, n, i) → (r, n+ 1, i) at rate β for both layers: i ∈ {G, J} (4.16)

(r, n,G) → (r − 1, n+ 1, G) at rate β only for layer G. (4.17)

It is only possible to go from layer J to layer G, (but not the other way around):

(r, n, J) → (r, n,G) at rate γ, (4.18)

and absorption in the trap is only possible if the walker is in layer G:

(r, n,G) → ∂ at rate 2γ. (4.19)

Notice the non-translation invariance nature of the dynamics in the second transition (4.17).

4.2 Applications of the duality relation

Consider a measure ν on {S, I,R}Z and recall the n-point cluster functions Gν(r, n, t) and
Jν(r, n, t) defined respectively in (4.6) and (4.8). Note that Jν(r, n, t) is not the same as H(n)
in [40], because of the term 1ηr−1(t)=R but we still obtain closed equations for G and J type
chains.

Remark 7 (SIR correlations for small clusters). Choosing n = 1 the duality functions can give
information on the three point correlation functions given in terms of the clusters G or J , which
can then be used to get two point correlation functions via the cluster H.

4.2.1 Coupled equations for the cluster functions

In [40] (see equation (20)), two first order differential equations are provided and explicitly
solved for Gν(r, n, t) and Hν(r, n, t), provided that the initial measure ν is translation invariant.
Therefore, the initial measure and the dynamics (we are on Z), being both translation invariant,
one can drop the dependence on r and write Gν(r, n, t) = Gν(n, t) and Hν(r, n, t) = Hν(n, t).
We first show that one can recover these equations for Gν(n, t) and Jν(n, t), by only using the
duality relation of Theorem 3.
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Figure 4: Dual dynamics for the SIR model

Proposition 7. Assume that the initial distribution ν is translation invariant. Fix n ∈ N, then
we have 

dGν(n, t)

dt
= −2(γ + β)Gν(n, t) + 2βGν(n+ 1, t)

dJν(n, t)

dt
= −(γ + β)Jν(n, t) + βJν(n+ 1, t) + γGν(n, t) .

(4.20)

The solutions are given by

Gν(n, t) = e−2(γ+β)t
∑
ℓ≥0

(2βt)ℓ

ℓ!
Gν(ℓ+ n, 0) (4.21)

Jν(n, t) = e−(γ+β)t
∑
ℓ≥0

(βt)ℓ

ℓ!
Jν(ℓ+ n, 0)

+γ

∫ t

0
e−(γ+β)(t−s)

∑
ℓ≥0

(β(t− s))ℓ

ℓ!
Gν(ℓ+ n, s)ds. (4.22)

Moreover

Jν(n, t) = Hν(n, t)−Hν(n+ 1, t)−Gν(n, t) . (4.23)

4.2.2 Non-translation invariant case

In [40], the cluster correlation functions have not been solved in the case where ν is not translation
invariant, because the equations obtained in G and J or H are not closed. Our goal now is to
get an explicit expression of such cluster functions in the non translation invariant case, by using
the dual process.

Denote by ξ an element of Sdual. For any SIR configuration η, by abuse of notation, we write

Gη(r, n, t) =: Gδη(r, n, t) and Jη(r, n, t) =: Jδη(r, n, t),
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the cluster correlation functions when the system is initially in state η. Note that the measure
δη is no longer a translation invariant measure for the SIR process (unless it is a constant
configuration, in which case the system remains unchanged).

Theorem 4. The Gη(r, n, t) cluster is given by:

Gη(r, n, t) = e−2(γ+β)t
∑

(a,b)∈(N)2
a≤b

(
b
a

)
2b

(2βt)b

b!
Gη(r − a, n+ b, 0). (4.24)

Theorem 5. The Jη(r, n, t) cluster is given by:

Jη(r, n, t) = e−(γ+β)t
∑
k≥0

(βt)k

k!
Jη(r,n+k,0)

+ γe−(γ+β)t

∫ t

0
e−(γ+β)(t−s)

∑
k≥0

∑
a≤b

(a,b)∈N2

(βs)k

k!

(
b
a

)
2b

(2β(t− s))b

b!
Gν(r − a, n+ k + b, 0)ds.

(4.25)

Theorems 4 and 5 hold for any initial measure ν which is not necessarily translation invariant.
We conclude this section showing that under the extra assumption of translation invariance we
can recover the expressions (21) and (22) in [40].

Special case: translation invariance

Let us recover the formulas obtained in [40] in the translation invariant case using ODE’s (here
we have not used such ODE’s), from (4.24) and (4.25). If ν is translation invariant, Gν(r, n, 0)
and Jν(r, n, 0) are independent of r, so

Gν(n, t) := Gν(r, n, t) = e−2(γ+β)t
∑

(a,b)∈N2

a≤b

(
b
a

)
2b

(2βt)b

b!
Gν(r − a, n+ b, 0)

= e−2(γ+β)t
∑
b≥0

b∑
a=0

(
b
a

)
2b

(2βt)b

b!
Gν(n+ b, 0).

