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ABSTRACT 

 

Feature tracking (FT) is increasingly used on dynamic 

magnetic resonance images for myocardial strain evaluation, 

but often requires manual initialization of heart chambers, 

which is tedious and source of variability, especially on the 

challenging long axis images. Accordingly, we combined a 

deep learning (DL) approach with FT (DL-FT) to provide 

fully automated time-resolved left ventricular (LV) and atrial 

(LA) delineation and strain analysis. This approach was 

tested on a multi-center and multi-vendor database of 684 

healthy controls and patients. DL-initialization achieved Dice 

scores of 0.89±0.11 for LV endocardium, 0.93±0.07 for LV 

epicardium and 0.89±0.10 for LA on the testing set of 108 

datasets (2-and 4-chambers). LA and LV DL-FT strain peaks 

were highly associated with expert strains as revealed by 

correlation coefficients=0.96 for LV and ≥0.70 for LA and 

mean Bland-Altman biases=0.62% for LV and <1% for LA. 

Results also revealed stability of our approach over vendors 

and field strengths.    

 

Index Terms: Deep learning, longitudinal strain, feature 

tracking, MRI 

 

1. INTRODUCTION   

 

Dynamic cardiac magnetic resonance imaging (cine-MRI) is 

nowadays the clinical reference for left ventricular (LV) 

volumes and mass. Such parameters are usually measured 

from cine-MRI short-axis (SAX) images. Although SAX 

images provide such valuable clinical measures, their 

analysis in routine is time consuming since the operator needs 

to delineate both the endocardium and epicardium on 8 to 12 

slices on systolic and diastolic phases. Long-axis (LAX) 

images, also acquired during standard MRI exam, are often 

used in routine for the evaluation of left atrial (LA) volumes 

while manually tracing the LA endocardial borders. 

In addition to volumes, recent studies highlighted the 

clinical value of LV and LA longitudinal strain indices [1], 

[2] which can be derived from SAX and LAX cine-MRI 

images using feature tracking (FT) algorithms. However, 

such additional valuable indices are not included yet in the 

daily routine because of the lack of extensive validations in 

populations due to the need for manual initialization of LV 

and LA contours, which is time consuming and source of 

variability. To alleviate radiologists from such tedious tasks, 

several research works including international challenges 

have been achieved to propose automated analysis of SAX 

images while using both conventional image processing [3] 

and deep learning-based [4] algorithms. These achievements 

have led to a substantial progress in terms of automated 

processing of SAX images, even in daily routine. However, 

LAX images could not directly benefit from such progress 

because of more challenging LV and LA geometry on such 

views compared to quasi-circular LV shape on SAX views, 

and the presence of complex neighboring structures such as 

valves and pulmonary veins.  

Accordingly, we designed a fully automated approach to 

process LAX images, while combining: 1) a dual network 

based on modified U-Nets [5] for LV and LA contours 

detection, and 2) FT algorithm initialized by such contours, 

for longitudinal myocardial strain estimation. Of note, such 

FT algorithm has been previously validated on both human 

[6] and animal models [7] and was used here to account for 

time-continuity of LV and LA myocardial deformation. 

 

2. MATERIALS AND METHODS 

 
2.1. Dataset and ground truth 

 

We studied 684 subjects (61.54% males, 52±12 years), 

including 94 healthy controls and 590 patients with different 

cardiac diseases who were included through different 

protocols approved by local ethics committee 

(NCT02517944; NCT03715998; NCT02938910). All 

subjects underwent standard cardiac imaging on MRI 



magnets from three different vendors and field strengths (1.5 

or 3T). Both SAX and LAX (2-and 4-chamber views) images 

were acquired with an average pixel size of 1.29�0.34 mm², 

acquisition matrix of 180-512x200-512 and 25-60 time-

phases. Data were analyzed by experienced operators using 

commercial software (QMass, Medis, Leiden, The 

Netherlands, version 4.0.24.4) for volumes estimation as well 

as custom software (CardioTrack, Sorbonne Université,[6]) 

for LV and LA myocardial strain analysis. Such expert 

analysis resulted in: 1) LV and LA contours throughout the 

cardiac cycle on both 2-and 4-chamber LAX views, 2) LV 

peak global longitudinal strain (LVGLS), 3) LA global 

longitudinal strains at the reservoir (LARS), conduit (LACS) 

and booster (LABS) phases. Of note, Among the 1368 two- 

and four-chamber views, 127 had no expert annotations on 

both LV and LA, because of the presence of artifacts. 

