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Abstract

We examine three non-conservative interacting particle systems in one dimension model-
ing epidemic spreading: the diffusive contact process (DCP), a model that we introduce and
call generalized diffusive contact process (GDCP), and the susceptible-infectious-recovered
(SIR) model. For each system, we establish duality relations through an analytical approach.
As an application, we provide a new expression of the correlation functions for the steady
state of the finite volume DCP and GDCP in contact with boundary reservoirs. We explicitly
compute the one point correlation function of the steady state of a small sized DCP, and for
arbitrary size in a particular setting of the GDCP. For the infinite SIR model, the duality re-
lation obtained yields an explicit expression of the time evolution of some specific correlation
functions, describing the time decay of the sizes of chains of susceptible individuals.
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1 Introduction

In the context of Markov processes, duality is a remarkable tool to analyze a model of interest
using another model, its dual, via an observable for both models called duality function. For
interacting particle systems, there are various ways of deriving a duality relation, when it is
available: using analytical tools via computations on generators or intensity matrices, through
pathwise methods via a graphical representation, or by an algebraic approach; in the latter case,
a unified treatment of conservative systems has been derived. A non exhaustive list of books or
surveys that deal with duality is [23, 22, 16, 29, 33, 6], see also references therein.

In this article, we study three different non-conservative interacting particle systems, namely
(i) the diffusive contact process (see for instance [20]), which we augment with open boundaries
that allow particle exchanges with external reservoirs, abbreviated below by DCP, (ii) a general-
ization thereof with a variable death rate, abbreviated below by GDCP, and (iii) the susceptible-
infectious-recovered (SIR) model ([30]). All these particle systems, described informally below
and defined formally in terms of their generators in Sections 2–4, are Markovian models for
the spreading of infectious diseases, but with different microscopic dynamics. For each of these
models we prove a duality relation using analytical tools. Nontrivial duality relations are, in
general, rare and exceptional. They occur, for example, in conservative particle systems, in the
presence of non-Abelian symmetries [26, 14], or when the time evolution of n-point correlations
is fully determined by k-point correlations of lower or equal order k ≤ n ([27]). This is not the
case in general for models such as ours, where the total number of particles is not conserved
by the bulk dynamics, and the evolution of correlations involves higher order correlations. It
should also be noted that in general it is not guaranteed that the dual process turns out to be
simpler. As pointed out in Chapter II of [23], “for the contact process the dual Markov chain
may be no easier than the original problems for the particle system; duality yields interesting
and important connections between these problems which add insight into what is going on”.
Therefore, whether duality is useful or not, depends not only on the dual process, but also on
the type of question that one asks. Indeed, it will turn out that dualities for models of epidemic
spreading of diseases may be of different nature and address different questions.

Dualities that frequently appear in interacting particle systems are factorized dualities, mean-
ing that the global duality function is a product over local duality functions on each lattice site.
Such a duality is well-known for the contact process ([22]). Here, we prove that the same duality
function can be used both for the open DCP, and for its generalization GDCP, to obtain infor-
mation about the invariant measure. In the case of the GDCP, it also yields information on the
time-dependent one-point function for arbitrary initial states. For the SIR model, we prove a
different kind of duality, that we call cluster duality, since the duality function relates the particle
configuration in a cluster of neighboring sites, to the dual process which involves the boundaries
of the cluster. This type of duality function, reminiscent of the so-called empty-interval method
used to study correlations in reaction-diffusion processes ([1]), appears to be unexplored in the
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context of interacting particle systems, and may have further applications to other models. We
use it to study the time-dependence of correlations in the SIR model. Our results induce many
open questions that we plan to address in the future. Also, note that although we treat each
model separately, we aim, in future work, at a unified treatment of such models, via an algebraic
approach.

We now briefly describe the three models studied in this work, that are one-dimensional
interacting particle systems, either on Z or on ΛN := {1, .., N} with N ≥ 1 sites, and the results
we obtain for them through duality. Let us first recall the definition of duality between two
Markov processes.

Definition 1 (Definition 3.1 in [23], Chapter II). Let X = (Xt)t≥0 and Y = (Yt)t≥0 be two
continuous time Markov processes with state spaces Ω and Ωdual, respectively. We say that X
and Y are dual with respect to a local duality function D : Ω× Ωdual → R if

ExD(Xt, y) = EyD(x, Yt) (1.1)

for all (x, y) ∈ Ω × Ωdual and t ≥ 0. In equation (1.1), Ex (respectively Ey) is the expectation
w.r.t. the law of the process X initialized at x (respectively the process Y initialized at y).

In the diffusive contact process (DCP), each lattice site can be occupied by at most one
particle. Its dynamics is the superposition of the (basic) contact process (CP) with birth rate
λ > 0, with the symmetric simple exclusion process (SSEP), a particle exchange dynamics
parameterized by a diffusion coefficient D ≥ 0. In the CP, a particle on site x on the lattice
“dies” (i.e., disappears from the lattice) with rate 1 and “infects” (i.e. attempts to create another
particle), with rate λ > 0, on a neighboring site, provided the latter is empty; otherwise the
creation attempt fails. In the SSEP, particles attempt to jump to nearest neighbor sites, at rate
D ≥ 0, provided the chosen target site is empty; otherwise the jump attempt fails, see [23, 22]
for a precise definition of both the CP and the SSEP.

The dynamics of the DCP is irreducible and its state space finite, so it admits a unique
invariant measure (or stationary state). For the closed DCP (that is, with no reservoirs), the
empty configuration is an absorbing state, so the invariant measure is completely explicit and
corresponds to the Dirac measure concentrated on the empty configuration. When adding
reservoirs of particles, which can remove or inject particles into the system at random times,
the empty configuration is no longer an absorbing state, as the reservoirs maintain the process
“alive”.

The goal of using duality for the DCP, is to get a better understanding of its stationary
state, when in contact with reservoirs. In Section 2, we establish in Theorem 1 a duality result
between the DCP with an open boundary, and the DCP with a purely absorbing boundary.
From this duality relation, we provide a new expression for the correlation functions of the
invariant measure in terms of absorption probabilities, and compute them for small size systems
in Subsection 2.3. Somewhat unexpectedly, the bulk duality function is the same as for the CP
with closed boundaries. We also comment briefly on the fast stirring limit, in which the process
effectively reduces to a birth-death chain on the integers {0, 1, . . . , N}. Note that fast stirring
limits have been much investigated for infinite volume systems in Zd, to establish hydrodynamic
limits (see e.g. [7, 9]); much less is known in our case with a finite diffusion coefficient D. This
is also why, in the appendices A and B, we investigate other direct approaches to compute, on
small sized systems, the invariant measure, and its correlation functions.

The generalized diffusive contact process (GDCP) has the same structure as the DCP, namely
the superposition of a SSEP with diffusion coefficient D, and a generalization of the contact
process, that is, a process with infection rate λ > 0, but with death rates depending on the
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occupation variables on the neighboring sites, instead of being constant equal to 1. This model
is a special case of general models introduced in [25, 27]. As for the DCP, the goal of using
duality for the GDCP is to get a better understanding of its stationary state when in contact
with reservoirs. In Section 3, we derive in Subsection 3.2 several duality relations for the GDCP,
and focus on one of them that induces a dual process with no birth rate. As an application
of the latter dual relation, we compute in Subsection 3.3 the one point correlation functions of
the stationary state, for a general bulk of N sites. Moreover, we obtain a system of ordinary
differential equations for the time-dependent one-point correlation functions, for arbitrary initial
distributions. After some elementary transformations, this system of ODE’s becomes identical
to that of the SSEP with open boundaries, but without any nonconservative bulk processes.

The one-dimensional susceptible-infectious-recovered (SIR) model, that goes back to the
partial differential-equation model for epidemics introduced in [19], describes the evolution on
the infinite lattice Z (hence without reservoirs), of three species of individuals: susceptible (in
state S), infectious (I), recovered (R). An infectious individual infects a susceptible neighbor
at rate β > 0, it recovers at rate γ > 0 and becomes immune (that is, it remains forever in state
R).

As in the previous sections, our goal is to compute correlation functions. However for the
SIR model, this is quite different to the DCP and the GDCP where we were interested in the
invariant measure. Here, the state space is not irreducible and there are infinitely many invariant
measures (Dirac measures on blocked states), so the asymptotic behavior of the system is highly
dependent on the initial condition. We are rather interested in the time evolution of correlation
functions according to the initial state of the system. In Section 4, we study the “n-point
cluster functions”, named as such in [30], which are quantities written in terms of higher order
correlation functions. Thanks to these cluster functions, we derive in Subsection 4.1 a duality
relation between the SIR model and a two dimensional random walk on two layers with a trap.
From that, using a probabilistic approach, we provide in Subsection 4.2 an explicit expression
of the average of these cluster functions at any time. This new treatment of the model allows
us to extend the results of [30] for translation invariant initial distributions, to the case of non
translation invariant initial distributions.

The paper is organised as follows. In Section 2, we study the DCP, adding in Appendices
A and B computations that do not rely on duality. In Section 3 we study the GDCP, and in
Section 4, we study the SIR model.

2 The diffusive contact process (DCP)

In this section, we define the DCP with open boundaries, and establish the duality relation with
the DCP with purely absorbing boundaries. A duality relation which turns an open boundary
into a purely absorbing one, is quite common in interacting particle systems, we refer to [31] for
an early result, where absorbing sites in dual processes were discussed. This also appears in the
SSEP on a discrete segment with two open boundaries, see [32, 5, 10]. However, the analysis of
the effect of reservoirs on the stationary state of the DCP substantially differs from the case of
conservative particle systems such as the SSEP, where the system is driven out of equilibrium
due to a current of particles produced by the effect of reservoirs tuned differently, see [8, 28, 15].
In our non-conservative setting, the system is constantly out of equilibrium.

2.1 The model

For N ≥ 1, denote by ΛN = {1, ..., N} the one dimensional finite chain of size N , which we refer
to as the bulk. A site of ΛN is either empty (in state 0), or occupied (in state 1). Therefore,
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the state of the system is described by an element η = (η1, ..., ηN ) ∈ ΩN := {0, 1}ΛN such that
for 1 ≤ x ≤ N ,

ηx =

{
1 if x is occupied

0 if x is empty.
(2.1)

In the bulk, the dynamics considered is the superposition of a contact process with parameter
λ > 0, with a symmetric simple exclusion process (SSEP). Both these dynamics are of nearest-
neighbor type and are defined as follows. For x, y ∈ ΛN , x ∼ y means that x and y are
neighboring sites in ΛN .

In the contact process with parameter λ > 0, a site x ∈ ΛN becomes occupied at rate
λ
∑

y∼x ηy if it is empty, and becomes empty at rate 1 if it is occupied. The generator of this
dynamics acts on f : ΩN → R as follows, for η ∈ ΩN :

LCPf(η) =
N−1∑
x=2

[
ηx + λ

(
1− ηx

)(
ηx−1 + ηx+1

)][
f(ηx)− f(η)

]
+
[
η1 + λ

(
1− η1

)
η2
][
f(η1)− f(η)

]
+
[
ηN + λ

(
1− ηN

)
ηN−1

][
f(ηN )− f(η)

]
.

(2.2)

where for x, y ∈ ΛN ,

ηxy =

{
ηy if y ̸= x
1− ηx if y = x

(2.3)

represents the flip of the occupation variable at site x ∈ ΛN . Note that this generator can be
re-written as follows:

LCPf(η) =
η1
2

[
f(η1)− f(η)

]
+

N−1∑
x=1

LCP
x,x+1f(η) +

ηN
2

[
f(ηN )− f(η)

]
(2.4)

with the bond generator

LCP
x,x+1f(η) =

1

2
ηx
[
f(ηx)− f(η)

]
+ λ(1− ηx)ηx+1

[
f(ηx)− f(η)

]
+

1

2
ηx+1

[
f(ηx+1)− f(η)

]
+ λ(1− ηx+1)ηx

[
f(ηx+1)− f(η)

]
.

(2.5)

Finally, one could also highlight the action on the site instead of the bond, i.e. by defining, for
1 ≤ x ≤ N − 1,

LCP
x,+f(η) =

1

2
ηx
[
f(ηx)− f(η)

]
+ λ(1− ηx)ηx+1

[
f(ηx)− f(η)

]
(2.6)

and

LCP
x+1,−f(η) =

1

2
ηx+1

[
f(ηx+1)− f(η)

]
+ λ(1− ηx+1)ηx

[
f(ηx+1)− f(η)

]
, (2.7)

so that the bond action is

LCP
x,x+1f(η) = LCP

x,+f(η) + LCP
x+1,−f(η).

In the SSEP, particles jump to one of their neighboring sites, under the exclusion rule, namely
each site can accommodate at most one particle, and the direction of the jump is not biased to
the left or right. The generator of this dynamics acts on f : ΩN → R as follows, f or η ∈ ΩN :

LSSEPf(η) =

N−1∑
x=1

LSSEP
x,x+1f(η), with LSSEP

x,x+1f(η) = f(ηx,x+1)− f(η), (2.8)
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where for x, y ∈ {1, ..., N},

ηx,yz =


ηz if z /∈ {x, y}
ηy if z = x
ηx if z = y.

(2.9)

The generator of the bulk dynamics resulting from the superposition of the contact process
and the SSEP is therefore given by LCP + LSSEP.

We study the open boundary version of the DCP, namely we attach reservoirs of particles at
each end point of the system, which introduce or remove a particle from sites 1 and N . These
reservoirs are parameterized by four positive parameters α, γ, δ, β. A particle is introduced at
site 1, resp. N , at rate α, resp. δ, provided the site is empty. A particle is removed from the
system at site 1, resp. N , at rate γ, resp. β, provided the site is occupied (see Figure 2.1). The
associated generators of these boundary dynamics act on f : ΩN → R as follows, for η ∈ ΩN :

L−f(η) = α
(
1− η1

)[
f(η1)− f(η)

]
+ γη1

[
f(η1)− f(η)

]
(2.10)

and
L+f(η) = δ

(
1− ηN

)[
f(ηN )− f(η)

]
+ βηN

[
f(ηN )− f(η)

]
. (2.11)

Note that we do not put an index ‘DCP’ in these generators since they are not specific to our
dynamics.

Finally, the generator for the open DCP is given by

LDCP = L− + LCP +DLSSEP + L+, (2.12)

where D ≥ 0 is the diffusion parameter.

Since the DCP and the GDCP are particle systems on a finite lattice, and therefore with a
finite state space, the duality function can be written as a matrix and the Markov generators
of the processes can be written as intensity matrices [24]. Recall that an intensity matrix L is
such that

L(x, y) ≥ 0 for x ̸= y and
∑
y

L(x, y) = 0 .