Therefore, Gν(n, t) = e−2(γ+β)t
∑
b≥0

(2βt)b

b!
Gν(n+ b, 0),

(4.26)

which matches (21) in [40]. Now,

Jν(n, t) := Jν(r, n, t) = e−(γ+β)t
∑
k≥0

(βt)k

k!
Jν(n+ k, 0)

+ γe−(γ+β)t

∫ t

0
e−(γ+β)(t−s)

∑
k≥0

∑
a≤b

(a,b)∈N2

(βs)k

k!

(
b
a

)
2b

(2β(t− s))b

b!
Gν(n+ k + b, 0)ds

= e−(γ+β)t
∑
k≥0

(βt)k

k!
Jν(n+ k, 0)

+ γe−(γ+β)t

∫ t

0
e−(γ+β)(t−s)

∑
k≥0

∑
b≥0

(βs)k

k!

(2β(t− s))b

b!
Gν(n+ k + b, 0)ds.

(4.27)
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Performing the change of variable u = t− s, the second integral becomes∫ t

0

∑
k≥0

(β(t− u))k

k!
e−(γ+β)u

∑
b≥0

(2βu)b

b!
Gν(n+ k + b, 0)ds

=

∫ t

0

∑
k≥0

(β(t− u))k

k!
Gν(n+ k, s)ds,

(4.28)

where we used the expression for Gν(n, t) given by (4.26). Finally, we get

Jν(n, t) = e−(γ+β)t
∑
ℓ≥0

(βt)ℓ

ℓ!
Jν(ℓ+n, 0)+γ

∫ t

0
e−(γ+β)(t−s)

∑
ℓ≥0

(β(t− s))ℓ

ℓ!
Gν(ℓ+n, s)ds, (4.29)

which is exactly the solution given in (4.22), found by solving the ODE for J , in the same spirit
as in [40].

4.3 Proofs for Section 4

4.3.1 Proofs for Subsection 4.1

Proof of Theorem 3. First, note that due to the definitions and conventions (4.10), (4.12), (4.13),
(4.14), we have, for any configuration η,

LSIRd(·, ∂)(η) = Lduald(η, ·)(∂). (4.30)

Then, in order to show the following duality relation for all configuration η and (r, n, i) ∈
Z× N× {G, J}

LSIRd(·, (r, n, i))(η) = Lduald(η, ·)(r, n, i), (4.31)

it is convenient to split the SIR generator into three different actions, namely

LSIRd(·, (r, n, i))(η) =
∑
y∈Z

[
Ay +By + Cy

]
d(·, (r, n, i))(η), (4.32)

where

Ay d(·, (r, n, i))(η) := βηIyη
S
y+1

[
d
(
T I
y+1η, (r, n, i)

)
− d (η, (r, n, i))

]
By d(·, (r, n, i))(η) := βηIyη

S
y−1

[
d
(
T I
y−1η, (r, n, i)

)
− d (η, (r, n, i))

]
Cy d(·, (r, n, i))(η) := γηIy

[
d
(
TR
y η, (r, n, i)

)
− d (η, (r, n, i))

]
,

(4.33)

for the operators T a
y defined in (4.5). To conclude the proof we proceed by direct computations

of each of the three items above:

Lemma 2. [Actions of Ay, By, Cy] The actions of the three operators Ay, By and Cy whose
sum over y ∈ Z defines the SIR generator (4.3) are∑

y∈Z
Ay d(η, (r, n, i)) = β1i=G

[
d(η, (r − 1, n+ 1, i))− d(η, (r, n, i))

]
(4.34)

∑
y∈Z

By d(η, (r, n, i)) = β
[
d(η, (r, n+ 1, i))− d(η, (r, n, i))

]
(4.35)

∑
y∈Z

Cy d(η, (r, n, i)) = γ1i=J

[
d(η, (r, n, ϕ(i)))− d(η, (n, i))]− 2γ1i=Gd(η, (r, n, i)) .(4.36)
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Collecting (4.34), (4.35), (4.36) and using that d(η, ∂) = 0 we get

LSIRd(·, (r, n, i))(η) = β1i=G

[
d(η, (r − 1, n+ 1, i))− d(η, (r, n, i))

]
+ β

[
d(η, (r, n+ 1, i))− d(η, (r, n, i))

]
+ γ1i=J

[
d(η, (r, n, ϕ(i)))− d(η, (r, n, i))

]
+ 2γ1i=G

[
d(η, ∂)− d(η, (r, n, i))

]
= Lduald(η, ·)(r, n, i),

(4.37)

namely, we have recovered the generator Ldual of equation (4.14).

Proof of Lemma 2. We proceed by direct computations. Recall the definition of the duality
function in (4.11).

