N

N

Isolated singularities of solutions of a 2-D diffusion
equation with mixed reaction

Laurent Véron, Yimei Li

» To cite this version:

Laurent Véron, Yimei Li. Isolated singularities of solutions of a 2-D diffusion equation with mixed
reaction. 2024. hal-04677893

HAL Id: hal-04677893
https://hal.science/hal-04677893

Preprint submitted on 26 Aug 2024

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-04677893
https://hal.archives-ouvertes.fr

Isolated singularities of solutions of a 2-D diffusion
equation with mixed reaction

Yimei Li*
Laurent Véron f

Abstract We study the local properties of positive solutions of the equation —Au + ae®™ = m|Vu|? in a

punctured domain Q \ {0} of R? where m, a,b are positive parameters and ¢ > 1. We study particularly

the existence of solutions with an isolated singularity and the local behaviour of such singular solutions.
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1 Introduction

The following type of nonlinear equation
—Au+ f(u) —g(|Vul) =0 (1.1)

in a NV dimensional domain when f and g are nondecreasing continuous functions is an interesting
model for studying the interaction between the diffusion, the reaction and the absorption when
the last two quantities are of a totally different nature. The most interesting case correspond to
the case where the two reaction functions f and g increasing in their respective variable. In its
full generality the problem is difficult to handle, but the model cases where f(u) =u? if N >3

—Au~+uP —m|Vul? = 0. (1.2)

has already been studied in [2]. The results therein shows the rich interaction of the phenomena
coming eiter from the interaction of the diffusion and the absorption, the diffusion and the
reaction or the reaction and the absorption. A variant of this equation is the Chipot-Weissler
equation

—Au —uP +m|Vul?! =0, (1.3)

which presents also interesting interaction between the pairing of the three terms. This has been
studied in [1] and [3]. For this last equation the main difficulty is to obtain a priori estimates of
positive solutions near an isolated singularity. These estimates have been obtained in [1] and [3].
The aim of the present paper is to study a 2-dimensional problem of type (1.2) where naturally
the power absorption is replaced by an exponential absorption. Our model equation is

E(u) := —Au+ ae™ — m|Vul? =0 (1.4)

in By \ {0} where By is the unit disk of R?, m, a, b are positive parameters and ¢ > 1. For (1.2)
and (1.1) the a priori estimate near an isolated singularity is easy to obtain, the difficulty lies in
the full description of singularities and the classifications of singular solutions . Three particular
equations are naturally associated to equation (1.4):

the Emden’s equation

—Au+ ae” =0, (1.5)
the Ricatti equation
—Au —m|Vul? =0, (1.6)
and the eikonal equation
ae? — m|Vul? = 0. (1.7)

The predominance of a specific equation of this type depends on the value of ¢, with critical
value ¢ = 2. When 1 < ¢ < 2 the singularities are similar to the one of Emden’s equation, an
equation which has been completely described in [12]. We recall the main result therein:

Vazquez theorem Let Q C R? be a bounded smooth domain containing 0 and a,b > 0. Then
for any ¢ € C1(0Q) and v € [0, %] there exists a unique function vy, € C1(Q2\ {0}) such that
e € LY(Q) satisfying

—Auvy + ae =21y in D'(Q). (1.8)
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coinciding with ¢ on 0). Furthermore

vy () _
z—0 —In ‘ZL’|

y. (1.9)

The condition 0 < < 2 is also a necessary condition for the solvability of (1.8)
When ¢ = 2, the change of unknown u = % Inv transform (1.4) into

—Av +mavm Tt = 0, (1.10)

an equation which has been thoroughly studied (e.g. [7], [14]) and thus we will omit it. When
q > 2 the dominent equation is the eikonal one. There is a particular explicit solution which
plays a key role in the studies of singularities

U(lz]) = % (TZ)}* In (blqsv\> . (1.11)

We summarise below our three main results

Theorem 1 Let m,a,b >0 and 1 < q < 2. Ifu € C*(B; \ {0}) is a positive function satisfying
(1.4). Then there exists v € [0, 2] such that

u(@)
=". 1.12
#50 — In || (1.12)

Furthermore e

and |Vul? are integrable in By and there holds
—Au+ ae®™ — m|Vul? = 216y in D'(By). (1.13)

If v =0, u can be extended as a C*(B1) function.
Conversely we prove

Theorem 2 Under the assumptions on m,a,b,q of Theorem 1, for any v € (0, %} and ¢ €
CY(0By) there exists a unique function u € C1(By \ {0}) satisfying (1.13) and coinciding with
¢ on OB1. Furthermore e® and |Vu|? are integrable in By and (1.13) holds.