For x ̸= y, L(x, y) represents the rate to go from state x to state y.

Remark 1 (Countable state space). If both the original process X = (Xt)t≥0 and the dual
process Y = (Yt)t≥0 are Markov processes with a countable state space, the duality relation can
be written in matrix notation as ([34])

LD = D
(
Ldual

)T
(2.13)

where L is the intensity matrix corresponding to the Markov generator L, Ldual is the intensity
matrix corresponding to Ldual and the superscript T denotes matrix transposition. Equivalently
one could choose to adopt the quantum Hamiltonian representation [25, 28] of the intensity
matrix, namely H = −LT , and in this case duality reads HTD = DHdual, see [26].

Therefore, as the state space of the DCP is finite, one can encode the dynamics in a finite
sized matrix. To write these matrices in the canonical basis (ei)1≤2N of R2N , to each vector ei,
we associate the unique configuration ηi = (ηi1, ..., η

i
N ) such that

i = 1 +
N∑
k=1

2N−kηik. (2.14)
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For example, for N = 2, the order is

e1 = (1, 0, 0, 0) associated to (0, 0), e2 = (0, 1, 0, 0) associated to (0, 1),

e3 = (0, 0, 1, 0) associated to (1, 0) and e4 = (0, 0, 0, 1) associated to (1, 1).

With this ordering of configurations, the bulk dynamics matrix writes

LCP +DLSSEP =

N−1∑
x=1

ℓx + ℓ̃1 + ℓ̃N , (2.15)

where for x = 1, . . . , N − 1, denoting by ⊗ the Kronecker product and 1 the two-dimensional
unit matrix,

ℓx := 1⊗(x−1) ⊗ ℓ⊗ 1⊗(N−1−x), (2.16)

with ℓ corresponding to LCP
x,x+1 +DLSSEP

x,x+1:

ℓ =


0 0 0 0
1/2 −(1/2 +D + λ) D λ
1/2 D −(1/2 +D + λ) λ
0 1/2 1/2 −1

 ,

and, for x = 1 and x = N , ℓ̃1 and ℓ̃N correspond to the first and last terms in the right hand
side of (2.4) with,

ℓ̃1 := ℓ̃⊗ 1⊗(N−1) and ℓ̃N := 1⊗(N−1) ⊗ ℓ̃ (2.17)

where

ℓ̃ =

(
0 0
1/2 −1/2

)
.

Regarding the boundary dynamics the matrices ℓ−1 and ℓ+1 correspond respectively to L− in
(2.10) and L+ in (2.11), with

ℓ−1 := ℓ− ⊗ 1⊗(N−1), and ℓ+N := 1⊗(N−1) ⊗ ℓ+, (2.18)

where

ℓ− =

(
−α α
γ −γ

)
, ℓ+ =

(
−δ δ
β −β

)
.

In total, the intensity matrix of the DCP dynamics is given by

LDCP =

N−1∑
x=1

ℓx + ℓ̃1 + ℓ̃N + ℓ−1 + ℓ+N . (2.19)

The dynamics of the DCP is irreducible and as the state space ΩN is finite, the process admits
a unique invariant measure νDCP, which depends on α, δ, γ, β,D and λ. As soon as α ̸= 0 or
δ ̸= 0, the empty configuration is no longer an absorbing state and νDCP cannot be found by
direct computations when N is large.

2.2 Duality for the DCP

Introduce the dual space
Ωdual
N = N0 × {0, 1}ΛN × N0,

where N0 = {0, 1, 2, · · · } is the set of non-negative integers.
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α

γ

δ

β

{
contact + exclusion

1 2 . . .3 N

Figure 1: Contact + exclusion process on ΛN with reservoirs.

Theorem 1. The open DCP (ηt)t≥0 with generator (2.12) is dual to a purely absorbing contact
process (ξt)t≥0 with duality function D : ΩN × Ωdual

N → R, given by

D(η, ξ) =
( γ

α+ γ

)ξ0
H(η, ξ)

( δ

β + δ

)ξN+1

, (2.20)

where the bulk duality function is:

H(η, ξ) =
∏

x∈A(ξ)

(1− ηx) =
∏

x∈ΛN

(1− ηx)
ξx , (2.21)

with A(ξ) =
{
y ∈ {1, ..., N}, ξy = 1

}
. The dual generator is given by

LDCP,Dual = LDual
− + LCP +DLSSEP + LDual

+ , (2.22)

where LCP is the generator of the contact process defined in (2.2), LSSEP is the generator of the
exclusion process defined in (2.8) and the action at the boundary on function f : Ωdual

N → R is

LDual
− f(ξ) = (α+ γ)ξ1

[
f(ξ1,0)− f(ξ)

]
(2.23)

LDual
+ f(ξ) = (δ + β)ξN

[
f(ξN,N+1)− f(ξ)

]
. (2.24)

We denote the reservoir densities by

c− :=
γ

α+ γ
, and c+ :=

δ

β + δ
. (2.25)

From now on, in this section, the letter η will be relative to a DCP and ξ to the dual process
introduced in Theorem 1.

First, notice that in our case Definition 1 is equivalent to the following relation involving the
corresponding Markov generators of the processes:

Proposition 1. ([24, Theorem 3.42]) Let L the generator of the process X and Ldual the gen-
erator of the process Y . Then X and Y are dual with local duality function D if

(LD(·, x)) (y) =
(
LdualD(y, ·)

)
(x) . (2.26)

for all x ∈ Ω and y ∈ Ωdual.

8



It is known in the literature that both the contact and the exclusion processes with closed
boundary conditions are self-dual with duality function (2.21), see in particular [23, Chapter 3,
Section 4] and [20, Chapter 5]. This leads to a self-duality relation for the bulk of the DCP,
namely we have that for any η, ξ ∈ ΩN ,(

LCP + LSSEP
)
H(η, .)(ξ) =

(
LCP + LSSEP

)
H(., ξ)(η) . (2.27)

Remark 2. As noticed in [29], for the system with either closed or periodic boundary conditions,
given a, b, c, d ∈ R, the function

H̃(η, ξ) =
∏

x∈ΛN

[a+ bηx]
c+dξx

is always a self-duality function for the exclusion process. The case a = 1, b = −1, c = 0 and
d = 1 yields H̃ = H, the self-duality function for the contact process.

Proof of Theorem 1. Taking into account Proposition 1, and by equation (2.27), we are left to
show that (

L− + L+

)
D(., ξ)(η) =

(
LDual
− + LDual

+

)
D(η, .)(ξ),

where we recall that LDual
− is defined in (2.23), LDual

+ in (2.24), L− in (2.10) and L+ in (2.11).
Without loss of generality, we prove the result for the left reservoir, i.e.

L−D(., ξ)(η) = LDual
− D(η, .)(ξ),

and the proof that L+D(., ξ)(η) = LDual
+ D(η, .)(ξ) follows the same steps. We have

L−D(., ξ)(η) = α
(
1− η1

)[
D(η1, ξ)−D(η, ξ)

]
+ γη1

[
D(η1, ξ)−D(η, ξ)

]
.

Now,

D(η1, ξ) =
( γ

α+ γ

)ξ0 ∏
x∈A(ξ)

(1− η1x)
( δ

β + δ

)ξN+1

=
( γ

α+ γ

)ξ0 ∏
x∈A(ξ)\{1}

(1− ηx)
( δ

β + δ

)ξN+1

η111∈A(ξ) +D(η, ξ)11/∈A(ξ).

Therefore,

D(η1, ξ)−D(η, ξ) = D(η1, ξ)−D(η, ξ)11∈A(ξ) −D(η, ξ)11/∈A(ξ)

=
( γ

α+ γ

)ξ0 ∏
x∈A(ξ)\{1}

(1− ηx)
( δ

β + δ

)ξN+1

η111∈A(ξ) −D(η, ξ)11∈A(ξ)

=
( γ

α+ γ

)ξ0
(2η1 − 1)

∏
x∈A(ξ)\{1}

(1− ηx)
( δ

β + δ

)ξN+1

11∈A(ξ).
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α + γ β + δ

{
contact + exclusion

1 2 3 . . . N0 N + 1

Figure 2: Diffusive contact process with absorbing reservoirs.

Finally, we are left with

L−D(., ξ)(η) = α
(
1− η1

)( γ

α+ γ

)ξ0
(2η1 − 1)

∏
x∈A(ξ)\{1}

(1− ηx)
( δ

β + δ

)ξN+1

11∈A(ξ)

+ γη1

( γ

α+ γ

)ξ0
(2η1 − 1)

∏
x∈A(ξ)\{1}

(1− ηx)
( δ

β + δ

)ξN+1

11∈A(ξ)

= −αD(η, ξ)11∈A(ξ) + γ
( γ

α+ γ

)ξ0 ∏
x∈A(ξ)\{1}

(1− ηx)
( δ

β + δ

)ξN+1

η111∈A(ξ)

= −(α+ γ)D(η, ξ)11∈A(ξ) + (α+ γ)
( γ

α+ γ

)ξ0+1 ∏
x∈A(ξ)\{1}

(1− ηx)
( δ

β + δ

)ξN+1

11∈A(ξ)

= (α+ γ)ξ1

[
D(η, ξ1,0)−D(η, ξ)

]
,

which is exactly the dual absorbing generator of the left boundary.

2.3 Correlation functions via duality

In order to provide a better understanding of the invariant measure νDCP of the DCP with ab-
sorbing boundaries, we study its correlation functions thanks to the duality relation established
in Theorem 1. The dual process is seemingly simpler, as it almost surely becomes extinct. We
are thus able to express the correlation functions of the original process in terms of absorption
probabilities of the dual process. This allows to get an upper bound for the one point correlation
function, see subsection 2.3.1. However, the explicit computation of these correlation functions
relies on solving large systems of linear equations, see subsection 2.3.2, and it is not clear whether
they are simpler to solve than the ones obtained in the appendices A and B, through a more
standard approach based on solving Fokker-Planck equations.

In the following, for 1 ≤ ℓ ≤ N , the ℓ-point correlation function of νDCP is the function ρDCP
ℓ

defined by
∀x1 < ... < xℓ ∈ ΛN , ρ

DCP
ℓ (x1, ...xℓ) := EνDCP

[
ηx1 ...ηxℓ

]
(2.28)
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with the convention ρDCP
0 = 1. Introduce τN the extinction time of the DCP (ξ(t))t≥0 with

purely absorbing boundaries:

τN := inf
{
t ≥ 0, ∀x ∈ {1, ..., N}, ξx(t) = 0

}
. (2.29)

Also, introduce the total number of particles absorbed on the left and right hand side boundary:

ξ0(∞) := lim
t→∞

ξ0(t), and ξN+1(∞) := lim
t→∞

ξN+1(t), (2.30)

where the limits are almost sure. As the process almost surely becomes extinct, τN , ξ0(∞) and
ξN+1(∞) are almost surely finite and ξ0(∞) = ξ0(τN ), and ξN+1(∞) = ξN+1(τN ) almost surely.

2.3.1 One point correlation functions

For y ∈ ΛN , denote by δy the element of Ωdual
N where there is a particle in site y ∈ ΛN and all

other sites x ̸= y are empty.

Proposition 2. The one point correlation function of νDCP is given by

∀y ∈ ΛN , ρ
DCP
1 (y) = EνDCP [ηy] = 1− Eδy

[
c
ξ0(∞)
− c

ξN+1(∞)
+

]
= 1− Eδy

[
c
ξ0(τN )
− c

ξN+1(τN )
+

]
. (2.31)

Proof. By definition (2.20) of the duality function D given in Theorem 1, if we choose as dual
process ξ(t) = δy(t) we have

D(η, δy) = 1− ηy .

The duality relation (2.26) then yields that for any t ≥ 0,∫
Eη

[
D(η(t), δy)

]
νDCP(dη) =

∫
Eδy

[
D(η, ξ(t))

]
νDCP(dη). (2.32)

By invariance of νDCP, the left hand side in (2.32) does not depend on t and equals∫
Eη

[
D(η, δy)

]
νDCP(dη) = 1− EνDCP [ηy] , (2.33)

while the right hand equals∫
Eδy

[
D(η, ξ(t))

]
νDCP(dη) −→

t→∞
Eδy

[
c
ξ0(∞)
− c

ξN+1(∞)
+

]
, (2.34)

since for t→ ∞ all dual particles will eventually be absorbed at the boundary. Collecting (2.33)
and (2.34) yields the result.

Although the dual process is seemingly simpler than the original one, it remains a non-
conservative process and the total number of particles absorbed by the reservoirs can reach
arbitrary values. Therefore, we are not able to provide an explicit expression of the right hand
side term in (2.31), contrary to the case of conservative particle systems where exact formulas
are available, we refer to section 2.3 of [12] and Theorem 2.2 of [11], where a closed formula for
the n points correlation is found in the non-equilibrium steady state of two models with open
boundary and the same purely absorbing dual.

However, note that the dual process (ξ(t))t≥0 either dies out before any particle lying in
the bulk has had time to reach the boundary, or, it dies out and at least one particle has been
absorbed by the boundary reservoirs. Thanks to this observation, the following upper bound
holds:
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Lemma 1. For y ∈ ΛN , denote by Ay(∞) the following event:

Ay(∞) =
(
ξ(0) = δy, c

ξ0(∞)
− c

ξN+1(∞)
+ < 1

)
,

that is, starting from a single dual particle at site y, at least one particle is absorbed by the
boundary of the system. Then,

ρDCP
1 (y) ≤ Pδy

[
Ay(∞)

]
. (2.35)

Proof. We have

Eδy

[
c
ξ0(∞)
− c

ξN+1(∞)
+

]
= Pδy

[
Ay(∞)c

]
+ Eδy

[
c
ξ0(∞)
− c

ξN+1(∞)
+ 1Ay(∞)

]
= 1− Pδy

[
Ay(∞)

]
+ Eδy

[
c
ξ0(∞)
− c

ξN+1(∞)
+ 1Ay(∞)

]
,

therefore,

ρDCP
1 (y) = 1− Eδy

[
c
ξ0(∞)
− c

ξN+1(∞)
+

]
≤ Pδy

[
Ay(∞)

]
.

Remark 3. This inequality is of interest if the upper bound is small, that is, when the probability
that starting from a particle at y, the process reaches the boundary before it becomes extinct, is
small. Heuristically, if the time of extinction τN of the process is small, then the particle should
not have time to reach the boundary. The extinction time is small when λ is small. Precisely, an
estimate of τN is known in the case of a subcritical contact process on ΛN (without exclusion),
and we refer to [22, Part 1, Theorem 3.3].