(i) Action of Ay If y + 1 /∈ {r − 1, . . . , r + n} there is no action. Moreover,

ηIyη
S
y+1d(T

I
y+1η, (r, n, i)) =

{
0 if y + 1 ∈ {r, . . . , r + n}
d(η, (r − 1, n+ 1, G)) if y + 1 = r − 1

ηIyη
S
y+1d(η, (r, n, i)) =

{
0 if y ∈ {r, . . . , r + n}
d(η, (r, n,G)) if y = r − 1

and so∑
y∈Z

Ay d(η, (r, n, i)) =
(
Ar−2+Ar−1

)
d(η, (r, n, i)) = β

[
d(η, (r−1, n+1, G))−d(η, (r, n,G))

]

(ii) Action of By If y − 1 /∈ {r − 1, . . . , r + n} there is no action. Moreover,

ηSy−1η
I
yd(T

I
y−1η, (r, n, i)) =

{
0 if y − 1 ∈ {r − 1, . . . , r + n− 1}
d(η, (r, n+ 1, i)) if y − 1 = r + n

ηSy−1η
I
yd(η, (r, n, i)) =

{
0 if y ∈ {r, . . . , r + n− 1}
d(η, (r, n, i)) if y = r + n

and so∑
y∈Z

By d(η, (r, n, i)) =
(
Br+n+1+Br+n

)
d(η, (r, n, i)) = β

[
d(η, (r, n+1, i))− d(η, (r, n, i))

]

(iii) Action of Cy If y /∈ {r − 1, . . . , r + n} there is no action. Moreover,

ηIyd(T
R
y η, (r, n, i)) =

{
0 if y ∈ {r, . . . , r + n}
d(η, (r, n,G))1i=J if y = r − 1

ηIyd(η, (r, n, i)) =


0 if y ∈ {r, . . . , r + n− 1}
d(η, (r, n,G)) if y = r − 1

d(η, (r, n, i)) if y = r + n
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and so∑
y∈Z

Cy d(η, (r, n, i)) =
(
Cr−1 + Cr+n

)
d(η, (r, n, i))

= γ
[
d(η, (r, n,G))1i=J − d(η, (r, n,G))− d(η, (r, n, i))

]

4.3.2 Proofs for Subsection 4.2

Proof of Proposition 7. We have

d

dt
Gν(n, t) =

d

dt
Eν

[
d(., (r, n,G))(η(t))

]
= Eν

[
LSIRd(., (r, n,G))(η(t))

]
= Eν

[
LDuald(η(t), .)(r, n,G)

]
= β

[
Eν

[
d(., (r − 1, n+ 1, G))(η(t))

]
− Eν

[
d(., (r, n,G))(η(t))

]]
+ β

[
Eν

[
d(., (r, n+ 1, G))(η(t))

]
− Eν

[
d(., (r, n,G))(η(t))

]]
− 2γEν

[
d(., (r, n,G))(η(t))

]
= 2β

[
Gν(n+ 1, t)−Gν(n, t)]− 2γGν(n, t),

where we used the duality relation in the first line and the fact that Gν does not depend on r,
by translation invariance, in the last line. In the same way, we get:

d

dt
Jν(n, t) =

d

dt
Eν

[
d(., (r, n,H))(η(t))

]
= Eν

[
LSIRd(., (r, n,H))(η(t))

]
= Eν

[
LDuald(η(t), .)(r, n,H)

]
= β

[
Eν

[
d(., (r, n+ 1, H))(η(t))

]
− Eν

[
d(., (r, n,H))(η(t))

]]
+ γ

[
Eν

[
d(., (r, n,G))(η(t))

]
− Eν

[
d(., (r, n,H))(η(t))

]]
= β

[
Jν(n+ 1, t)− Jν(n, t)] + γ

[
Gν(n, t)− Jν(n, t)

]
.

We have thus derived (4.20). Note that indeed these are the analogous of equation (20) in
[40]. The first equation is exactly the same one as for G in [40] and the solution is given by
(4.21). The second equation can be solved similarly in a recursive way, by treating the terms
Jν(n+ 1, t) and Gν(n, t) as inhomogeneities. The solution is given by (4.22). Then, using that
ηSr−1 + ηIr−1 + ηRr−1 = 1, and noticing that

Hν(n, t) = Hν(n+ 1, t) + Jν(n, t) +Gν(n, t),

the equation for Hν , which is the same as the one in [40], is

dHν(n, t)

dt
= −(γ + β)Hν(n, t) + β

(
Hν(n+ 1, t)−Gν(n, t)

)
,

with solution

Hν(n, t) = e−(γ+β)t
∑
ℓ≥0

(βt)ℓ

ℓ!
H(ℓ+ n, 0)− β

∫ t

0
e−(γ+β)(t−s)

∑
ℓ≥0

(β(t− s))ℓ

ℓ!
G(ℓ+ n, s)ds .

Therefore, we can write the solution Jν in terms of the Hν cluster as (4.23).
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For the proofs of Theorems 4 and 5, we introduce two auxiliary dynamics. The first dynamics
is defined on Z× N× {G} by the following transition rates

(r, n,G) → (r − 1, n+ 1, G) : at rate β, and (r, n,G) → (r, n+ 1, G) : at rate β. (4.38)

Denote by PG
(r,n,J), resp. E

Dual,G
(r,n,J) the probability measure, resp. expectation, under this dynam-

ics, when starting from (r, n,G).
The second dynamics is defined on Z× N× {J} by the following transition rates

(r, n, J) → (r, n+ 1) : at rate β. (4.39)

Denote by PJ
(r,n,J), resp. E

J
(r,n,J) the probability measure, resp. expectation, under this dynamics

when starting from (r, n, J).