When g > 2, the classification of the solutions is totally different and present some similarity
with the study of isolated singularities of Lane-Emden equation

—Au —uP =0, (1.14)

in the supercritical case N > 3 and p > % (see [9]). We prove

Theorem 3 Let m,a,b >0 and ¢ > 2. If u € C*(B;\ {0}) is a positive solution of (1.4), then
(i) either

o u(x) 2
> - .
B e = (19
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(ii) or u can be extended to By as a Hélder continuous function.

Furthermore, if u is radial assertion (i) is replaced by
u(x) g

= —. 1.16
250 —Infz| b (1.16)

Acknowledgement: Yimei Li is supported by the National Natural Science Foundation of
China (12101038) and the China Scholarship Council (No. 202307090023).

2 A priori estimates

The next estimates are valid in any dimension

Proposition 2.1 Let m,a,b >0 and g > 1. Assume that for xo € By C RY and 0 < R < ||
w s a solution of (1.4) in Bgr(xg). Then there exists A = A(m,q, N, a,b) > 0 such that

(i) If 1 < q<2,

2 1
< —ln— +A. 2.1
u(zg) < ;o Zol + (2.1)
(i) If ¢ > 2
q, 1 ~
< Zln— +A. 2.2
) < Tl (22)

Proof. Let R' < R. We set for \, u > 0,
Y(x) = An(1/(R? = |z — x0[*)) + p = An(1/(R? = 7*)) + p,

with r = |x — z¢|. Then

b

et — ¢
(RIQ _ r2)b/\’

2\r

V()] = [¢r(r)] = RZ _ 2
24 \1y4
[Vip(z)|? = m,
NR? — (N —2)r?
—AY(z) = =2 722
Hence there holds in Bp,
B aet NR? — (N —2)r? m29\9rd
e) = (R"2 — r2)bA —2A (R — 12)2 B (R? — r2)a’

We have ¢ > u in a neighbourhood of 0Bp/ (o). We encounter two cases
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(i) 1 < g < 2. Then we take bA = 2 and get

I 4 A9 _
g(,l/}):(RIQ_T,Q)fZ aeb“—g(NR’Z—(N—Q)TQ)— ZZT (R/2_7'2)2 q
> (R? —r%)2 et — A* max{R'?, R'4_q}} (2.3)
> (R — y2)2 -aeb“ _ A*R/2i| ’
where A* = A*(N, ¢,m,b) > 0. We choose
2 1 A*
=-"InR +-In( — 2.4
p=y nR + 2 n< , > (2.4)
and derive that £(¢) > 0 in Bg/. Hence u < 9 therein. This implies
2 1 1 A*

Letting R’ 1 R = |x¢| yields (2.1).
(ii) ¢ > 2. Then we take b\ = ¢q. Hence

() = (7 127 faeh = & (V2 = (7 = 2)%) (2 = )2 - 000

b (2.6)
> (R* — )¢ [aeb“ - A*Rq}
where A* = A*(N, ¢, m, a, b) > 0. We take
q 1 A*
=21 “In|— 2.
w bnR—i—bn(a), (2.7)
and derive as in case (i)
q 1 1 A*
Letting R’ 1 R we obtain (2.2). O

In the next lemma we give some precise estimates on the function v, solution of (1.8)

Lemma 2.2 Let m,a,b >0 and 0 < v < 2. Ifvy, € C'(By \ {0}) is the solution (1.8) which
vanishes on 0By, then

1-If0<~v< %, there exists ¢* € C1(By) such that

vy(x) =vIn ; — ¢*(z) for allx € By \ {0}. (2.9)

2- If v = 2, then for all x € By \ {0} we have
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2 1 2 1
3 <ln e In(1 — ln\a:|)> + Ry <02 (x) < 3 <1n|x| —In(1 —In \x|)> + K1 (2.10)
where L9 L9
K1 = max {O, 7 In ab} and Ky = min {O, 7 In ab} . (2.11)
In particular
2 1
v2 (z) = 3 (lnm| —In(1 —1In |x|)) , (2.12)

if ab = 2.