2.3.2 Higher order correlation functions

The idea of relating the ℓ points correlations using the dual absorption probabilities goes back
to [13] for a model of stochastic diffusion of energy. In the same spirit as in Proposition 2
in [13] we can show the following results for the DCP model. Given 1 ≤ ℓ ≤ N and sites
1 ≤ x1 < ... < xℓ ≤ N , denote by δx1,x2,...,xℓ

, the element of Ωdual
N where there is a particle at

sites x1, ..., xℓ, and none elsewhere.

Proposition 3. For any 1 ≤ ℓ ≤ N and any 1 ≤ x1 < ... < xℓ ≤ N ,

EνDCP

[ ℓ∏
j=1

(
1− ηxj

) ]
=

ℓ∑
k=0

(−1)k
∑

1≤i1<...<ik≤ℓ

ρDCP
k (xi1 , ..., xik)

=
∑

m,n≥0

Pδx1,x2,...,xℓ

[
ξ0(∞) = m, ξN (∞) = n

]
cm−c

n
+.

(2.36)

Proof. For simplicity, we consider that only the left reservoir interacts with the bulk, that is,
δ = β = 0, but the reasoning remains the same if that is not the case. Our goal is therefore to
prove that for any 1 ≤ x1 < ... < xℓ ≤ N ,

EνDCP

[ ℓ∏
j=1

(
1− ηxj

) ]
=

∑
k≥0

Pδx1,x2,...,xℓ

[
ξ0(∞) = k

]
ck−. (2.37)

In this case, it follows that the duality relation (1.1) holds with duality function

D(η, ξ) = cξ0−
∏

x∈ΛN

(1− ηx)
ξx . (2.38)
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In other words, the initial process is dual to a DCP with an absorbing reservoir with rate α+ γ.
Then, proceeding as in the proof of Proposition 2.31, we consider the duality relation (1.1) under
the invariant measure for the original process and, taking ξ = δx1,x2,...,xℓ

, we have:

EνDCP

[
(1− ηx1) (1− ηx2) . . . (1− ηxℓ

)
]
= Eδx1,x2,...,xℓ

[
c
ξ0(∞)
−

]
. (2.39)

Expanding both sides of (2.39), we are left with

ℓ∑
k=0

(−1)k
∑

1≤i1<...<ik≤ℓ

ρDCP
k (xi1 , ..., xik) =

∑
k≥0

Pδx1,x2,...,xℓ

[
ξ0(∞) = k

]
ck−.

Below, we show that, if we consider a small bulk, we can explicitly compute the absorption
probabilities. The idea is to perform a conditioning on the first step of the dual dynamics, and
to get an explicit expression for the absorption probabilities of the dual process.

N = 1 site

The behavior of the bulk is conservative as the contact dynamics has no effect here (no possible
birth). This provides a finite sum in the expression of the correlation function (2.37) obtained
through duality, allowing us to compute it conveniently. By (2.31), we have

EνDCP [1− η1] = 1− ρDCP
1 (1) = Pδ1

(
ξ0(∞) = 0

)
c0− + Pδ1

(
ξ0(∞) = 1

)
c−.

To compute the absorption probabilities Pδ1

(
ξ0(∞) = 0

)
and Pδ1

(
ξ0(∞) = 1

)
, we perform a

conditioning on the first possible outcome of the process, starting from a particle at site 1:

Pδ1

(
ξ0(∞) = 0

)
= Pδ1

(
ξ0(∞) = 0 | left jump

)
Pδ1(left jump)

+ Pδ1

(
ξ0(∞) = 0 | it dies

)
Pδ1(it dies)

= 0 · α+ γ

α+ γ + 1
+ 1 · 1

α+ γ + 1

=
1

α+ γ + 1

and,

Pδ1

(
ξ0(∞) = 1

)
= Pδ1

(
ξ0(∞) = 1 | left jump

)
Pδ1(left jump)

+ Pδ1

(
ξ0(∞) = 1 | it dies

)
Pδ1(it dies)

= 1 · α+ γ

α+ γ + 1
+ 0 · 1

α+ γ + 1

=
α+ γ

α+ γ + 1

if there is one particle absorbed. Therefore,

ρDCP
1 (1) =

α

α+ γ + 1
,

which matches what we get in Appendix B, for N = 1, through the Fokker-Planck equations.
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N = 2 sites

This is the first non trivial case. In addition to the dynamics for one bulk site, the effect of
the exclusion process (with rate D) as well as the effect of the contact process (with rate λ)
are present, therefore we have an infinite sum in equation (2.37), as expressed below in (2.40).
Recall the expressions of the correlation functions (2.28) provided by the duality relations (2.31),
and (2.37): 

ρDCP
1 (1) = 1−

∑
k≥0 Pδ1

(
ξ0(∞) = k

)
ck−

ρDCP
2 (1, 2) = 1−

∑
k≥0 Pδ1,2

(
ξ0(∞) = k

)
ck−

ρDCP
1 (2) = 1−

∑
k≥0 Pδ2

(
ξ0(∞) = k

)
ck− .

(2.40)

To compute the absorption probabilities appearing in the infinite sums, as in the case N = 1 ,
we condition on the first possible outcome of the process, starting from a particle at site 1, 2 or
at both sites. For k ≥ 0, we define

xk1 := Pδ1

[
ξ0(∞) = k

]
, xk2 := Pδ1,2

[
ξ0(∞) = k

]
, and xk3 := Pδ2

[
ξ0(∞) = k

]
,

the probabilities that k ≥ 0 dual particles are absorbed in the left reservoir starting from a
particle at site 1, 2 or at both sites. To alleviate notation we do not write the dependence on the
model parameters α, γ, λ and D on these absorption probabilities. For k ≥ 0, define the column
vector

Ck =

xk1xk2
xk3

 . (2.41)

• For k = 0, the conditioning on the first step leads to the following system:

x01 − λ
α+γ+D+λ+1 x

0
2 − D

α+γ+D+λ+1 x
0
3 =

1
α+γ+D+λ+1

−1
α+γ+2 x

0
1 + x02 − 1

α+γ+2 x
0
3 = 0

−D
D+λ+1 x

0
1 − λ

D+λ+1 x
0
2 + x03 =

1
D+λ+1 ,

(2.42)

that is,

M2C0 =

 1
α+γ+D+λ+1

0
1

D+λ+1

 , (2.43)

where

M2 :=


1 −λ

α+γ+D+λ+1
−D

α+γ+D+λ+1

−1
α+γ+2 1 −1

α+γ+2

−D
D+λ+1

−λ
D+λ+1 1

 , (2.44)

and where 2 in M2 refers to the fact that N = 2. We have

d := det M2 =
d̃

(D + λ+ 1)(α+ γ + 2)(D + α+ γ + λ+ 1)
, (2.45)

where

d̃ := DA+ (α+ γ) [(α+ γ + λ+ 2)(λ+ 1) + 1] + 2(λ+ 1), (2.46)
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with
A := (α+ γ + λ+ 2)2 − λ(λ+ 4) = (α+ γ + 2)2 + 2λ(α+ γ) (2.47)

So detM2 ̸= 0, and solving (2.43) by inverting M2 yields
x01 = d̃−1(2D + λ+ 1)(α+ γ + 2)

x02 = d̃−1
[
4D + α+ γ + 2λ+ 2

]
x03 = d̃−1(2D + α+ γ + λ+ 1)(α+ γ + 2).

(2.48)

• For k = 1, the same conditioning leads to

x11 − λ
α+γ+D+λ+1 x

1
2 − D

α+γ+D+λ+1 x
1
3 =

α+γ
α+γ+D+λ+1

−1
α+γ+2 x

1
1 + x12 − 1

α+γ+2 x
1
3 =

α+γ
α+γ+2 x

0
3

−D
D+λ+1 x

1
1 − λ

D+λ+1 x
1
2 + x13 = 0,

(2.49)

that is,

M2C1 =


α+γ

α+γ+D+λ+1

α+γ
α+γ+2 x

0
3

0

 (2.50)

Again, as detM2 ̸= 0, we can invert this and, to lighten the formulas of the solution, we
introduce the notation

φ := DB + λ2 + λ(α+ γ + 2) + α+ γ + 1, (2.51)

where
B := (α+ γ + 2λ+ 2). (2.52)

We get:

x11 = d̃−1(α+ γ)(α+ γ + 2)

[
D + 1 +

λ(α+ γ + 1)

α+ γ + 2

+λd̃−1(2D + λ+ 1)(2D + α+ γ + λ+ 1)
]

x12 = d̃−1(α+ γ)(α+ γ + 2)

[
2D + λ+ 1

α+ γ + 2
+ d̃−1φ(2D + α+ γ + 1 + λ)

]

x13 = d̃−1(α+ γ)(α+ γ + 2)

[
D +

λ

α+ γ + 2
+ d̃−1λ(2D + λ+ α+ γ + 1)2

]
.

(2.53)

• For k = 2, the same conditioning leads to

xk1 − λ
α+γ+D+λ+1 x

k
2 − D

α+γ+D+λ+1 x
k
3 = 0

−1
α+γ+2 x

k
1 + xk2 − 1

α+γ+2 x
k
3 = α+γ

α+γ+2 x
k−1
3

−D
D+λ+1 x

k
1 − λ

D+λ+1 x
k
2 + xk3 = 0

(2.54)
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that is,

M2Ck =

 0
α+γ

α+γ+2 x
k−1
3

0

 (2.55)

Again, inverting M2, using the definition of φ given in (2.51), and introducing

ψ := D(α+ γ + 2) + λ+ d̃−1λ(α+ γ + 2)(2D + α+ γ + λ+ 1)2 (2.56)

we get: 
x21 = d̃−2λ(α+ γ)2(2D + λ+ 1)ψ

x22 = d̃−2(α+ γ)2φψ

x23 = d̃−2λ(α+ γ)2(2D + α+ γ + λ+ 1)ψ.

(2.57)

• For k = 3, the same reasoning as for the cases above yields
x31 = d̃−3λ2(α+ γ)3(2D + λ+ 1)(2D + α+ γ + λ+ 1)ψ

x32 = d̃−3λ(α+ γ)3(2D + α+ γ + λ+ 1)φψ

x33 = d̃−3λ2(α+ γ)3(2D + α+ γ + λ+ 1)2ψ.

(2.58)

• For k > 3, using the same conditioning and reasoning recursively, we find that
xk1 = d̃−kλ(k−2)(α+ γ)k(2D + λ+ 1)(2D + α+ γ + λ+ 1)(k−3)φψ

xk2 = d̃−kλ(k−3)(α+ γ)k(2D + α+ γ + λ+ 1)(k−3)φ2ψ

xk3 = d̃−kλ(k−2)(α+ γ)k(2D + α+ γ + λ+ 1)(k−2)φψ.

(2.59)

Finally, we are left to plug in the terms xk1, x
k
2 and xk3 in (2.40). We refer to Appendix B where an

alternative explicit expression of ρ1(1), ρ1(2) and ρ2(1, 2) is computed using the Fokker-Planck
equations.

N sites

Generalizing the above strategy to N sites and showing that the corresponding matrix MN is
invertible would allow us to completely determine the correlation functions. To this end, we
stress that the order of the unknown variable is chosen in an arbitrary way. One possibility to
systematically ordering the variables is the following, defined recursively for N sites. There are
N∑
k=1

(
N

k

)
= 2N − 1 total number of configurations to order: the first 2N−1 unknown variables

have a particle at site 1 and the rest is completed by a configuration from the N −1 th ordering.
The 2N−1 − 1 coordinates left are the ones such that site 1 is empty and the rest is completed
by a configuration from the N − 1 th ordering. More explicitly, for N = 2 sites we have ξ1 = δ1,
ξ2 = δ1,2, ξ

3 = δ2 which is the order we used (See Figure 3). For N = 3, this rule would give us
the ordering ξ1 = δ1, ξ

2 = δ1,2, ξ
3 = δ1,2,3, ξ

4 = δ1,3, ξ
5 = δ2, ξ

6 = δ2,3, ξ
7 = δ3 and so on.

For N fixed and for k ≥ 0, denote xki = Pηi
[
ξ0(∞) = k

]
. Also, for η ∈ ΛN introduce A(η)

the set of configurations containing at least one particle and resulting from η after the jump,
birth or death of a particle in η (but not an absorption in the left side reservoir). Denote by
(p(ηi, ηj))1≤i,j≤n the transition probabilities between configurations. Then for any 1 ≤ i ≤ 2N−1
and for any k ≥ 2, the following recurrence relation holds:

xki =

2N−1∑
j=1

ηj∈A(ηi)

p(ηi, ηj)xkj +

2N−1∑
j=1

ηj∈ΛN\A(ηi)

p(ηi, ηj)xk−1
j .
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Figure 3: Ordering of configurations

For k = 0, 1 the recurrence relation remains the same modulo some changes on the second sum
in the right hand side. Therefore, denoting Ck the column vector (xki )1≤i≤2N−1, for any k ≥ 0,
there is a matrix of size 2N − 1 of the form M = I2N−1 − P such that

MCk = Rk,

where Rk is a columns vector involving some constant terms for k = 0, 1 and terms from Ck−1

for k ≥ 2, and where
P =

(
p(ηi, ηj)1ηj∈A(ηi)

)
1≤i,j≤2N−1

.

By the Perron-Frobenius Theorem, as P is the transition matrix of an irreducible dynamics, one
has that M is invertible and

M−1 =
∑
k≥0

P k.

2.3.3 Fast stirring limit

It is interesting to consider the fast stirring limit, that is, D → ∞ for the DCP model. Unlike
in hydrodynamics, here, we discuss the setting where time is not rescaled when performing this
limit.
When D → ∞, the DCP essentially reduces to a birth-death chain on the lattice {0, 1, . . . , N}.
This can be seen by considering a configuration η(t) with n(t) particles, where 0 ≤ n(t) ≤ N , and
where the process n(t) is defined in a way that is analogous to the derivation of the reaction term
in the fast stirring limit of a reaction-diffusion processes, as discussed in [7, 9]. More precisely,
between any attempt to create or annihilate a particle in the bulk or at the boundaries, the
process is just a SSEP with infinite rate, which has the uniform measure as its stationary
distribution. This means that in between any creation/annihilation event of a particle (death,
infection, and reservoir events), any configuration η(t) with n(t) particles, moves uniformly
to another configuration η′(t) with n′(t) particles, so that on the time scale of the creation
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and annihilation processes, the following transitions occur: any given configuration with n(t)
particles will turn uniformly into another one with n(t)±1 particles. The invariant measure of the
process in this limit thus becomes a convex combination of uniform measures on configurations
with n particles, where the weights are given by the stationary weights of the birth-death chain
that describes the transitions between configurations of n and n± 1 particles.