Proof of Theorem 4. Fix (r, n) ∈ Z2, thanks to duality we can write

Gη(r, n, t) = e−2γtEG
(r,n,G)

[
d(η, (r(t), n(t), G))

]
. (4.40)

Indeed, for the left hand side we have

Eη

[
d(η(t), (r, n,G))

]
= EDual

(r,n,G)

[
d(η, ξ(t))

]
= EDual

(r,n,G)

[
d(η, ξ(t)) ∩

(
ξ(t) ̸= ∂

)]
= EDual

(r,n,G)

[
d(η, ξ(t)) ∩

(
∀0 ≤ s ≤ t, ξs ̸= ∂

)]
= EDual

(r,n,G)

[
1{∀0≤s≤t, ξs ̸=∂}d(η, ξ(t))

]
= P(r,n,G)

[
∀0 ≤ s ≤ t, ξs ̸= ∂

]
EDual
(r,n,G)

[
d(η, ξ(t))|∀0 ≤ s ≤ t, ξs ̸= ∂

]
= P(r,n,G)

[
∀0 ≤ s ≤ t, ξs ̸= ∂

]
× EG

(r,n,G)

[
d(η, (r(t), n(t), G))

]
.

Above we used the strong Markov property on the fifth line and the sixth one is due to the fact
that when conditioning on not having reached the trap ∂ up to time t, the dual process starting
from (r, n,G) has the same dynamics as the one defined in (4.38). Finally, to get the identity
in (4.40) we used the fact that the time of reaching the trap ∂ from any (r, n, ∂), is given by an
exponential clock of parameter 2γ. Expanding the expectation in the right hand side of (4.40),
we are left with

Gη(r, n, t) = e−2γt
∑

(r̃,ñ)∈Z×N

d
(
η, (r̃, ñ)

)
PG
(r,n,G)

[
(r(t), n(t), G) = (r̃, ñ, G)

]
= e−2γt

∑
(a,b)∈N2

a≤b

d
(
η, (r − a, n+ b)

)
PG
(r,n,G)

[
(r(t), n(t), G) = (r − a, n+ b,G)

]

= e−2γt
∑

(a,b)∈N2

a≤b

d
(
η, (r − a, n+ b)

)
e−2βt

(
b
a

)
2b

(2βt)b

b!

= e−2(γ+β)t
∑

(a,b)∈N2

a≤b

(
b
a

)
2b

(2βt)b

b!
Gη(r − a, n+ b, 0).

The third line comes from the fact that in order to reach (r − a, n+ b) starting from (r, n) and
with the dynamics (4.38), one has to perform

(
b
a

)
steps, where r decreases by 1 and n increases

by 1 and, the rest of the steps where it is only n that increases by 1. The time between two
such jumps is an exponential clock with parameter 2β.
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The other cluster can be found in a similar fashion.

Proof of Theorem 5. Similarly to the previous computation we have

Jη(r, n, t) = Eη

[
d(ηt, (r, n, J))

]
= EDual

(r,n,J)

[
d(η, ξ(t))

]
= EDual

(r,n,J)

[
d(η, ξ(t)) ∩ (ξ(t) ̸= ∂)

]
= EDual

(r,n,J)

[
d(η, (r(t), n(t), i(t))) ∩ (∀0 ≤ s ≤ t, ξ(s) ̸= ∂)

]
= EDual

(r,n,J)

[
d(η, (r(t), n(t), G)) ∩ (∀0 ≤ s ≤ t, ξ(s) ̸= ∂)

]
+ EDual

(r,n,J)

[
d(η, (r(t), n(t), J)) ∩ (∀0 ≤ s ≤ t, ξ(s) ̸= ∂)

]
,

(4.41)

where in the last line, we partitioned according to having or not a jump from J to G before time
t. Defining:

At
s :=

(
∀0 ≤ u ≤ s−, ξ3(u) = J

)
∩ (∀s+ ≤ u ≤ t, ξ3(u) = G

)
∩
(
∀0 ≤ u ≤ t, ξ(u) ̸= ∂

)
,

the event that before time t, the walk does not reach the trap ∂ and at time 0 ≤ s ≤ t, the walk
jumps from lane J to G, we have:

EDual
(r,n,J)

[
d(η, (r(t), n(t), G)) ∩ (∀0 ≤ s ≤ t, ξ(s) ̸= ∂)

]
=

∫ t

0
EDual
(r,n,J)

[
At

s

]
ds

=

∫ t

0
dPDual

(r,n,J)

[
At

s

]
EDual
(r,n,J)

[
d(η, (r(t), n(t), i(t))

∣∣∣At
s

]
.

