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Introduction
Functional data or data represented by curves, is generally considered as sample paths of a real-valued stochastic
process with continuous time, X = {Xt}t∈[0,T ]. Most of the approaches dealing with functional data consider the
univariate case, i.e. X(t) ∈ R, ∀t ∈ [0,T ], a path of X being represented by a single curve. Despite its evident
interest, the multivariate case,

X(t) = (X1(t), . . . ,Xp(t)) ∈ Rp, p ≥ 2

is, curiously, rarely considered in literature. In this case a path of X is represented by a set of p curves.
The dependency between the p measures provides the structure of X. One finds in [1] a brief example of bi-
dimensional functional data, X(t) = (X1(t),X2(t)) ∈ R2, as a model for gait data (knee and hip measures) used
in the context of functional principal analysis as an extension of the univariate case. For a more theoretical
framework, we must go back to the pioneer works of [2] on random variables with values into a general Hilbert
space. In [3]) the author provides a complete analysis of multivariate functional data from the point of view of
factorial methods (principal components and canonical analysis). Recently, [4] considered model-based clustering
for multivariate functional data and [5] introduced linear tools, similar to principal component analysis, for
analysing such data.

In this paper we consider the linear regression model with multivariate functional random variable predictor
and vectorial response,

E(Y|X = x) =
∫ T

0

p

∑
i=1

βi(t)xi(t)dt, Y ∈ Rq,βi ∈ (L2([0,T ]))
q ,∀i = 1, . . . p. (1)

As an extension of the PLS approach for the functional linear regression model proposed in [6] for univariate
functional data, we develop the PLS estimation in the case of multivariate functional predictor. The Tucker
criterion provides the PLS components as eigen-vectors of the product of the Escoufier’s operators associated to
the response and the predictor.

We present the PLS estimation when the predictor is approximated in a finite dimensional space of functions.
A simulation study illustrates our methodology.
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