Specifically, the rate at which a particle dies in the closed DCP at a given site (transition
n(t) → n(t) − 1), is n/N (which is the probability of finding an occupied site in the uniform
distribution), and since there are N sites where particles can die, the rate of transition is n.
In the open DCP, particles can also die at the boundary sites with rates γ, and β respectively.
Hence the transition rate from a configuration with n(t) particles to a configuration with n(t)−1
particles is n + (β + γ)n/N . Likewise, the rate at which a particle is created in the DCP by
infection at a bond, is given by the probability of finding an occupied site with a vacant neighbor
in the uniform distribution (which is n(N − n)/(N(N − 1)) times the number of bonds (which
is N − 1) times 2λ (since at each bond the infection can occur with rate λ from a particle on
the right or on the left site of the bond). In the open DCP particles can also be created at the
boundary sites with rates α, and δ respectively. Hence the transition rate from a configuration
with n(t) particles to a configuration with n(t)−1 particles is 2λn(1−n/N)+(α+ δ)(1−n/N).
Thus, the DCP degenerates into a birth-death chain n(t) with the following transition rates:

n→ n− 1, at rate n[1 + (β + γ)/N ], n→ n+ 1, at rate [2λn+ (α+ δ)](1− n/N). (2.60)

Without reservoirs, n = 0 is an absorbing state, but not when α ̸= 0 or δ ̸= 0.
Since the arguments that lead to these rates are analogous to those of [7, 9] we refrain

from providing a formal proof. For the stationary probabilities and general properties of this
birth-death chain we refer to [18].

Here, we illustrate the role of the limit D → ∞ in the computations, done in subsection
2.3.2, of the absorption probability for N = 2 sites, and β = δ = 0. For all k ≥ 0 and i = 1, 2, 3
we denote

xki (∞) := lim
D→∞

xki

The solutions obtained in (2.48), (2.53), (2.57), (2.58), (2.59) become (recall the definitions
(2.47) of A and (2.52) of B):

• For k = 0, 
x01(∞) = 2A−1(α+ γ + 2)
x02(∞) = 4A−1

x03(∞) = 2A−1(α+ γ + 2).
(2.61)

• For k = 1, we get: 
x11(∞) = A−1(α+ γ)(α+ γ + 2)

[
1 + 4A−1λ

]
x12(∞) = A−12(α+ γ)

[
1 +A−1B(α+ γ + 2)

]
x13(∞) = A−1(α+ γ)(α+ γ + 2)

[
1 + 4A−1λ

] (2.62)

• For k = 2, we get:
x21(∞) = 2A−2λ(α+ γ)2(α+ γ + 2)

[
1 + 4A−1λ

]
x22(∞) = A−2B(α+ γ)2(α+ γ + 2)

[
1 + 4A−1λ

]
x23(∞) = 2A−2λ(α+ γ)2(α+ γ + 2)

[
1 + 4A−1λ

]
.

(2.63)
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• For k = 3, the same reasoning as for the cases above yields
x31(∞) = 4A−3λ2(α+ γ)3(α+ γ + 2)

[
1 + 4A−1λ

]
x32(∞) = 2A−3Bλ(α+ γ)3(α+ γ + 2)

[
1 + 4A−1λ

]
x33(∞) = 4A−3λ2(α+ γ)3(α+ γ + 2)

[
1 + 4A−1λ

]
.

(2.64)

• For k > 3, we find that
xk1(∞) = A−k(2λ)k−2B(α+ γ)k(α+ γ + 2)

[
1 + 4A−1λ

]
xk2(∞) = A−k(2λ)k−3B2(α+ γ)k(α+ γ + 2)

[
1 + 4A−1λ

]
xk3(∞) = A−k(2λ)k−2B(α+ γ)k(α+ γ + 2)

[
1 + 4A−1λ

]
.

(2.65)

These formulas induce simple expressions for the values (2.40) when D → ∞, where in particular
for all k ≥ 0, xk1(∞) = xk3(∞), that is, the absorption probability to the left reservoirs of one
particle at site 1 is the same as the one of a particle at site 2.

3 Generalized diffusive contact process (GDCP)

In this section, we introduce a generalized diffusive contact (GDCP) which also exhibits a
factorized duality property, similar to the one for the DCP. For a specific choice of the parameters
of the GDCP on a finite one dimensional lattice with reservoirs, one can extract an explicit
expression of the one point correlation function for its invariant measure. This is in contrast
with the DCP, where we were not able to extract explicit expressions of the correlation functions
from the duality result provided by Theorem 1. Duality also leads to a system of first-order
ordinary differential equations with constant coefficients.

3.1 The model

Here, as for the DCP, particles evolve on the open one dimensional finite lattice ΛN . The
reservoir dynamics is the same as in Section 2, and given by the generators L− and L+, defined
in (2.10) and (2.11). The exclusion dynamics is the same as for the DCP, and given by the
generator LSSEP, as defined in (2.8).

What differs is the contact dynamics which is here more general. The birth rate is λ > 0,
while the death rates, instead of being 1, will depend on the occupation variables in the nearest
neighbor sites: a particle dies with rate 2µ1 when both neighbors are empty, with rate µ1 + µ2
when one of the two neighbors is empty and the other is occupied, and with rate 2µ2 when both
neighbors are occupied. The generator of the generalized diffusive contact processes is given by

LGDCP = L− + LGCP +DLSSEP + L+. (3.1)

Above, L−, resp. L+, is the left, resp. right hand side reservoir generator, and is given by (2.10),
resp. (2.11), with the boundary rates α̃, β̃, γ̃, δ̃ for the GDCP, instead of α, β, γ, δ for the DCP.
As before, D ≥ 0 is the diffusion parameter which tunes the exclusion dynamics described by
LSSEP in equation (2.8). While LGCP is the generator of the generalized contact process, whose
action on a given function f : ΩN → R, is, for η ∈ ΩN

LGCPf(η) =
N−1∑
x=1

LGCP
x,x+1f(η), (3.2)
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with the bond generator

LGCP
x,x+1f(η) = ηx

[
µ2ηx+1 + µ1(1− ηx+1)

][
f(ηx)− f(η)

]
+ λ(1− ηx)ηx+1

[
f(ηx)− f(η)

]
+ ηx+1

[
µ2ηx + µ1(1− ηx)

][
f(ηx+1)− f(η)

]
+ λ(1− ηx+1)ηx

[
f(ηx+1)− f(η)

]
.

(3.3)

Notice that we can rewrite this bond generator as follows. Define

LGCP
x,+ f(η) = ηx

[
µ2ηx+1 + µ1(1− ηx+1)

][
f(ηx)− f(η)

]
+ λ(1− ηx)ηx+1

[
f(ηx)− f(η)

]
, (3.4)

and

LGCP
x+1,−f(η) = ηx+1

[
µ2ηx + µ1(1− ηx)

][
f(ηx+1)− f(η)

]
+ λ(1− ηx+1)ηx

[
f(ηx+1)− f(η)

]
, (3.5)

so that
LGCP
x,x+1f(η) = LGCP

x,+ f(η) + LGCP
x+1,−f(η).

Then,

LGCPf(η) =

N−1∑
x=1

(
LGCP
x,+ f(η) + LGCP

x+1,−f(η)
)

=
N−1∑
x=1

LGCP
x,+ f(η) +

N∑
x=2

LGCP
x,− f(η)

= LGCP
1,+ f(η) +

N−1∑
x=2

(
LGCP
x,+ f(η) + LGCP

x,− f(η)
)
+ LGCP

N,− f(η),

(3.6)

that is,

LGCPf(η) =
[
η1
(
µ1 + (µ2 − µ1) η2

)
+ λ

(
1− η1

)
η2
][
f(η1)− f(η)

]
+

N−1∑
x=2

[
ηx
(
2µ1 + (µ2 − µ1) (ηx−1 + ηx+1)

)
+ λ

(
1− ηx

)(
ηx−1 + ηx+1

)][
f(ηx)− f(η)

]
+
[
ηN

(
µ1 + (µ2 − µ1) ηN−1

)
+ λ

(
1− ηN

)
ηN−1

][
f(ηN )− f(η)

]
.

(3.7)

Remark 4. (1) One can recover an open DCP with boundary parameters α, β, γ, δ, from an
open GDCP with boundary parameters α̃, β̃, γ̃, δ̃, and death parameters µ1, µ2, by taking

µ1 = µ2 =
1

2
, α̃ = α, γ̃ = γ +

1

2
, δ̃ = δ, and β̃ = β +

1

2
. (3.8)

(2) For µ2 = 0, the GDCP reduces to a biased voter model with stirring by symmetric simple
exclusion, and when µ2 = 0 and µ1 = λ this is the usual voter model with stirring, studied
in [3] for asymmetric simple exclusion with step initial condition on Z, and [21] for totally
asymmetric simple exclusion on ΛN and open boundaries with γ̃ = δ̃ = 0.

As for the DCP, since the state space is finite, one can encode the dynamics in a finite sized
matrix. In this setting, the intensity matrix of the GDCP in the bulk writes as the following
2N -sized matrix

LGCP +DLSSEP =

N−1∑
x=1

ℓx, (3.9)
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where for x = 1, . . . N − 1
ℓx := 1⊗(x−1) ⊗ ℓ⊗ 1⊗(N−1−x), (3.10)

with the two-dimensional unit matrix 1, and the local intensity matrix

ℓ =


0 0 0 0
µ1 −(µ1 +D + λ) D λ
µ1 D −(µ1 +D + λ) λ
0 µ2 µ2 −2µ2

 . (3.11)

The intensity matrices of the boundary dynamics are the same as for the DCP dynamics, see
(1) in Remark 4.

The bond transition rates for neighboring sites (x, x + 1) can be schematically represented
in tabular form as

Initial F inal Rate

01 → 00 µ1

01 → 10 D

01 → 11 λ

10 → 00 µ1

10 → 01 D

10 → 11 λ

11 → 01 µ2

11 → 10 µ2

(3.12)

3.2 Duality results for the GDCP

In this section we show several duality relations for the GDCP. One, in particular, will be of
interest for applications, as it allows to find a dual process with no birth rate. This means that
the sum in the correlations equation (2.37) is finite, and can be explicitly computed for a general
bulk of N sites. We start by considering the closed GDCP, namely we set α̃ = δ̃ = γ̃ = β̃ = 0.
In order to prove a duality relation we have to show that (2.13) holds with the intensity matrix
corresponding to the initial process being LGDCP. Again, our goal is to obtain a bulk duality
function in factorized form, namely

G(η, ξ) =
∏

x∈ΛN

g(ηx, ξx)

which corresponds to a duality matrix of the form G⊗N , with a local duality matrix

G =

(
a b
c d

)
. (3.13)

3.2.1 Main results

Below we state the three main duality results for the GDCP, whose corresponding proofs can
be found in the next subsection.

Theorem 2. Assume D + µ1 − µ2 ≥ 0 and λ + µ2 − µ1 ≥ 0. When d = 0 and a = b = c = 1,
the open GDCP with generator (3.1) is dual with a purely absorbing GDCP with generator

LGDCP,Dual = LDual
− + LGCP,Dual + D̃LSSEP + LDual

+ , (3.14)
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with duality function the one obtained for the open diffusive contact process in equation (2.20),
with rates α̃, β̃, γ̃, δ̃, in place of α, β, γ, δ.

Above, D̃ = D + µ1 − µ2 is the diffusion parameter of the exclusion dynamics, LDual
− and

LDual
+ are defined in (2.23) and (2.24). Finally, LGCP,Dual is the generator (3.7) of the generalized

contact process with birth rate λ̃ = λ+ µ2 − µ1 and death rates exchanged, that is,

LGCP,Dualf(ξ) =

N−1∑
x=2

[
ξx
(
2µ2 + (µ1 − µ2) (ξx−1 + ξx+1)

)
+ (λ+ µ2 − µ1)

(
1− ξx

)(
ξx−1 + ξx+1

)][
f(ξx)− f(ξ)

]
+
[
ξ1
(
µ2 + (µ1 − µ2) ξ2

)
+ (λ+ µ2 − µ1)

(
1− ξ1

)
ξ2
][
f(ξ1)− f(ξ)

]
+
[
ξN

(
µ2 + (µ1 − µ2) ξN−1

)
+ (λ+ µ2 − µ1)

(
1− ξN

)
ξN−1

][
f(ξN )− f(ξ)

]
.

(3.15)

A special case of the above setting is elucidated in the Corollary below.

Corollary 1 (Annihilating dual process). Under the same hypothesis as before, setting µ1 =
λ + µ2, the dual GDCP has birth rate λ̃ = 0, i.e. no particle is ever created. The intensity
matrix associated to the local dual generator is given by

ℓDual =


0 0 0 0
µ2 −(D + λ+ µ2) D + λ 0
µ2 D + λ −(D + λ+ µ2) 0
0 λ+ µ2 λ+ µ2 −2(λ+ µ2)

 . (3.16)

We are now left to study the setting where d ̸= 0. In this setting, we establish a self-duality
result (Theorem 3), as well as another duality relation where both processes involved have no
birth mechanism. (Theorem 4).

Theorem 3. When d ̸= 0 and a = b = c = 1, the closed GDCP with generator LGCP +DLSSEP

is self-dual with duality matrix

G =

(
1 1

1 µ1−µ2

λ

)
. (3.17)

Theorem 4. When a = b = c = 0 and d = 1 the closed GDCP process with generator LGCP +
DLSSEP and no birth, i.e. λ = 0, is dual with duality matrix

G =

(
0 0
0 1

)
, (3.18)

to a GDCP with no birth, i.e. λ̃ = 0, arbitrary diffusive rate D̃, arbitrary death rate µ̃1 and
µ̃2 = µ2.

Note that in the case where a = b = c = d = 0, we have a trivial duality relation with duality
function equal to zero.