(4.42)

Using that the law of the jump from state J to G is an exponential law of parameter γ, and
that the rate of jump from state G to the trap ∂ is 2γ, we have

dPDual
(r,n,J)

[
At

s

]
= γe−γs

(
1−

∫ t−s

0
2γe−2γudu

)
ds = γe−γse−2γ(t−s)ds = γe−2γteγsds.

Now, we expand (4.42) by partitioning on the number of increases in n up to time s for the dual
process conditioned on being of type J between times 0 and s, for a certain s ∈ [0, t]:

EDual
(r,n,J)

[
d(η, (r(t), n(t), i(t))

∣∣∣At
s

]
=

∑
k≥0

EDual
(r,n,J)

[
d(η, (r(t), n(t), i(t)) ∩ (r(s), n(s), i(s)) = (r, n+ k, J)

∣∣∣At
s

]
=

∑
k≥0

PJ
(r,n,J)

[
(r(s), n(s), J) = (r, n+ k, J)

]
EG
(r,n+k,G)

[
d(η, (r(t− s), n(t− s), G)]

=
∑
k≥0

e−βs (βs)
k

k!

∑
a≤b

(a,b)∈N2

d(η, (r − a, n+ k + b,G))

· PG
(r,n+k,G)

[
(r(t− s), n(t− s), G) = (r − a, r + k + b,G)]

=
∑
k≥0

∑
a≤b

(a,b)∈N2

e−βs (βs)
k

k!
e−2β(t−s)

(
b
a

)
2b

(2β(t− s))b

b!
Gη(r − a, n+ k + b, 0),

where we used the strong Markov property in the second line, and expanded the expectation
under the process (4.38) in the third line. Therefore,

EDual
(r,n,J)

[
d(η, (r(t), n(t), G)) ∩ (∀0 ≤ s ≤ t, ξ(s) ̸= ∂)

]
=

γe−2γt

∫ t

0
eγs

∑
k≥0

∑
a≤b

(a,b)∈N2

e−βs (βs)
k

k!
e−2β(t−s)

(
b
a

)
2b

(2β(t− s))b

b!
Gη(r − a, n+ k + b, 0)ds. (4.43)
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Finally, the second expectation in the last line in (4.41) is given by:

EDual
(r,n,J)

[
d(η, (r(t), n(t), J))∩ (∀0 ≤ s ≤ t, ξ(s) ̸= ∂)

]
= e−γt

∑
k≥0

e−βt(βt)k

k!
Jη(r, n+ k, 0). (4.44)

Collecting (4.43) and (4.44) yields:

Jη(r, n, t) = e−(γ+β)t
∑
k≥0

(βt)k

k!
Jη(r, n+ k, 0)

+ γe−2γt

∫ t

0
eγs

∑
k≥0

∑
a≤b

(a,b)∈Z2

e−βs (βs)
k

k!
e−2β(t−s)

(
b
a

)
2b

(2β(t− s))b

b!
Gη(r − a, n+ k + b, 0)ds

= e−(γ+β)t
∑
k≥0

(βt)k

k!
Jη(r, n+ k, 0)

+ γe−(γ+β)t

∫ t

0
e−(γ+β)(t−s)

∑
k≥0

∑
a≤b

(a,b)∈Z2

(βs)k

k!

(
b
a

)
2b

(2β(t− s))b

b!
Gη(r − a, n+ k + b, 0)ds.

A The diffusive contact process on small finite sets

A.1 Invariant measure of the DCP on small finite sets

Here, in the same spirit as [25], we compute the stationary distribution of the diffusive contact
process for small N , where we recall that the dynamics is given by the generator LDCP, defined
in (2.11), here we stress the dependence on the lattice size with the subscript N . This approach
is based on the definition of the invariant measure as the probability distribution νDCP satisfying
νDCPLDCP = 0 cf. [30, Chapter 1, Proposition 1.8]). Here, configurations are represented in
their vectorial form, for instance, for N = 1, (0) is the empty configuration and (1) the full one.

We notice that in our case the presence of boundary reservoirs allows to see the effect of the
diffusive coefficient D already when the bulk size is N = 2. This is in contrast to the scenario
studied in Section 6.2 of [25] with boundary conditions η0 = ηN+1 = 1 when the results are
equivalent to the case of D = 0.

N = 1 site

Let us solve the stationary condition νDCPLDCP = 0. For N = 1, the corresponding intensity
matrix is

LDCP =

(
−(α+ δ) (α+ δ)

(γ + β + 1) −(γ + β + 1),

)
and the stationary condition yields

νDCP((0)) =
γ + β + 1

1 + β + γ + δ + α

νDCP((1)) =
α+ δ

1 + β + γ + δ + α
.