To provide heart structure labels as inputs to our 

networks, LV and LA blood pools were merged into a single 

left heart blood pool label (LHBP) to avoid presence of small 

structures and to ensure spatial continuity through the 

valvular junction between the LA and LV. Besides, LV 

myocardium was merged with LV blood pool (LVMBP) to 

avoid the LV myocardial U-shape with unequal thickness.  

Due to the large variability in image size, we first zero-

padded all images to 512x512 pixels. Then, we normalized 

intensities and applied a contrast limiting adaptive histogram 

equalization (CLAHE) to improve local contrast and reduce 

noise and boundary artifacts. The dataset was then split into 

training (490 subjects = 34811 images), validation (134 

subjects = 9214 images) and test (60 subjects= 4310 images) 

sets. Both 2- and 4-chamber views as well as time phases of 

individual subjects are included in the same set. Besides 

special care was taken to homogeneously distribute datasets 

from different vendors, field strength and LV/LA global 

morphology as derived from ground truth contours through 

end-diastolic surfaces and ejection fractions.  

 

2.2. Dual-ResUNet architecture 

 

The overall architecture of the Dual-ResUnet can be 

decomposed into two networks (Fig. 1), which are trained 

separately. Both networks are designed as a combination of a 

ResNet34 [8] encoding block and a Unet decoding block to 

allow training of deep neural network while avoiding 

vanishing or exploding gradients.  

Fig. 1. Dual-ResNet architecture 

The first network performs a binary segmentation of the 

whole left heart, which is then used to center and crop the 

image around the heart. The aim of such cropping step is to 

reduce the class imbalance between background and cardiac 

structures as well as to equally center all our data on the 

structure of interest. The second network is fed by the 

cropped centered images and focuses on LHBP and LVMBP 

prediction. Finally, the segmented images are displayed onto 

the original field of view (Fig. 2).  
 

Fig. 2. Examples of predicted LV (green) and LA (red) 

contours for a healthy subject (left) and a patient (right). 

 
2.3. Loss function and implementation 

 

For both networks, we used the binary cross-entropy (BCE) 

with logits loss, which combines the BCE loss with a sigmoid 

layer for further numerical stability than their individual use, 

since it takes advantage of the log-sum-exp. 

Networks were implemented in PyTorch and initialized 

via a truncated normal distribution centered on 0. The two 

networks were trained with the Adam optimizer and a 

training rate of 0.001 and for 50 and 100 epochs, respectively, 

with a batch size of 32 and 64, respectively. Our model was 

trained on a dedicated computing hub: dual Intel® Xeon® 

Gold 6226R 3.90 GHz (16 heart), 512 GB ddr4 RAM, two 

NVIDIA A6000 GPU (48 GB of dedicated memory each). Of 

note, data augmentation (random rotation and inversion) was 

performed on the training and validation sets to expand the 

datasets to 52215 training and 19131 validation images. 