3.2.2 Proofs for Subsection 3.2.1

Proof of Theorem 2. In order to show the matrix duality relation of equation (2.13), as the
generator acts on two sites, it is enough to show that

ℓG⊗2 = G⊗2
(
ℓDual

)T
. (3.19)
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For G, ℓ defined respectively in (3.13) and (3.11); we have

G⊗2 =


a2 ab ba b2

ac ad bc bd
ca cb da db
c2 cd dc d2

 . (3.20)

For any choice of the parameters a, b, c, d, this defines a self-duality function for the SSEP (see
Remark 2), and we only have to take into consideration the action of the GCP. The left hand
side of equation (3.19) becomes

ℓG⊗2 =


0 0 0 0

x[aµ1 − bλ] ayµ1 − dxλ−∆D cxµ1 − byλ+∆D y[cµ1 − dλ]
x[aµ1 − bλ] cxµ1 − byλ+∆D ayµ1 − dxλ−∆D y[cµ1 − dλ]

2bxµ2 (dx+ by)µ2 (dx+ by)µ2 2d(c− d)µ2

 , (3.21)

where ∆ := ad− bc, x := a− b and y := c−d. For the right hand side of (3.19), we first consider
a local generator ℓDual which describes a GDCP with possibly different rates: D̃ is the diffusion
coefficient, λ̃ the birth rate while µ̃1 and µ̃2 are the death rates. This gives the following dual
local intensity matrix

ℓDual =


0 0 0 0

µ̃1 −(D̃ + λ̃+ µ̃1) D̃ λ̃

µ̃1 D̃ −(D̃ + λ̃+ µ̃1) λ̃
0 µ̃2 µ̃2 −2µ̃2

 . (3.22)

Computing the right hand side of (3.19), we get

G⊗2
(
ℓDual

)T
= (3.23)

0 (a− c)(aµ̃1 − cλ̃) (a− c)(aµ̃1 − cλ̃) 2(a− c)cµ̃2
0 a(b− d)µ̃1 − d(a− c)λ̃−∆D̃ b(a− c)µ̃1 − c(b− d)λ̃+∆D̃ (ad+ bc− 2cd)µ̃2
0 b(a− c)µ̃1 − c(b− d)λ̃+∆D̃ a(b− d)µ̃1 − d(a− c)λ̃−∆D̃ (ad+ bc− 2cd)µ̃2
0 (b− d)[bµ̃1 − dλ̃] (b− d)[bµ̃1 − dλ̃] 2(b− d)dµ̃2

 .

Since we are aiming to match expressions (3.21) and (3.23), we first notice that equality in the
first column requires x = 0, i.e. a = b, while equality in the first row requires a = c. Thus
a = b = c yields ∆ = −a(a− d), and we are left with

ℓG⊗2 = (a− d)


0 0 0 0
0 aµ1 + aD −aλ− aD aµ1 − dλ
0 −aλ− aD aµ1 + aD aµ1 − dλ
0 aµ2 aµ2 2dµ2

 (3.24)

for the left hand side, and

G⊗2
(
ℓDual

)T
= (a− d)


0 0 0 0

0 aµ̃1 + aD̃ −aλ̃− aD̃ aµ̃2
0 −aλ̃− aD̃ aµ̃1 + aD̃ aµ̃2
0 aµ̃1 − dλ̃ aµ̃1 − dλ̃ 2dµ̃2

 (3.25)
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for the right hand side. Consider d = 0 in both equations (3.24) and (3.25). Then, the identity
holds if we set µ̃2 = µ1 and µ̃1 = µ2, D̃ = D + µ1 − µ2 and λ̃ = λ + µ2 − µ1. Furthermore,
without loss of generality, choosing a = 1, we are left with the duality matrix

G =

(
1 1
1 0

)
, (3.26)

which corresponds to the duality function

G(η, ξ) =
∏

x∈ΛN

(1− η(x))ξ(x). (3.27)

Note that G is the same duality function as in (2.21). Since the bulk duality function is the
same as the one for the diffusive contact process, we can extend the result to the GDCP with
the corresponding boundary parameters. Hence, the duality function has the same form as for
the diffusive contact process, that is: D : ΩN × Ωdual

N → R given by

D(η, ξ) =
( γ̃

α̃+ γ̃

)ξ0 ∏
x∈ΛN

(1− ηx)
ξx
( δ̃

β̃ + δ̃

)ξN+1

. (3.28)

Notice that for µ1 = µ2 =
1
2 , we recover Theorem 1.

The proof of Corollary 1 follows from Theorem 2.

Proof of Theorem 3. If d ̸= 0 and a ̸= 0 in both (3.24) and (3.25), it has to be verified that
µ̃2 = µ2, aµ̃1 = aµ2+dλ̃, and the constraint d = aµ1−µ2

λ where, again, without loss of generality
we can choose a = 1. Again, as the the death rates do not depend on the number of neighbors,
i.e. µ1 = µ2, we get the same function as in (3.26).

Proof of Theorem 4. Setting a = 0 in equations (3.24) and (3.25) leads to

ℓG⊗2 = −d


0 0 0 0
0 0 0 −dλ
0 0 0 −dλ
0 0 0 2dµ2

 , (3.29)

and

G⊗2
(
ℓDual

)T
= −d


0 0 0 0
0 0 0 0
0 0 0 0

0 −dλ̃ −dλ̃ 2dµ̃2

 . (3.30)

Since d ̸= 0, we require that µ̃2 = µ2 and that there is no birth in both the initial and the dual
process, namely λ = λ̃ = 0.

3.3 Application of duality: computing correlations

As for the DCP, the dynamics of the GDCP is irreducible and the state space is finite so there is
a unique invariant measure νGDCP for the GDCP, which depends on the birth, death, exchange
and boundary rates. For a particular choice of these rates, the one point correlation function
of νGDCP can be explicitly computed, see Proposition 5. Furthermore, some information on the
time-dependent one-point function for arbitrary initial distributions can be obtained.
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3.3.1 Invariant measure

Here, for 1 ≤ ℓ ≤ N, the ℓ-point correlation function ρGDCP of νGDCP is the function ρGDCP
ℓ

defined by
∀x1 < ... < xℓ ∈ ΛN , ρ

GDCP
ℓ (x1, ...xℓ) = EνGDCP

[
ηx1 ...ηxℓ

]
. (3.31)

From now on, we denote by

c̃− :=
γ̃

α̃+ γ̃
, and c̃+ :=

δ̃

β̃ + δ̃
. (3.32)

As for the DCP, the dual (ξ(t))t≥0 of the GDCP (we keep the same notation ξ to refer to the dual
process) becomes extinct almost surely and, recall that the total number of particles absorbed
on the left, resp. right hand side boundary is:

ξ0(∞) := lim
t→∞

ξ0(t), resp. ξN+1(∞) := lim
t→∞

ξN+1(t), (3.33)

where the limits are almost sure.

Following the same lines as the proof of Proposition 3, one can prove the following general
formula for the correlation functions of the GDCP:

Proposition 4. For any 1 ≤ ℓ ≤ N , and any 1 ≤ x1 < ... < xℓ ≤ N ,

EνGDCP

[ ℓ∏
j=1

(
1− ηxj

) ]
=

ℓ∑
k=0

(−1)k
∑

1≤i1<...<ik≤ℓ

ρGDCP
k (xi1 , ..., xik)

=
∑

m,n≥0

Pδx1,x2,...,xℓ

[
ξ0(∞) = m, ξN (∞) = n

]
c̃ m
− c̃ n

+ ,

(3.34)

where δx1,x2,...,xℓ
denotes the configuration with a particle in x1, ..., xℓ, and none elsewhere.

In the particular setting of Corollary 1, the one point correlation function can be computed
explicitly.

Proposition 5. Consider a GDCP with birth rate λ > 0, diffusion coefficient D, boundary rates
α̃, β̃, γ̃, δ̃ and death rates µ1 and µ2, with µ1 = µ2 + λ. Then,

ρGDCP
1 (x) = ux(1− c̃−) + vx(1− c̃+),

where with the constants

ã :=
α̃+ γ̃

α̃+ γ̃ +D + λ+ µ2
, b̃ :=

D + λ

α̃+ γ̃ +D + λ+ µ2
,

c̃ :=
β̃ + δ̃

β̃ + δ̃ +D + λ+ µ2
, d̃ :=

D + λ

β̃ + δ̃ +D + λ+ µ2

(3.35)

and

A :=
D + λ

D + λ+ µ2
, r± :=

1±
√
1−A2

A
, (3.36)

BN := r−(1− b̃r−)(1− d̃r−1
+ ) + rN− r

1−N
+ (̃br+ − 1)(1− d̃r−1

− ), (3.37)

B′
N := ã(c̃N + 1− c̃) + (1− 2ã)c̃, (3.38)
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the terms ux and vx are given by, for all x ∈ {1, . . . , N},

ux =


ã

BN
[(1− d̃r−1

+ )rx− + (d̃r−1
− − 1)rN− r

x−N
+ ] µ2 > 0

ã

B′
N

[1− c̃+ c̃(N − x)] µ2 = 0,

(3.39)

vx =


c̃

BN
[(̃br+ − 1)]r1−N

+ rx− + r−(1− b̃r−)r
x−N
+ µ2 > 0

c̃

B′
N

[1− ã+ ã(x− 1)] µ2 = 0

(3.40)

Remark 5. • For µ2 > 0 one finds that the stationary bulk density

ρGDCP
bulk (s) := lim

N→∞
ρ1([sN ]) (3.41)

vanishes for all s ∈ (0, 1). A non-trivial exponentially decaying density profile appears near
the boundaries.

• In contrast, for µ2 = 0 a linear bulk density profile emerges,

ρGDCP
bulk (s) =

α̃

α̃+ γ̃
(1− s) +

β̃

β̃ + δ̃
s =

α̃

α̃+ γ̃
− α̃δ̃ − β̃γ̃

(α̃+ γ̃)(β̃ + δ̃)
s (3.42)

This phenomenon is reminiscent of a superposition of shock measures appearing in the voter
model with totally asymmetric stirring (rather than symmetric stirring as in the present
case) on ΛN and open boundaries with γ̃ = δ̃ = 0 ([21]). The invariant measure of that
model is a convex combination of shock product measures with marginals µ(ηx) = 1 for 1 ≤
x < xs and µ(ηx) = 0 for xs ≤ x ≤ N and uniform distribution of the microscopic shock
position xs ∈ ΛN which leads to a linear stationary density profile and a simple form of
the two-point correlation function computed in [17]. For the present more complicated case
of symmetric stirring and arbitrary boundary parameters we leave a detailed investigation
of the two-point correlation function for future work.

Proof of Proposition 4. In this setting, by Corollary 1, the dual process of the GDCP is a GDCP
with no birth rate, diffusion coefficient D+λ, boundary rates 0, α̃+ γ̃, 0, β̃+ δ̃ (purely absorbing
boundaries), and death rates µ2 and λ+µ2. Thus, the generator of the dual process is given by

LGDCP,Dual = LDual
− + LGCP,Dual +

(
D + λ

)
LSSEP + LDual

+ ,

where we recall that LDual
− and LDual

+ are defined in (2.23) (with α̃+ γ̃ instead of α+γ and β̃+ δ̃
instead of β + δ) and,

LGDCP,Dualf(ξ) =
N−1∑
x=2

[
ηx
(
2µ2 + λ (ξx−1 + ξx+1)

)][
f(ξx)− f(ξ)

]
+
[
ξ1
(
µ2 + λξ2

)][
f(ξ1)− f(ξ)

]
+
[
ξN

(
µ2 + λξN−1

)][
f(ξN )− f(ξ)

]
.
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By Theorem 2 the duality function D : ΩN ×Ωdual
N → R is the same as for the DCP, that is given

by (3.28). The same reasoning as in the proof of Proposition 2 yields that for x ∈ {1, ..., N},

EνGDCP

[
1− ηx] = Pδx

[
ξ0(∞) = 1 ∩ ξN+1(∞) = 0

]
c̃−

+ Pδx

[
ξ0(∞) = 0 ∩ ξN+1(∞) = 1

]
c̃+

+
(
1− Pδx

[
ξ0(∞) = 1 ∩ ξN+1(∞) = 0

]
− Pδx

[
ξ0(∞) = 0 ∩ ξN+1(∞) = 1

])
=: uxc̃− + vxc̃+ + (1− ux − vx).

Therefore,
ρGDCP
1 (x) = ux(1− c̃−) + vx(1− c̃+).

In this case the sum (3.34) is finite due to the fact that the rate of birth is zero, so ξ0(∞) and
ξN+1(∞) can be at most equal to one.

Proof of Proposition 5. To prove Proposition 5, we are now left to compute (ux)1≤x≤N and
(vx)1≤x≤N . By conditioning on the first possible event (jump, birth, death, or absorption by
a reservoir) of the process starting from a particle at site x, we have the following discrete
equations

• For (ux)1≤x≤N :

u1 = ã+ b̃u2

ux =
A

2
(ux−1 + ux+1) ∀x ∈ {2, ..., N − 1}

uN = d̃uN−1,

with the constants ã, b̃, d̃, and A, defined in (3.35) and (3.36).

• For (vx)1≤x≤N :

v1 = b̃v2

vx =
A

2
(vx−1 + vx+1) ∀x ∈ {2, ..., N − 1}

vN = c̃+ d̃vN−1,

with the constants b̃, c̃, d̃, and A, defined in (3.35) and (3.36).

Both recurrence relations are of the form

w1 = a+ bw2

wx =
A

2
(wx−1 + wx+1) ∀x ∈ {2, ..., N − 1}

wN = c+ dwN−1

(3.43)

with a = ã, b = b̃, c = 0, d = d̃, for (ux)1≤x≤N and a = 0, b = b̃, c = c̃, d = d̃, for (vx)1≤x≤N .
The properties of the solution of this recursion depend on µ2 as follows.

Case 1: µ2 > 0
To solve the general recurrence relation, notice that the constants defined in (3.36) satisfy A < 1,
r− < 1 and r+ > 1. Then, there are p, q ∈ R such that for 2 ≤ x ≤ N − 1,

wx = prx− + qrx+, (3.44)
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which follows from the bulk part of the recurrence relation (3.43). Furthermore, the recurrence
relation involving sites 1 and 2 yields pr− + qr+ = a + b[pr2− + qr2+], therefore pr−(1 − br−) =
a+ qr+(bqr+ − 1). Since 0 < r− < 1 and b < 1, for both ux and vx, one obtains

p =
a+ qr+(br+ − 1)

r−(1− br−)
.

In a similar fashion, the recurrence relation involving sites N and N − 1 yields prN− + qrN+ =

c + d[prN−1
− + qrN−1

+ ], therefore prN− (1 − dr−1
− ) = c + qrN+ (dr−1

+ − 1). Since r+ > 1 and d < 1,
for both ux and vx, one obtains

q =
c− prN− (1− dr−1

− )

rN+ (1− dr−1
+ )

.

Finally, introducing

BN := r−(1− br−)(1− dr−1
+ ) + rN− r

1−N
+ (br+ − 1)(1− dr−1

− ), (3.45)

one finds

q =
1

BN
[cr−(1− br−) + arN− (dr−1

− − 1)]r−N
+ (3.46)

p =
1

BN
[a(1− dr−1

+ ) + cr1−N
+ (br+ − 1)]. (3.47)

This result yields (3.39) and (3.40) for µ2 > 0.

Case 2, µ2 = 0

In this case, A = 1 and the bulk part of the recurrence relation (3.43) can be written ∆wx = 0,
where ∆ is the discrete one-dimensional Laplacian. The general solution is the linear function

wx = p′ + q′x. (3.48)

The boundary condition at site 1 yields p′ + q′ = a + b(p′ + 2q′) and therefore p′(1 − b) =
a+(2b− 1)q′. Likewise, the boundary condition at site N yields p′+ q′N = c+ d(p′+ q′(N − 1))
and therefore p′(1− d) = c− q′[(1− d)N − d]. We then discuss the following cases:

(i) b̃ = d̃ = 1. In this case, we have closed boundary conditions, and the empty lattice is the
absorbing state, implying without further computation ux = vx = ρGDCP

1 (x) = 0 for all
x ∈ {1, . . . , N}.