Notice that for just one bulk site there is no diffusive effect.
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N = 2 sites

This is the first non trivial case where the diffusion parameter D plays a role. In this case the
intensity matrix is

LDCP =


−(α+ δ) δ α 0
1 + β −(1 + β +D + λ+ α) D λ+ α
1 + γ D −(1 + γ +D + λ+ δ) λ+ δ
0 1 + γ 1 + β −(2 + β + γ)


and the stationary condition yields



c(D)νDCP((0, 0)) = D(β + γ + 2)2 + (α+ β + γ + δ + 2 + 2λ)(1 + β + γ + βγ)

c(D)νDCP((1, 0)) = D(2 + β + γ)(α+ δ) + (γ + 1) [λ(α+ δ) + δ(α+ β + γ + δ + 2)]

c(D)νDCP((0, 1)) = D(2 + β + γ)(α+ δ) + (β + 1) [λ(α+ δ) + α(α+ β + γ + δ + 2)]

c(D)νDCP((1, 1)) = D(α+ δ)(α+ δ + 2λ) + αδ(2 + α+ β + γ + δ)

+λ(α+ δ)(α+ δ + λ+ 1) + λ(αβ + γδ),

(A.1)
where

c(D) = D
[
(α+ β + γ + δ + 2)2 + 2λ(α+ δ)

]
(A.2)

+ [α+ β + γ + δ + 1 + (α+ γ)(β + δ)] (α+ β + γ + δ + 2)

+ λ(α+ δ)(α+ δ + λ) + λ [(α+ δ + 1)(β + γ + 2) + (α+ γ)(β + 1) + (β + δ)(γ + 1)]

In both cases, setting α = δ = λ and γ = β = 0, our results correspond to the ones in [25],
as expected. This strategy explicitly characterizes the stationary measure but only works when
the size of the system is small.

From (A.1), recalling the notation ρDCP
1 (1) = EνDCP

[
η1
]
=: x, ρDCP

1 (2) = EνDCP

[
η2
]
=: y

and ρDCP
2 (1, 2) = EνDCP

[
η1η2

]
=: z, we deduce the following:

c(D)x = c(D)νDCP((1, 0)) + c(D)νDCP((1, 1))

= D(α+ δ)(2 + β + γ + α+ δ + 2λ) + (α+ δ)(λ+ 2 + α+ δ + γ)λ

+(αβ + δγ)λ+ (β + γ + α+ δ + 2)δ(γ + α+ 1)

c(D)y = c(D)νDCP((0, 1)) + c(D)νDCP((1, 1))

= D(α+ δ)(2 + β + γ + α+ δ + 2λ) + (α+ δ)(λ+ 2 + α+ δ + β)λ

+(αβ + δγ)λ+ (β + 1 + δ)α(2 + δ + γ + β + α)

c(D)z = c(D)νDCP((1, 1))

= D(α+ δ)(α+ δ + 2λ) + αδ(2 + α+ β + γ + δ)

+λ(α+ δ)(α+ δ + λ+ 1) + λ(αβ + γδ).

(A.3)

Remark 8 (Fokker-Planck approach). We could have derived directly x, y, z by solving the
equation

∫
LDCPfdνDCP = 0 for f(η) = η1, f(η) = η2, f(η) = η1η2.

Then, taking the limit D → ∞, the solutions in (A.1) become
c(∞)νDCP((0, 0))(∞) = (β + γ + 2)2

c(∞)νDCP((1, 0))(∞) = (2 + β + γ)(α+ δ)

c(∞)νDCP((0, 1))(∞) = (2 + β + γ)(α+ δ)

c(∞)νDCP((1, 1))(∞) = (α+ δ)(α+ δ + 2λ)

(A.4)
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where
c(∞) = (α+ β + γ + δ + 2)2 + 2λ(α+ δ) (A.5)

Due to the infinite diffusion, νDCP((1, 0))(∞) = νDCP((0, 1))(∞), so this quantity only depends
on the total number of particles, regardless of their position.

Finally, taking the limit D → ∞, the solutions in (A.3) simplifies to
c(∞)x(∞) = (α+ δ)(2 + β + γ + α+ δ + 2λ)

c(∞)y(∞) = (α+ δ)(2 + β + γ + α+ δ + 2λ)

c(∞)z(∞) = (α+ δ)(α+ δ + 2λ) .

(A.6)

Notice that, as remarked at the end of Appendix A.2 for the absorption probabilities of one dual
particle starting in site 1 or in site 2, also the corresponding correlations ρDCP

1 (1) and ρDCP
1 (2)

are the same.

A.2 Absorption probabilities

In this subsection, related to Section 2.3, we explicitly compute the absorption probabilities of
the dual process given in Proposition 2 for N = 1, which is simpler because there is neither
diffusion nor birth effects, then for N = 2. Recall that for the sake of simplicity, we took
β = δ = 0 in Section 2.3, and we will also do this in what follows.

N = 1 site

We perform a conditioning on the first step of the dual dynamics. The behavior of the bulk
is conservative as the contact dynamics has no effect here (no possible birth). This provides a
finite sum in the expression of the correlation function (2.40) obtained through duality, allowing
us to compute it conveniently. By (2.32), we have

EνDCP [1− η1] = 1− ρDCP
1 (1) = Pδ1

(
ξ0(∞) = 0

)
c0− + Pδ1

(
ξ0(∞) = 1

)
c−.