 

2.4. Feature tracking and strain estimation  

 

The predicted LHBP and LVMBP labels were converted back 

into LV and LA labels (LV endocardium: Endo, LV 

epicardium: Epi and LA blood pool) on time phases 

corresponding to LV and LA maximal dilation. Such 

contours were then used to initialize the FT algorithm based 

on the interface between myocardium and the surrounding 

structures (blood, epicardial fat). Initialized points were 

tracked in the adjacent time-phases. For such tracking, a 

10x10 mm² region of interest is defined around each point of 

the initial contour. Then, a map of cross-correlation values 

between such region and its spatial neighborhood on the next 

time phase is calculated. This cross-correlation map is 

weighted with additional maps derived from image properties 

and constraints related to physiological knowledge regarding 

contractile function, as described in [6]. Tracking-derived LV 

and LA contours for all phases of the cardiac cycle were then 



used to estimate time-varying strain waveforms by 

calculating temporal changes in longitudinal L(t) length of 

the myocardium, relative to and normalized by its initial 

dimension L(t0), obtained at the beginning of the cardiac 

cycle (t0): Sl(t)=(L(t)–L(t0))/L(t0). LV endocardial and 

epicardial strain curves were averaged to capture the whole 

LV myocardial deformation. Finally, predicted strain curves 

were used to extract LV and LA strain peaks. 

 

2.5. Prediction evaluation 

 

Predicted LV and LA labels were used to estimate Dice 

scores (DSC) and Hausdorff distances (HD) against reference 

labels. Further analysis was performed for out-of-distribution 

data such as data of Vendor 3 and 3T data, while creating a 

training set without Vendor 3 and 3T data successively and 

keeping testing set untouched. For strain evaluation, 

comparison between reference and predicted strain peaks was 

performed using linear regression and Bland-Altman analysis 

resulting in correlation coefficients (R), mean biases (µ) and 

limits of agreement (LoA).  

 
2.6. Model variability against human operators 

 

To assess strain variability, 27 subjects randomly selected 

from the test set including 15 healthy subjects and 12 patients 

were analyzed by three operators with varying level of 

expertise in cardiac image processing (#1: experimented, #2 

and 3: beginner to intermediate). Coefficient of difference 

(COD) in peak strains between predicted and human 

observers and inter-observer difference (IOD) were 

computed. Statistical comparison of these differences was 

performed using the Williams index (WI) along with its 

confidence interval (CI) [9]. CI lower bound > 1 indicated 

that the variability between DL-based strains and human 

observers was within interobservers variability. 

 

3. RESULTS 

 

The first network for binary segmentation of the whole heart 

resulted in a DSC of 0.94±0.06. The cropped centered images 

resulting from this network show a more balanced class 

distribution, as illustrated in Fig. 3.   

 

Fig. 3. Spatial whole heart class distribution from original 

images (blue) and center cropped images (pink) 

Multiclass segmentation performances against expert 

reference are summarized in Table 1, revealing equivalent 

average performances for the endocardial wall for both LV 

and LA and slightly higher performances for the less mobile 

LV epicardium. Overall, 91% of the testing datasets had a 

mean DSC≥0.85. Stability of our network was evaluated 

while re-training three times with random weights, resulting 

in an overall stable mean DSC of 0.90. Most previous studies 

dedicated to LV and LA AI-based segmentation on LAX 

images were performed using echocardiography, achieving 

comparable DSC to those obtained in our study (0.92 for LV 

and 0.89 for LA [10] or 0.912 for LV Endo and 0.855 for LV 

Epi [11]). Most MRI studies were focused on LV 

segmentation on SAX images, while only very few studies 

analyzed LAX images and such studies mostly reported either 

LV or LA segmentation. For the LV, DSC of 0.93 [12] was 

found on a single-center database of 135 patients, while for 

the LA, a DSC of 0.93 was found [13] on 600 patients 

collected from a single center. To the best of our knowledge, 

multi-chamber segmentation from MRI LAX images were 

proposed in a single study [14], combining CT and MRI of 

25 patients, revealing an overall DSC of 0.88 ± 0.03.  

 

 LV Epi LV Endo LA Mean 

DSC 0.93 ± 0.07 0.89 ± 0.11 0.89 ± 0.10 0.9 ± 0.09 

HD (mm) 6.94 ± 5.99 7.24 ± 5.53 7.66 ± 4.62 7.28 ± 5.42 

Table 1. Performances of the multiclass segmentation in 

comparison to the expert reference.  