(ii) b̃ = 1, d̃ < 1. This corresponds to a closed left boundary, with ã = 0, but with open right
boundary, leaving the invariant measure non-trivial. The recurrence for wx yields q′ = 0
and one obtains ux = 0, vx = 1 for all x ∈ {1, . . . , N}.

(iii) d̃ = 1, b̃ < 1. This corresponds to a closed right boundary, with c̃ = 0, but with open left
boundary, leaving the invariant measure non-trivial. The recurrence for wx yields q′ = 0
and one obtains ux = 1, vx = 0 for all x ∈ {1, . . . , N}.

(iv) d̃ < 1, b̃ < 1. The recurrence yields

q′ =
c(1− b)− a(1− d)

B′
N

(3.49)

p′ =
a[(1− d)N + d] + c(2b− 1)

B′
N

, (3.50)

with
B′

N := (1− b)[(1− d)N + d] + (2b− 1)(1− d).
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Hence, observing that for µ2 = 0, one has 1 = ã + b̃ = c̃ + d̃, we arrive at (3.39) and (3.40) for
µ2 = 0, which covers all four cases (i)-(iv).

Remark 6. Computing higher order correlations is in general a complicated task. For these
models, the difficulty lies in the fact that if there are two or more dual particles, the death rates
depend on the configuration. We leave this for future work.

3.3.2 Time-dependence of the one-point function

For the choice µ1 = λ + µ2 the duality function of the GDCP yields the finite inhomogeneous
system of ordinary differential equations (ODEs)

d

dt
⟨ ηx ⟩ = (D + λ)(⟨ ηx+1 ⟩+ ⟨ ηx−1 ⟩ − 2⟨ ηx ⟩)− 2µ2⟨ ηx ⟩, 1 < x < N

d

dt
⟨ η1 ⟩ = (D + λ)(⟨ η2 ⟩ − ⟨ η1 ⟩)− (µ2 + α̃+ γ̃)⟨ η1 ⟩+ α̃, (3.51)

d

dt
⟨ ηN ⟩ = (D + λ)(⟨ ηN−1 ⟩ − ⟨ ηN ⟩)− (µ2 + β̃ + δ̃)⟨ ηN ⟩+ δ̃,

where ⟨ · ⟩ means expectation at time t for an arbitrary initial measure ν. The inhomogeneity
arising from the constants α̃ and δ̃ can be removed by considering the centered variables ηx :=
ηx− ρ1(x), and by noting that invariance of the measure yields α̃ = (D+λ+µ2+ α̃+ γ̃)ρ1(1)−
(D+λ)ρ1(2) and δ̃ = (D+λ+µ2+ β̃+ δ̃)ρ1(N)− (D+λ)ρ1(N − 1). With the recursion (3.43),
which by linearity is also valid for ρ1(x), we conclude that

d

dt
⟨ ηx ⟩ = (D + λ)(⟨ ηx+1 ⟩+ ⟨ ηx−1 ⟩ − 2⟨ ηx ⟩)− 2µ2⟨ ηx ⟩, 1 < x < N,

d

dt
⟨ η1 ⟩ = (D + λ)(⟨ η2 ⟩ − ⟨ η1 ⟩)− (µ2 + α̃+ γ̃)⟨ η1 ⟩, (3.52)

d

dt
⟨ ηN ⟩ = (D + λ)(⟨ ηN−1 ⟩ − ⟨ ηN ⟩)− (µ2 + β̃ + δ̃)⟨ ηN ⟩,

which is a homogeneous system of first order ordinary differential equations. Denoting by

g(x, t) := e2µ2t⟨ ηx ⟩, (3.53)

one then finds

d

dt
g(x, t) = (D + λ)(g(x+ 1, t) + g(x− 1, t)− 2g(x, t)), 1 < x < N,

d

dt
g(1, t) = (D + λ)(g(2, t)− g(1, t))− (α̃+ γ̃ − µ2)g(1, t), (3.54)

d

dt
g(N, t) = (D + λ)(g(N − 1, t)− g(N, t))− (β̃ + δ̃ − µ2)g(N, t).

In this system, we recognize the ODE’s for the time-dependent centered one-point correlation
function of the open SSEP with diffusion coefficient D̂ = D + λ, and reservoir rates α̂, β̂, γ̂, δ̂,
satisfying

α̂+ γ̂ = α̃+ γ̃ − µ2, and β̂ + δ̂ = β̃ + δ̃ − µ2. (3.55)

Following [28], this system can be solved in a closed form by a discrete Fourier transformation
with a reflected wave, in the special cases obtained from the four combinations of reservoir
parameters given by α̃+ γ̃ ∈ {µ2, µ2 +D+ λ} and β̃ + δ̃ ∈ {µ2, µ2 +D+ λ}. We find surprising
that the system of equations (3.54) matches the one for the space time empirical profile of an
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open SSEP, see equation (19) and below in [15]. In particular, the choice α̃ + γ̃ = β̃ + δ̃ = µ2
corresponds to α̂ = β̂ = γ̂ = δ̂ = 0 for the boundary parameters of the SSEP (i.e. κ = 0 in [15])
and leads to the same system of equations, both for the SSEP with reflecting boundary which
conserves the total number of particles and for our GCDP which does not conserve the total
number of particles due to positive birth and death rates. We believe it would be interesting
to prove the hydrodynamic limit for this non-conservative process with open boundary, in the
same spirit as for the open finite volume SSEP.

4 The susceptible-infectious-recovered (SIR) model

We now consider another non conservative model, originally introduced in [19], in terms of a
nonlinear system of differential equations for the sizes of populations of three species of individ-
uals which are subject to an infection/recovery mechanism. The susceptible-infectious-recovered
(SIR) model describes propagation of infections in the following sense: a susceptible individual
(characterized by its state S) can become an infectious individual (characterized by its state
I), according to an infection rate β, if it is in contact with an infectious individual. An infec-
tious individual recovers (then it is characterized by its state R) with recovery rate γ; once an
individual has recovered it stays immune, that is, it remains in state R forever.

Despite the simplicity of the original mean-field type model, it is known to capture important
features of the temporal dynamics of an infection. However, only limited results are available
if fluctuations (which inevitably occur in a real system) are taken into account. This question
was addressed in the SIR model of [30] where particles evolve on a one dimensional space of
sites, as in the diffusive contact process. However, contrary to the diffusive contact process, the
model is defined on the infinite translation invariant lattice Z, so that in particular, there are
no reservoirs. Notice that the parameters β and γ for the SIR model have nothing to do with
the reservoir parameters in the previous sections. The reason for which we keep this notation is
that it is canonically used in the literature on the SIR model.

The stochastic evolution of the collection of particles in the system is governed by a Markov
process denoted by {η(t), t ≥ 0}, with state space S̃=: {S, I,R}Z, so that at each time t ≥ 0,

η(t) = (η1(t), ..., ηN (t)) ∈ S̃. For x ∈ Z, a ∈ {S, I,R} and a configuration η ∈ S̃, ηx = a means
that x is in state a.

For η ∈ S̃, denote by (ηS , ηI , ηR) the element of S := {0, 1}Z × {0, 1}Z × {0, 1}Z such that:

∀x ∈ Z, ∀a ∈ {S, I,R}, ηax = 1ηx=a. (4.1)

The correspondence (4.1) between S̃ and S allows us to use indifferently the representation of a

configuration as an element of S̃ or of S. Note that for x ∈ Z, since ηx ∈ {S, I,R},

ηSx + ηIx + ηRx = 1. (4.2)

The generator of the SIR dynamics acts on local functions f : S→ R as follows:

LSIRf(η) =
∑
x∈Z

{
β ηIx η

S
x+1

[
f((Tx+1η)

S)− f(η)
]

(4.3)

+ β ηIx η
S
x−1

[
f((Tx−1η)

S)− f(η)
]

+ γ ηIx

[
f((T̂xη)

I)− f(η)
]}

,
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where the operators T and T̂ are defined, for y ∈ Z, a configuration η, and a state a ∈ {S, I,R},
by: when ηSy = 1,

(Tyη)
a
z =

{
ηaz if z ̸= y
ηIz if z = y,

(4.4)

while, when ηIy = 1,

(T̂yη)
a
z =

{
ηaz if z ̸= y
ηRz if z = y.

(4.5)

In other words, recovering the notation in [30], the (translation invariant) transitions between
nearest neighboring sites are

Initial F inal Rate

IS → II β

SI → II β

I → R γ

(4.6)

Note that this dynamics is not attractive (one cannot check the conditions required in [4]) , so
we cannot rely on monotonicity and need another technique to study it.

Our first goal is to find a duality relation for the SIR model with generator (4.3).

4.1 Clusters as duality function

This section is devoted to showing a duality relation for the SIR model, for the purpose of
studying the expected population size, and correlations as a function of time for arbitrary ini-
tial distributions, rather than only for translation invariant initial distributions, as studied in
[30]. This is achieved using a duality relation between cluster functions (defined below) with
a bi-layered two-dimensional random walk on two copies of the semi-infinite lattice N× Z that
we shall label below by G and J respectively. The random walk is asymmetric on each lattice
and lattice G is absorbing, i.e., once the random walker has left lattice H it cannot return to it.
In addition, there is a further (single) absorbing cemetery state which the random walker can
reach from lattice G. On both lattices the random walk is asymmetric.

To make this qualitative picture of the dual process precise and obtain information about
the original process, we use the notation ⟨·⟩ν := Eν [ · ] to denote the expectation with respect to
some initial distribution ν, e.g. ⟨ηax(t)⟩ν is the expected state at site x and time t with respect to
ν. As already noticed in [30] quantities of interest are written in terms of high order correlation
functions, called n-point cluster functions, for n ∈ N, the set of strictly positive integers:

Gν(r, n, t) := ⟨ηIr−1(t)

n−1∏
j=0

ηSr+j(t)

 ηIr+n(t)⟩ν (4.7)

Hν(r, n, t) := ⟨

n−1∏
j=0

ηSr+j(t)

 ηIr+n(t)⟩ν , (4.8)

where in what follows, to lighten the notation we do not write the dependence in time explicitly.
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Instead of the cluster H, it will be more convenient to define a different cluster which is of
the same size as G. Namely,

Jν(r, n, t) := ⟨ηRr−1(t)

n−1∏
j=0

ηSr+j(t)

 ηIr+n(t)⟩ν . (4.9)

Due to (4.2), one has

Jν(r, n, t) = Hν(r, n, t)−Hν(r − 1, n+ 1, t)−Gν(r, n, t), (4.10)

so that given Jν(r, n, t) and Gν(r, n, t), the cluster function Hν(r, n, t) can be computed recur-
sively.

In particular, one can gather information about the correlations of the SIR model by choosing
short clusters, see also Remark 8 below. We are now ready to give the duality result for the SIR
model. To this end, denote by

Sdual :=
(
Z× N× {G, J}

)
∪ {∂}, (4.11)

where ∂ will be a trap for the dual evolution.

Theorem 5 (Duality relation for SIR). The SIR model (ηt)t≥0 with generator (4.3) is dual
to a two dimensional biased random walk on two layers (see Figure 4) with duality function
d : S×Sdual → R given by: for η ∈ S and ξ ∈ Sdual, if ξ = (r, n, i) ∈ Z× N× {G,H},

d(η, (r, n, i)) := ηIr−1η
S
r · · · ηSr+n−1η

I
r+n1i=G + ηRr−1η

S
r · · · ηSr+n−1η

I
r+n1i=J

= [ηIr−11i=G + ηRr−11i=J ]

n−1∏
j=0

ηSr+j(t)

 ηIr+n,
(4.12)

and
d(η, ∂) = 0. (4.13)

The dual generator acts on local functions f : Sdual → R as follows: for ξ ∈ Sdual, if ξ = ∂,

Ldualf(ξ) = 0, (4.14)

while if ξ = (r, n, i) ∈ Z× N× {G,H},

Ldualf(r, n, i) = β1i=G[f(r − 1, n+ 1, i)− f(r, n, i)
]

+ β[f(r, n+ 1, i)− f(r, n, i)
]

+ γ1i=J [f(r, n, ϕ(i))− f(r, n, i)
]

+ 2γ1i=G[f(∂)− f(r, n, i)
]
,

(4.15)

where we define the flip operator as

ϕ : {G, J} → {G, J}, such that ϕ(G) = J and ϕ(J) = G . (4.16)

Remark 7. By (4.14), ∂ is indeed a trap: once the process reaches ∂, it remains there forever.
Furthermore, the generator of the dual dynamics defines the following transitions on the dual
state space, illustrated in Figure 4:

(r, n, i) → (r, n+ 1, i) at rate β for both layers: i ∈ {G, J} (4.17)

(r, n,G) → (r − 1, n+ 1, G) at rate β only for layer G. (4.18)
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Figure 4: Dual dynamics for the SIR model

It is only possible to go from layer J to layer G, (but not the other way around):

(r, n, J) → (r, n,G) at rate γ, (4.19)

and absorption in the trap is only possible if the walker is in layer G:

(r, n,G) → ∂ at rate 2γ. (4.20)

Notice the non-translation invariance nature of the dynamics in the second transition (4.18)
above.

Proof. First, note that due to the definitions and conventions (4.11), (4.13), (4.14), (4.15), we
have, for any configuration η,

LSIRd(·, ∂)(η) = Lduald(η, ·)(∂). (4.21)

Then, in order to show the following duality relation for all configuration η and (r, n, i) ∈
Z× N× {G,H}

LSIRd(·, (r, n, i))(η) = Lduald(η, ·)(r, n, i), (4.22)

it is convenient to split the SIR generator into three different actions, namely

LSIRd(·, (r, n, i))(η) =
∑
y∈Z

[
Ay +By + Cy

]
, (4.23)

where

Ay := βηIyη
S
y+1

[
d
(
Ty+1η, (r, n, i)

)
− d (η, (r, n, i))

]
By := βηIyη

S
y−1

[
d
(
Ty−1η, (r, n, i)

)
− d (η, (r, n, i))

]
Cy := γηIy

[
d
(
T̂yη, (r, n, i)

)
− d (η, (r, n, i))

]
,

(4.24)

33



and where the operators T and T̂ were defined in (4.4), (4.5). We now proceed by direct
computation of each of the three operators.