To compute the absorption probabilities Pδ1

(
ξ0(∞) = 0

)
and Pδ1

(
ξ0(∞) = 1

)
, we perform a

conditioning on the first possible outcome of the process, starting from a particle at site 1:

Pδ1

(
ξ0(∞) = 0

)
= Pδ1

(
ξ0(∞) = 0 | left jump

)
Pδ1(left jump)

+ Pδ1

(
ξ0(∞) = 0 | it dies

)
Pδ1(it dies)

= 0 · α+ γ

α+ γ + 1
+ 1 · 1

α+ γ + 1

=
1

α+ γ + 1

while if the particle is absorbed,

Pδ1

(
ξ0(∞) = 1

)
= 1− Pδ1

(
ξ0(∞) = 0

)
=

α+ γ

α+ γ + 1
.

Therefore,

ρDCP
1 (1) =

α

α+ γ + 1
,
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N = 2 sites

We now explicitly compute the absorption probabilities of the dual process when N = 2, as well
as their fast stirring limits. Notice that, in computing correlations, this is the first non trivial
case. In addition to the dynamics for one bulk site, the effect of the exclusion process (with
rate D) as well as the effect of the contact process (with rate λ) are present, therefore we have
an infinite sum in equation (2.40), as expressed below in (A.7). Recall the expressions of the
correlation functions (2.28) provided by the duality relations (2.32), and (2.40):

ρDCP
1 (1) = 1−

∑
k≥0 Pδ1

(
ξ0(∞) = k

)
ck−

ρDCP
2 (1, 2) = 1−

∑
k≥0 Pδ1,2

(
ξ0(∞) = k

)
ck−

ρDCP
1 (2) = 1−

∑
k≥0 Pδ2

(
ξ0(∞) = k

)
ck− .

(A.7)

To compute the absorption probabilities appearing in the infinite sums, as in the case N = 1 ,
we condition on the first possible outcome of the process, starting from a particle at site 1, 2 or
at both sites. For k ≥ 0, we define

xk1 := Pδ1

[
ξ0(∞) = k

]
, xk2 := Pδ1,2

[
ξ0(∞) = k

]
, and xk3 := Pδ2

[
ξ0(∞) = k

]
,

the probabilities that k ≥ 0 dual particles are absorbed in the left reservoir starting from a
particle at site 1 (xk1), at site 2 (xk3) or at both sites (xk2). To alleviate notation we do not write
the dependence on the model parameters α, γ, λ and D on these absorption probabilities. For
k ≥ 0, define the column vector

Ck =

xk1xk2
xk3

 . (A.8)

• For k = 0, the conditioning on the first step leads to the following system:

x01 − λ
α+γ+D+λ+1 x

0
2 − D

α+γ+D+λ+1 x
0
3 =

1
α+γ+D+λ+1

−1
α+γ+2 x

0
1 + x02 − 1

α+γ+2 x
0
3 = 0

−D
D+λ+1 x

0
1 − λ

D+λ+1 x
0
2 + x03 =

1
D+λ+1 ,

(A.9)

that is,

M2C0 =

 1
α+γ+D+λ+1

0
1

D+λ+1

 , (A.10)

where

M2 :=


1 −λ

α+γ+D+λ+1
−D

α+γ+D+λ+1

−1
α+γ+2 1 −1

α+γ+2

−D
D+λ+1

−λ
D+λ+1 1

 . (A.11)

We have

d := det M2 =
d̃

(D + λ+ 1)(α+ γ + 2)(D + α+ γ + λ+ 1)
, (A.12)

where

d̃ := DA+ (α+ γ) [(α+ γ + λ+ 2)(λ+ 1) + 1] + 2(λ+ 1), (A.13)

38



with
A := (α+ γ + λ+ 2)2 − λ(λ+ 4) = (α+ γ + 2)2 + 2λ(α+ γ) (A.14)

So detM2 ̸= 0, and solving (A.10) by inverting M2 yields
x01 = d̃−1(2D + λ+ 1)(α+ γ + 2)

x02 = d̃−1
[
4D + α+ γ + 2λ+ 2

]
x03 = d̃−1(2D + α+ γ + λ+ 1)(α+ γ + 2).

(A.15)

• For k = 1, the same conditioning leads to

x11 − λ
α+γ+D+λ+1 x

1
2 − D

α+γ+D+λ+1 x
1
3 =

α+γ
α+γ+D+λ+1

−1
α+γ+2 x

1
1 + x12 − 1

α+γ+2 x
1
3 =

α+γ
α+γ+2 x

0
3

−D
D+λ+1 x

1
1 − λ

D+λ+1 x
1
2 + x13 = 0,

(A.16)

that is,

M2C1 =


α+γ

α+γ+D+λ+1

α+γ
α+γ+2 x

0
3

0

 (A.17)

Again, as detM2 ̸= 0, we can invert this and, to lighten the formulas of the solution, we
introduce the notation

φ := DB + λ2 + λ(α+ γ + 2) + α+ γ + 1, (A.18)

where
B := (α+ γ + 2λ+ 2). (A.19)

We get:

x11 = d̃−1(α+ γ)(α+ γ + 2)

[
D + 1 +

λ(α+ γ + 1)

α+ γ + 2

+λd̃−1(2D + λ+ 1)(2D + α+ γ + λ+ 1)
]

x12 = d̃−1(α+ γ)(α+ γ + 2)

[
2D + λ+ 1

α+ γ + 2
+ d̃−1φ(2D + α+ γ + 1 + λ)

]

x13 = d̃−1(α+ γ)(α+ γ + 2)

[
D +

λ

α+ γ + 2
+ d̃−1λ(2D + λ+ α+ γ + 1)2

]
.