Interestingly, robustness of our multiclass segmentation 

through MRI field strengths and vendors revealed a slight 

drop in datasets acquired at 3T against 1.5T as well as in 

datasets of vendor #3 as compared to #1 and 2 (Table 2). This 

might be due to the lower representativeness of these two 

categories in our training set since 3T data represented 5.7% 

of the training set and vendor 3 data represented 2.7% of the 

entire training set. Testing on the unseen data from 3T and 

vendor #3 resulted in similar average DSC (3T from 0.88 ± 

0.04 to  0.87 ± 0.06 , vendor #3  from 0.89 ± 0.05 to 0.88 ± 0.04). 

 

 LV Epi LV Endo LA Mean 

1.5T 0.93 ± 0.07 0.90 ± 0.11 0.89 ± 0.10 0.90 ± 0.09 

3T 0.92 ± 0.02 0.85 ± 0.05 0.86 ± 0.09 0.88 ± 0.04 

Vendor1 0.95 ± 0.02 0.94 ± 0.01 0.92 ± 0.01 0.94 ± 0.01 

Vendor2 0.93 ± 0.08 0.89 ± 0.12 0.89 ± 0.11 0.90 ± 0.10 

Vendor3 0.92 ± 0.05 0.87 ± 0.08 0.88 ± 0.05 0.89 ± 0.05 

Table 2. DSC according to MRI field strength and vendor 

for both the LV and LA. 

Table 3 summarizes reference and predicted LV and LA 

longitudinal strain measures along with Bland-Altman 

statistics. Predicted strains were associated with reference as 

revealed by high correlations (r≥0.70) and low mean bias 

(≤0.97) between the two measures. In line with segmentation 

performances, stronger associations were found in the LV as 

compared to the LA. 

 



 GT Prediction R µ (LoA) 

LVGLS(%) -15.9 ± 4.3 -16.5 ± 4.8 0.96 -0.62 (-3.16 ;1.92) 

LARS(%) 31.1 ± 12.7 30.1 ± 10.9 0.70 -0.92 (-19.12 ;17.27) 

LABS(%) 14.5 ± 7.6 13.5 ± 6.6 0.74 -0.97 (-11.21 ;9.28) 

LACS(%) 16.2 ± 8.5 16.2 ± 8.6 0.75 0.11 (-11.73 ;11.96) 

Table 3. Comparison between LV and LA predicted and 

reference (GT) longitudinal strains. 

Table 4 summarizes strain variability results. COD was 

mostly similar to IOD for all strain indices, resulting in upper 

bounds of the WI 95% CI higher than 1 demonstrating that 

the agreement between DL-based method and human 

observers was in the same range as the agreement between 

operators, with variable level of expertise.  

 
N=27 

views 
COD IOD WI: mean (CI) 

LVGLS 0.08 ± 0.01 0.07 ± 0.01 1.68 (1.60 ;1.75) 

LARS 0.25 ± 0.00 0.21 ± 0.01 1.64 (1.59 ;1.70) 

LABS 0.22 ± 0.02 0.17 ± 0.01 1.54 (1.46 ;1.62) 

LACS 0.26 ± 0.01 0.18 ± 0.02 1.35 (1.28 ;1.41) 

Table 4. Comparison between the proposed method strain 

results and inter-observer variability. 

 

4. CONCLUSION 

 

Reliable strain measures were derived from the proposed 

approach combining a dual network for the LV and LA 

segmentation from long axis MRI images and a previously 

validated feature tracking algorithm [7]. The segmentation 

network was trained and tested on an original multi-center 

and multi-vendor dataset including healthy controls and 

patients with either LV or LA alteration. Stability of the 

results over MRI field strengths and vendors demonstrates the 

generalizability of the proposed approach. Interestingly strain 

measurement variability using the proposed method is 

comparable to variability between operators with varying 

level of expertise.  Further evaluation of the ability of the 

fully automated strain measures to characterize LV and LA 

alterations in specific disease conditions is needed to confirm 

their reliability.   
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