Let us compute Ay:

• If y + 1 /∈ {r − 1, r, r + 1, ..., r + n− 1, r + n}, Ay = 0;

• If y + 1 ∈ {r, ..., r + n}, then ηIyηSy+1d
(
Ty+1η, (r, n, i)

)
= 0;

• If y ∈ {r, ..., r + n}, then ηIyηSy+1d(η, (r, n, i)) = 0;

• If y + 1 = r − 1, then

ηIyη
S
y+1d

(
Ty+1η, (r, n, i)

)
= ηIr−2η

S
r−1

n−1∏
j=0

ηSr+j

 ηIr+n1i=G.

Therefore,
Ar−2 = β1i=Gd(η, (r − 1, n+ 1, i)). (4.25)

• If y + 1 = r, then

ηIyη
S
y+1d(η, (r, n, i)) = ηIr−1

n−1∏
j=0

ηSr+j

 ηIr+n1i=G.

Therefore,
Ar−1 = −β1i=Gd(η, (r, n, i)). (4.26)

Collecting (4.26) and (4.25), we are left with∑
y∈Z

Ay = β1i=G

[
d(η, (r − 1, n+ 1, i))− d(η, (r, n, i))

]
. (4.27)

Now, we similarly compute By:

• For y − 1 /∈ {r − 1, ..., r + n}, By = 0.

• If y − 1 ∈ {r − 1, ..., r + n− 1}, then ηIyηSy−1d(Ty−1η, (r, n, i)) = 0.

• If y ∈ {r, ..., r + n− 1}, then ηIyηSy−1d(η, (r, n, i)) = 0.

• For y − 1 = r + n− 1, then

ηIyη
S
y−1d(η, (r, n, i)) = ηIr+nη

S
r+n−1[η

I
r−11i=G + ηRr−11i=J ]

n−1∏
j=0

ηSr+j

 ηIr+n.

Therefore,
Br+n = −βd(η, (r, n, i)). (4.28)

• For y − 1 = r + n, then

ηIyη
S
y−1d

(
Ty−1η, (r, n, i)

)
= ηIr+n+1η

S
r+n[η

I
r−11i=G + ηRr−11i=J ]

n−1∏
j=0

ηSr+j

 .

Therefore,
Br+n+1 = βd(η, (r, n+ 1, i)). (4.29)
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Collecting (4.28) and (4.29), we are left with∑
y∈Z

By = β
[
d(η, (r, n+ 1, i))− d(η, (r, n, i))

]
. (4.30)

Finally, let us compute Cy:

• If y /∈ {r − 1, · · · , r + n}, Cy = 0.

• If y ∈ {r, ..., r + n}, then ηIyd(T̂yη, (r, n, i)) = 0.

• If y ∈ {r, ..., r + n− 1}, then ηIyd(η, (r, n, i)) = 0.

• If y = r − 1,

ηIyd(T̂yη, (r, n, i)) = ηIr−1

n−1∏
j=0

ηSr+j

 ηIr+n1i=J

ηIyd(η, (r, n, i)) = ηIr−11i=G

n−1∏
j=0

ηSr+j

 ηIr+n.

Therefore, recalling the definition (4.16) of the layer-flip operator, we have

Cr−1 = γ1i=Jd(η, (r, n, ϕ(i)))− γ1i=Gd(η, (r, n, i)). (4.31)

• If y = r + n,

ηIyd(η, (r, n, i)) = ηIr+n

[
− ηIr−11i=G − ηRr−11i=J ]

n−1∏
j=0

ηS(r + j)

 .

Therefore,
Cr+n = −γd(η, (r, n, i)). (4.32)

Collecting (4.31) and (4.32) we are left with∑
y∈Z

Cy = γ1i=J

[
d(η, (r, n, ϕ(i)))− d(η, (n, i))]− 2γ1i=Gd(η, (r, n, i)). (4.33)

Finally, collecting (4.27), (4.30) and (4.33), we get

LSIRd(·, (r, n, i))(η) = β1i=G

[
d(η, (r − 1, n+ 1, i))− d(η, (r, n, i))

]
+ β

[
d(η, (r, n+ 1, i))− d(η, (r, n, i))

]
+ γ1i=J

[
d(η, (r, n, ϕ(i)))− d(η, (r, n, i))

]
+ 2γ1i=G

[
d(η, ∂)− d(η, (r, n, i))

]
= Lduald(η, ·)(r, n, i),

(4.34)

where we used that d(η, ∂) = 0, so that we have recovered the generator Ldual of equation
(4.15).

We remark that the trap state is in the same spirit as in [2], where the dual operator is
interpreted as a particle system (an asymmetric exclusion process) with a cemetery state ∂ and
a bigger state space, see equation (2.15) in [2].
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4.2 Applications of the duality relation

Consider a measure ν on {S, I,R}Z and recall the n-point cluster functions Gν(r, n, t) and
Jν(r, n, t) defined respectively in (4.7) and (4.9). Note that Jν(r, n, t) is not the same as H(n)
in [30], because of the term 1ηr−1(t)=R but we still obtain closed equations for G and J type
chains.

Remark 8 (SIR correlations for small clusters). Choosing n = 1 the duality functions can give
information on the three point correlations given in terms of the clusters G or J , which can then
be used to get two point correlations via the cluster H.

4.2.1 Coupled equations for the cluster functions

In [30] (see equation (20)), two first order differential equations are provided and explicitly
solved for Gν(r, n, t) and Hν(r, n, t), provided that the initial measure ν is translation invariant.
Therefore, the initial measure and the dynamics (we are on Z), being both translation invariant,
one can drop the dependence on r and write Gν(r, n, t) = Gν(n, t) and Hν(r, n, t) = Hν(n, t).
Below, we show that one can recover these equations for Gν(n, t) and Jν(n, t), by only using the
duality relation of Theorem 5. Fix n ∈ N, then

d

dt
Gν(n, t) =

d

dt
Eν

[
d(., (r, n,G))(η(t))

]
= Eν

[
LSIRd(., (r, n,G))(η(t))

]
= Eν

[
LDuald(η(t), .)(r, n,G)

]
= β

[
Eν

[
d(., (r − 1, n+ 1, G))(η(t))

]
− Eν

[
d(., (r, n,G))(η(t))

]]
+ β

[
Eν

[
d(., (r, n+ 1, G))(η(t))

]
− Eν

[
d(., (r, n,G))(η(t))

]]
− 2γEν

[
d(., (r, n,G))(η(t))

]
= 2β

[
Gν(n+ 1, t)−Gν(n, t)]− 2γGν(n, t),

where we used the duality relation in the first line and the fact that Gν does not depend on r,
by translation invariance, in the last line. In the same way, we get:

d

dt
Jν(n, t) =

d

dt
Eν

[
d(., (r, n,H))(η(t))

]
= Eν

[
LSIRd(., (r, n,H))(η(t))

]
= Eν

[
LDuald(η(t), .)(r, n,H)

]
= β

[
Eν

[
d(., (r, n+ 1, H))(η(t))

]
− Eν

[
d(., (r, n,H))(η(t))

]]
+ γ

[
Eν

[
d(., (r, n,G))(η(t))

]
− Eν

[
d(., (r, n,H))(η(t))

]]
= β

[
Jν(n+ 1, t)− Jν(n, t)] + γ

[
Gν(n, t)− Jν(n, t)

]
.

that is: 
dGν(n, t)

dt
= −2(γ + β)Gν(n, t) + 2βGν(n+ 1, t)

dJν(n, t)

dt
= −(γ + β)Jν(n, t) + βJν(n+ 1, t) + γGν(n, t) .

Note that indeed these are the analogous of equation (20) in [30]. The first equation is exactly
the same one as for G in [30] and the solution is given by:

Gν(n, t) = e−2(γ+β)t
∑
ℓ≥0

(2βt)ℓ

ℓ!
Gν(ℓ+ n, 0). (4.35)
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The second equation can be solved similarly in a recursive way, by treating the terms Jν(n+1, t)
and Gν(n, t) as inhomogeneities. The solution is given by

Jν(n, t) = e−(γ+β)t
∑
ℓ≥0

(βt)ℓ

ℓ!
Jν(ℓ+n, 0)+γ

∫ t

0
e−(γ+β)(t−s)

∑
ℓ≥0

(β(t− s))ℓ

ℓ!
Gν(ℓ+n, s)ds. (4.36)

Then, using that ηSr−1 + ηIr−1 + ηRr−1 = 1, and noticing that

Hν(n, t) = Hν(n+ 1, t) + Jν(n, t) +Gν(n, t),

the equation for Hν , which is the same as the one in [30], is

dHν(n, t)

dt
= −(γ + β)Hν(n, t) + β

(
Hν(n+ 1, t)−Gν(n, t)

)
,

with solution

Hν(n, t) = e−(γ+β)t
∑
ℓ≥0

(βt)ℓ

ℓ!
H(ℓ+ n, 0)− β

∫ t

0
e−(γ+β)(t−s)

∑
ℓ≥0

(β(t− s))ℓ

ℓ!
G(ℓ+ n, s)ds .

Therefore, we can write the solution Jν in terms of the Hν cluster as

Jν(n, t) = Hν(n, t)−Hν(n+ 1, t)−Gν(n, t) . (4.37)

4.2.2 Non-translation invariant case

Recall that in section 4.1, we have proved that the SIR model is dual with a process defined on
the state space ΩDual :=

(
Z×N×{G, J}

)
∪{∂}, where ∂ is a trap state. Recall the dynamics of

the dual process given in Remark 7. Denote by ξ an element of ΩDual. For any SIR configuration
η, by abuse of notation, we write

Gη(r, n, t) =: Gδη(r, n, t) and Jη(r, n, t) =: Jδη(r, n, t),

the cluster correlation functions when the system is initially in state η. Note that the measure
δη is no longer a translation invariant measure for the SIR process (unless it is a constant
configuration, in which case the system remains unchanged).

In [30], these cluster correlation functions have not been solved in the case where ν is not
translation invariant, because the equations obtained in G and J or H are not closed. Our goal
now is to get an explicit expression of such cluster functions in the non translation invariant
case, by using the dual process.

Theorem 6. The Gη(r, n, t) cluster is given by:

Gη(r, n, t) = e−2(γ+β)t
∑

(a,b)∈(N)2
a≤b

(
b
a

)
2b

(2βt)b

b!
Gη(r − a, n+ b, 0). (4.38)

Theorem 7. The Jη(r, n, t) cluster is given by:

Jν(r, n, t) = e−(γ+β)t
∑
k≥0

(βt)k

k!
Jν(r, n+ k, 0)

+ γe−(γ+β)t

∫ t

0
e−(γ+β)(t−s)

∑
k≥0

∑
a≤b

(a,b)∈N2

(βs)k

k!

(
b
a

)
2b

(2β(t− s))b

b!
Gν(r − a, n+ k + b, 0)ds.

(4.39)
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For the proofs of Theorems 6 and 7, we introduce the dynamics on Z × N × {G} given by
the following transition rates

(r, n,G) → (r − 1, n+ 1, G) : at rate β, and (r, n,G) → (r, n+ 1, G) : at rate β. (4.40)

Denote by PG
(r,n,J), resp. E

Dual,G
(r,n,J) the probability measure, resp. expectation, under this dynam-

ics, when starting from (r, n,G).
Also, consider the dynamics on Z× N× {J} given by the following transition rates

(r, n, J) → (r, n+ 1) : at rate β. (4.41)

Denote by PJ
(r,n,J), resp. E

J
(r,n,J) the probability measure, resp. expectation, under this dynamics

when starting from (r, n,G).

Proof of Theorem 6. Fix (r, n) ∈ Z2:

Gη(r, n, t) = Eη

[
d(η(t), (r, n,G))

]
= EDual

(r,n,G)

[
d(η, ξ(t))

]
= EDual

(r,n,G)

[
d(η, ξ(t)) ∩

(
ξ(t) ̸= ∂

)]
= EDual

(r,n,G)

[
d(η, ξ(t)) ∩

(
∀0 ≤ s ≤ t, ξs ̸= ∂

)]
= EDual

(r,n,G)

[
1{∀0≤s≤t, ξs ̸=∂}d(η, ξ(t))

]
= P(r,n,G)

[
∀0 ≤ s ≤ t, ξs ̸= ∂

]
EDual
(r,n,G)

[
d(η, ξ(t))|∀0 ≤ s ≤ t, ξs ̸= ∂

]
= P(r,n,G)

[
∀0 ≤ s ≤ t, ξs ̸= ∂

]
× EG

(r,n,G)

[
d(η, (r(t), n(t), G))

]
= e−2γtEG

(r,n,G)

[
d(η, (r(t), n(t), G))

]
.

The fourth line comes from the strong Markov property. The fifth line is due to the fact that
when conditioned on not having reached the trap ∂ up to time t, the dual process starting from
(r, n,G) has the same dynamics as the one defined in (4.40). The last line comes from the fact
that the time it takes to reach the trap ∂ from any (r, n, ∂), is given by an exponential clock of
parameter 2γ. Expanding the expectation in the last line, we are left with:

Gη(r, n, t) = e−2γt
∑

(r̃,ñ)∈Z×N

d
(
η, (r̃, ñ)

)
PG
(r,n,G)

[
(r(t), n(t), G) = (r̃, ñ, G)

]
= e−2γt

∑
(a,b)∈N2

a≤b

d
(
η, (r − a, n+ b)

)
PG
(r,n,G)

[
(r(t), n(t), G) = (r − a, n+ b,G)

]

= e−2γt
∑

(a,b)∈N2

a≤b

d
(
η, (r − a, n+ b)

)
e−2βt

(
b
a

)
2b

(2βt)b

b!

= e−2(γ+β)t
∑

(a,b)∈N2

a≤b

(
b
a

)
2b

(2βt)b

b!
Gη(r − a, n+ b, 0).

The third line comes from the fact that in order to reach (r − a, n+ b) starting from (r, n) and
with the dynamics (4.40), one has to perform

(
b
a

)
steps, where r decreases by 1 and n increases

by 1 and, the rest of the steps where it is only n that increases by 1. The time between two
such jumps is an exponential clock with parameter 2β.