(A.20)

• For k = 2, the same conditioning leads to

xk1 − λ
α+γ+D+λ+1 x

k
2 − D

α+γ+D+λ+1 x
k
3 = 0

−1
α+γ+2 x

k
1 + xk2 − 1

α+γ+2 x
k
3 = α+γ

α+γ+2 x
k−1
3

−D
D+λ+1 x

k
1 − λ

D+λ+1 x
k
2 + xk3 = 0

(A.21)
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that is,

M2Ck =

 0
α+γ

α+γ+2 x
k−1
3

0

 (A.22)

Again, inverting M2, using the definition of φ given in (A.18), and introducing

ψ := D(α+ γ + 2) + λ+ d̃−1λ(α+ γ + 2)(2D + α+ γ + λ+ 1)2 (A.23)

we get: 
x21 = d̃−2λ(α+ γ)2(2D + λ+ 1)ψ

x22 = d̃−2(α+ γ)2φψ

x23 = d̃−2λ(α+ γ)2(2D + α+ γ + λ+ 1)ψ.

(A.24)

• For k = 3, the same reasoning as for the cases above yields
x31 = d̃−3λ2(α+ γ)3(2D + λ+ 1)(2D + α+ γ + λ+ 1)ψ

x32 = d̃−3λ(α+ γ)3(2D + α+ γ + λ+ 1)φψ

x33 = d̃−3λ2(α+ γ)3(2D + α+ γ + λ+ 1)2ψ.

(A.25)

• For k > 3, using the same conditioning and reasoning recursively, we find that
xk1 = d̃−kλ(k−2)(α+ γ)k(2D + λ+ 1)(2D + α+ γ + λ+ 1)(k−3)φψ

xk2 = d̃−kλ(k−3)(α+ γ)k(2D + α+ γ + λ+ 1)(k−3)φ2ψ

xk3 = d̃−kλ(k−2)(α+ γ)k(2D + α+ γ + λ+ 1)(k−2)φψ.

(A.26)

We now consider the fast stirring limit of the absorption probabilities just found. For all k ≥ 0
and i = 1, 2, 3 we denote

xki (∞) := lim
D→∞

xki .

The solutions obtained in (A.15), (A.20), (A.24), (A.25), (A.26) simplify (recall the definitions
(A.14) of A and (A.19) of B) to

• For k = 0, {
x01(∞) = x03(∞) = 2A−1(α+ γ + 2)
x02(∞) = 4A−1 (A.27)

• For k = 1, we get:{
x11(∞) = x13(∞) = A−1(α+ γ)(α+ γ + 2)

[
1 + 4A−1λ

]
x12(∞) = A−12(α+ γ)

[
1 +A−1B(α+ γ + 2)

] (A.28)

• For k = 2, we get:{
x21(∞) = x23(∞) = 2A−2λ(α+ γ)2(α+ γ + 2)

[
1 + 4A−1λ

]
x22(∞) = B(2λ)−1x21(∞)

(A.29)

• For k = 3, the same reasoning as for the cases above yields{
x31(∞) = x33(∞) = 4A−3λ2(α+ γ)3(α+ γ + 2)

[
1 + 4A−1λ

]
x32(∞) = B(2λ)−1x31(∞)

(A.30)
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• For k > 3, we find that{
xk1(∞) = xk3(∞) = A−k(2λ)k−2B(α+ γ)k(α+ γ + 2)

[
1 + 4A−1λ

]
xk2(∞) = B(2λ)−1xk1(∞)

(A.31)

These formulas induce simple expressions for the values (A.7) when D → ∞, where in particular
for all k ≥ 0, xk1(∞) = xk3(∞), that is, the absorption probability to the left reservoirs of one
particle at site 1 is the same as the one of a particle at site 2.
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[6] Gioia Carinci, Cristian Giardinà, Claudio Giberti, and Frank Redig. Duality for stochastic
models of transport. J. Stat. Phys., 152(1):2013, 2013.
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[37] Gunter M. Schütz. Reaction-diffusion processes of hard-core particles. J. Statist. Phys.,
79(1-2):243–264, 1995.
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[40] Gunter M. Schütz, Marian Brandaut, and Steffen Trimper. Exact solution of a stochastic
susceptible-infectious-recovered model. Phys. Rev. E (3), 78(6):061132, 8, 2008.
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