The other cluster can be found in a similar fashion.
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Proof of Theorem 7. Similarly to the previous computation we have

Jη(r, n, t) = Eη

[
d(ηt, (r, n, J))

]
= EDual

(r,n,J)

[
d(η, ξ(t))

]
= EDual

(r,n,J)

[
d(η, ξ(t)) ∩ (ξ(t) ̸= ∂)

]
= EDual

(r,n,J)

[
d(η, (r(t), n(t), i(t))) ∩ (∀0 ≤ s ≤ t, ξ(s) ̸= ∂)

]
= EDual

(r,n,J)

[
d(η, (r(t), n(t), G)) ∩ (∀0 ≤ s ≤ t, ξ(s) ̸= ∂)

]
+ EDual

(r,n,J)

[
d(η, (r(t), n(t), J)) ∩ (∀0 ≤ s ≤ t, ξ(s) ̸= ∂)

]
,

(4.42)

where in the last line, we partitioned according to having or not a jump from J to G before time
t. Defining:

At
s :=

(
∀0 ≤ u ≤ s−, ξ3(u) = J

)
∩ (∀s+ ≤ u ≤ t, ξ3(u) = G

)
∩
(
∀0 ≤ u ≤ t, ξ(u) ̸= ∂

)
,

the event that before time t, the walk does not reach the trap ∂ and at time 0 ≤ s ≤ t, the walk
jumps from lane J to G, we have:

EDual
(r,n,J)

[
d(η, (r(t), n(t), G)) ∩ (∀0 ≤ s ≤ t, ξ(s) ̸= ∂)

]
=

∫ t

0
EDual
(r,n,J)

[
At

s

]
ds

=

∫ t

0
dPDual

(r,n,J)

[
At

s

]
EDual
(r,n,J)

[
d(η, (r(t), n(t), i(t))

∣∣∣At
s

]
.

(4.43)

Using that the law of the jump from state J to G is an exponential law of parameter γ, and
that the rate of jump from state G to the trap ∂ is 2γ, we have

dPDual
(r,n,J)

[
At

s

]
= γe−γs

(
1−

∫ t−s

0
2γe−2γudu

)
ds

= γe−γse−2γ(t−s)ds = γe−2γteγsds.

Now, we expand (4.43) by partitioning on the number of increases in n up to time s for the dual
process conditioned on being of type J between times 0 and s, for a certain s ∈ [0, t]:

EDual
(r,n,J)

[
d(η, (r(t), n(t), i(t))

∣∣∣At
s

]
=

∑
k≥0

EDual
(r,n,J)

[
d(η, (r(t), n(t), i(t)) ∩ (r(s), n(s), i(s)) = (r, n+ k, J)

∣∣∣At
s

]
=

∑
k≥0

PJ
(r,n,J)

[
(r(s), n(s), J) = (r, n+ k, J)

]
EG
(r,n+k,G)

[
d(η, (r(t− s), n(t− s), G)]

=
∑
k≥0

e−βs (βs)
k

k!

∑
a≤b

(a,b)∈N2

d(η, (r − a, n+ k + b,G))

× PG
(r,n+k,G)

[
(r(t− s), n(t− s), G) = (r − a, r + k + b,G)]

=
∑
k≥0

∑
a≤b

(a,b)∈N2

e−βs (βs)
k

k!
e−2β(t−s)

(
b
a

)
2b

(2β(t− s))b

b!
Gη(r − a, n+ k + b, 0),

where we used the strong Markov property in the second line, and expanded the expectation
under the process (4.40) in the third line. Therefore,

EDual
(r,n,J)

[
d(η, (r(t), n(t), G)) ∩ (∀0 ≤ s ≤ t, ξ(s) ̸= ∂)

]
=

γe−2γt

∫ t

0
eγs

∑
k≥0

∑
a≤b

(a,b)∈N2

e−βs (βs)
k

k!
e−2β(t−s)

(
b
a

)
2b

(2β(t− s))b

b!
Gη(r − a, n+ k + b, 0)ds. (4.44)
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Finally, the second expectation in the last line in (4.42) is given by:

e−γt
∑
k≥0

e−βt (βt)
k

k!
Jη(r, n+ k, 0). (4.45)

Collecting (4.44) and (4.45) yields:

Jη(r, n, t) = e−(γ+β)t
∑
k≥0

(βt)k

k!
Jη(r, n+ k, 0)

+ γe−2γt

∫ t

0
eγs

∑
k≥0

∑
a≤b

(a,b)∈Z2

e−βs (βs)
k

k!
e−2β(t−s)

(
b
a

)
2b

(2β(t− s))b

b!
Gη(r − a, n+ k + b, 0)ds

= e−(γ+β)t
∑
k≥0

(βt)k

k!
Jη(r, n+ k, 0)

+ γe−(γ+β)t

∫ t

0
e−(γ+β)(t−s)

∑
k≥0

∑
a≤b

(a,b)∈Z2

(βs)k

k!

(
b
a

)
2b

(2β(t− s))b

b!
Gη(r − a, n+ k + b, 0)ds.

Theorems 6 and 7 hold for any initial measure ν which is not necessarily translation invariant.
We conclude this section showing that under the extra assumption of translation invariance we
can recover the expressions (21) and (22) in [30].

Special case: translation invariance

Let us recover the formulas obtained in [30] in the translation invariant case using ODE’s (here
we have not used such ODE’s), from (4.38) and (4.39). If ν is invariant under translation,
Gν(r, n, 0) and Jν(r, n, 0) are independent of r, so

Gν(n, t) := Gν(r, n, t) = e−2(γ+β)t
∑

(a,b)∈N2

a≤b

(
b
a

)
2b

(2βt)b

b!
Gν(r − a, n+ b, 0)

= e−2(γ+β)t
∑
b≥0

b∑
a=0

(
b
a

)
2b

(2βt)b

b!
Gν(n+ b, 0).

Therefore, Gν(n, t) = e−2(γ+β)t
∑
b≥0

(2βt)b

b!
Gν(n+ b, 0),

(4.46)
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which matches (21) in [30]. Now,

Jν(n, t) := Jν(r, n, t) = e−(γ+β)t
∑
k≥0

(βt)k

k!
Jν(n+ k, 0)

+ γe−(γ+β)t

∫ t

0
e−(γ+β)(t−s)

∑
k≥0

∑
a≤b

(a,b)∈N2

(βs)k

k!

(
b
a

)
2b

(2β(t− s))b

b!
Gν(n+ k + b, 0)ds

= e−(γ+β)t
∑
k≥0

(βt)k

k!
Jν(n+ k, 0)

+ γe−(γ+β)t

∫ t

0
e−(γ+β)(t−s)

∑
k≥0

∑
b≥0

(βs)k

k!

(2β(t− s))b

b!
Gν(n+ k + b, 0)ds.

(4.47)

Performing the change of variable u = t− s in the second integral, we get∫ t

0
e−(γ+β)(t−s)

∑
k≥0

∑
b≥0

(βs)k

k!

(2β(t− s))b

b!
Gν(n+ k + b, 0)ds

=

∫ t

0

∑
k≥0

(β(t− u))k

k!
e−(γ+β)u

∑
b≥0

(2βu)b

b!
Gν(n+ k + b, 0)ds

=

∫ t

0

∑
k≥0

(β(t− u))k

k!
Gν(n+ k, s)ds,

(4.48)

where we used the expression for Gν(n, t) given by (4.46). Finally, we get

Jν(n, t) = e−(γ+β)t
∑
ℓ≥0

(βt)ℓ

ℓ!
Jν(ℓ+n, 0)+γ

∫ t

0
e−(γ+β)(t−s)

∑
ℓ≥0

(β(t− s))ℓ

ℓ!
Gν(ℓ+n, s)ds, (4.49)

which is exactly the solution given in (4.36), found by solving the ODE for J , in the same spirit
as in [30].

A Invariant measure of the diffusive contact process on small
finite sets

Here, in the same spirit as [20], we compute the stationary distribution of the diffusive contact
process for small N , where we recall that the dynamics is given by the generator LDCP, defined
in (2.12), here we stress the dependence on the lattice size with the subscript N . This approach
is based on the definition of the invariant measure as the probability distribution νDCP satisfying
νDCPLDCP = 0. Here, configurations are represented in their vectorial form, for instance, for
N = 1, (0) is the empty configuration and (1) the full one.

We notice that in our case the presence of boundary reservoirs allows to see the effect of the
diffusive coefficient D already when the bulk size is N = 2. This is in contrast to the scenario
studied in Section 6.2 of [20] with boundary conditions η0 = ηN+1 = 1 when the results are
equivalent to the case of D = 0.

N = 1 site

Let us solve the stationary condition νDCPLDCP = 0. For N = 1, the corresponding intensity
matrix is

LDCP =

(
−(α+ δ) (α+ δ)

(γ + β + 1) −(γ + β + 1),

)
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and the stationary condition yields
νDCP((0)) =

γ + β + 1

1 + β + γ + δ + α

νDCP((1)) =
α+ δ

1 + β + γ + δ + α
.

Notice that for just one bulk site there is no diffusive effect.

N = 2 sites

This is the first non trivial case where the diffusion parameter D plays a role. In this case the
intensity matrix is

LDCP =


−(α+ δ) δ α 0
1 + β −(1 + β +D + λ+ α) D λ+ α
1 + γ D −(1 + γ +D + λ+ δ) λ+ δ
0 1 + γ 1 + β −(2 + β + γ)


and the stationary condition yields


cνDCP((0, 0)) = D(β + γ + 2)2 + (α+ β + γ + δ + 2 + 2λ)(1 + β + γ + βγ)

cνDCP((1, 0)) = D(2 + β + γ)(α+ δ) + (γ + 1) [λ(α+ δ) + δ(α+ β + γ + δ + 2)]

cνDCP((0, 1)) = D(2 + β + γ)(α+ δ) + (β + 1) [λ(α+ δ) + α(α+ β + γ + δ + 2)]

cνDCP((1, 1)) = D(α2 + δ2 + 2α+ 2λ(α+ δ)) + λ(α+ δ)(α+ δ + λ+ 1) + λ(αβ + γδ),

(A.1)
where

c = D
[
(α+ β + γ + δ + 2)2 + 2λ(α+ δ)

]
+ (α+ β + γ + δ)2 + 3(α+ β + γ + δ)

+ (α+ γ)(β + δ)(α+ β + γ + δ + 2) + λ(α+ δ)(α+ δ + λ+ 3) + 2λ(β + γ + 1)

In both cases, setting α = δ = λ and γ = β = 0, our results correspond to the ones in [20],
as expected. This strategy explicitly characterizes the stationary measure but only works when
the size of the system is small.

Taking the limit D → ∞, the solutions in (A.1) become

νDCP((0, 0))(∞) =
(β + γ + 2)2

(α+ β + γ + δ + 2)2 + 2λ(α+ δ)

νDCP((1, 0))(∞) =
(2 + β + γ)(α+ δ)

(α+ β + γ + δ + 2)2 + 2λ(α+ δ)

νDCP((0, 1))(∞) =
(2 + β + γ)(α+ δ)

(α+ β + γ + δ + 2)2 + 2λ(α+ δ)

νDCP((1, 1))(∞) =
(α2 + δ2 + 2α+ 2λ(α+ δ))

(α+ β + γ + δ + 2)2 + 2λ(α+ δ)

(A.2)

Due to the infinite diffusion, νDCP((1, 0))(∞) = νDCP((0, 1))(∞), so this quantity only depends
on the total number of particles, regardless of their position.

B Fokker-Planck equations

Recall that given L, the generator of a dynamics on a state space Ω, we have the following
characterization of an invariant measure
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Theorem 8. (in [23, Chapter 1, Proposition 1.8]) A measure µ is invariant for L if and only
if, the following Fokker-Planck equation is satisfied:∫

Ω
Lfdµ = 0, ∀f ∈ C(Ω). (B.1)

Consider LDCP, the generator of the open diffusive contact process, defined in (2.12) with
state space ΩN , and where in the boundary generators L− and L+, we take α, γ ̸= 0 and δ =
β = 0, in other words, the right hand side boundary is closed. Recall that we denoted by νDCP,
the unique invariant measure of the process. Applying (B.1) to the functions f(η) = ηx1 ...ηxℓ

allows to compute the correlation functions.

• For N = 1, take f(η) = η1. Then,

L−η1 = α(1− η1)− γη1, LCPη1 = −η1,

so (B.1) yields
α(1− ρ1(1))− γρ(1)− ρ1(1) = 0,

that is,

ρ1(1) =
α

1 + γ + α
.

• For N = 2, we have

L−η1 = α(1− η1)− γη1 = α− (α+ γ)η1, L−η2 = 0,

L−η1η2 = η2L−η1 = αη2 − (α+ γ)η1η2,

LCPη1 = −η1 + λ(1− η1)η2, LCPη2 = −η2 + λ(1− η2)η1,

LCPη1η2 = η1LCPη2 + η2LCPη1 = −2(λ+ 1)η1η2 + λη1 + λη2,

DLSSEPη1 = D(η2 − η1), DLSSEPη2 = D(η1 − η2), DLSSEPη1η2 = 0.

Now we have, recalling the notation ρDCP
1 (1) = EνDCP

[
η1
]
=: x, ρDCP

1 (2) = EνDCP

[
η2
]
=: y

and ρDCP
2 (1, 2) = EνDCP

[
η1η2

]
=: z:∫ (

L−η1 + LCPη1 +DLSSEPη1
)
dνDCP(η) = 0

⇔ α− (α+ γ)x− x+ λy − λz +Dy −Dx = 0 (B.2)

then ∫ (
L−η2 + LCPη2 +DLSSEPη2

)
dνDCP(η) = 0

⇔ −y + λx− λz +Dx−Dy = 0, (B.3)

and ∫ (
L−η1η2 + LCPη1η2 +DLSSEPη1η2

)
dνDCP(η) = 0

⇔ αy − (α+ γ)z − 2(λ+ 1)z + λx+ λy = 0, (B.4)

Gathering (B.2), (B.3), (B.4), we are left to solve
(
α+ γ +D + 1

)
x−

(
λ+D

)
y + λz = α(

λ+D
)
x−

(
D + 1

)
y − λz = 0

λx+
(
α+ λ

)
y −

(
α+ γ + 2λ+ 2

)
z = 0.

(B.5)
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The solution of this system is given by:
x = d̂(D)−1α

[
(D + 1)(α+ γ + 2λ+ 2) + αλ+ λ2)

]
,

y = d̂(D)−1α
[
D(α+ γ + 2λ+ 2) + αλ+ γλ+ λ2 + 2λ

]
,

z = d̂(D)−1α
[
D(α+ 2λ) + αλ+ λ2 + λ

]
.

(B.6)

where

d̂(D) = D
[
(α+ γ + 2)2 + 2αλ

]
+ (α+ γ + λ+ 1)(α+ γ + λα+ 2) + λ(α+ γ).

Taking the limit D → ∞, the solutions in (B.6) simplifies to

x(∞) =
α(α+ γ + 2λ+ 2)

(α+ γ + 2)2 + 2αλ

y(∞) =
α(α+ γ + 2λ+ 2)

(α+ γ + 2)2 + 2αλ

z(∞) =
α(α+ 2λ)

(α+ γ + 2)2 + 2αλ
.

(B.7)

Notice that, as remarked in Section 2.3.3 for the absorption probabilities of one dual
particle either in site 1 or site 2, also the corresponding correlations ρDCP

1 (1) and ρDCP
1 (2)

are the same.
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