Proof. Let v € (0, %] and ¢; be the first eigenfunction of —A in W}?(By), with corresponding
eigenvalue \; > 0 and supremum equal to 1 (at » = 0). For § > 0 and A > 0, we set

1 1
ha(z) = vlnm — Alz|?¢y(x) = 'yln; — A%y (r)  with r = |z, (2.13)

Then there holds in D'(By),
—Aha(r) = 2780 + AO*r0 21 (r) — ANr? 1 (r) + 24600714 (1),
thus
—Ahy + ae®ha = 2ny5g + 102 (A92¢1(7“) — AN g1 (1) + 2A0r¢) (r) + WQ_G_ME_MTG%(T)) :

Step 1: the case by < 2
(i) Estimate from above. Take § =2 — by. Since

ae bArTe(r) > ¢ abAr? "¢, (r),
we derive that for all 0 < |z| < 1,
~Ahg+ aea =787 (A(2 = 09)201(r) = ANrZ61(r) + 2A4(2 = by)rd () + ae~bA 00
> 17" (A2 = 07)*¢1(r) — Ar?d1(r) + 2A(2 — by)réy (r) + a — abAr* =" g1 (r)) .
Then there exists Ag > 0 such that for A < Ay we have
—Aha +ae? > 215y in D'(By), (2.14)

and Ap can be taken independent of v. We derive by the comparison principle that

1 _ .
vy(z) <~vln o Alz|> "¢ (z) in B\ {0}. (2.15)
(ii) Estimate from below. We give an explicit expression for v,. We already know that

vy(z) < vIn ﬁ If we write

vy(x) =vIn |x1, + ¢* (), (2.16)
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then ¢* vanishes on 0B; and satisfies
—Ag* + ar~ el =

The convex functional

_ T
J(¢)_/B1 (2\v¢y + Ja® >dx

is well defined on the closed subset K_ of VVO1 ’2(B1) of nonpositive functions and it satisfies

1
1025 [ ofr

Hence it achieves its minimum in K _ at ¢*. There holds

—A(yIn ﬁ — Alz|>7) = A0?|z| ™™

and ¢* vanishes on 9B;. Since |z|>~% € L'*¢(By), ¢* € W21+¢(B;) C C’O’lgTee(El). Conse-
quently

1M@=vméﬁ%N@ in B1 \ {0}, (2.17)

and 1
Uy () —fylnm — ¢*(0) <0 asz — 0. (2.18)

Step 2: the case by = 2. For k € R we set

wdﬂ=i<m1—mu—mm>+m

r

Then 1, (1) = k and

1 2 aebt
— A, b — — , 2.1
Vn +ae 72 < b(1 —Inr)? + (1—1117“)2) (2.19)

/ dzx .y /1 .,
B, |z|?(1 —1In|z])? - o T(1—Inr)2 T

the function e®¥= is integrable in B; and 1, satisfies in D’(B;)

Since

2 1 47
— A, b be _ 2 5. 2.2
Y+ ac ( b) 2P —mjal? T 5 (2:20)

Hence v, is a supersolution nonnegative on dBj if we choose k = k1 where

— max 0, 1l (2.21)
k1 =max ¢ 0, - In— )
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It is a subsolution if we take k = k9 where

) 1 2
Ko = min {O, 5 In ab} . (2.22)
Therefore
2 (L — (1 —mmjal)) +re <vela) < 2 (- — (1 —mnlz]) ) + (2.23)
- n——1m — 1n |(r K V2| - n——1m — 1n (T K .
b\ Ja] S Al R P b

with equality if b = % since in that case k1 = k9 = 0.

3 Singular solutions in the case 1 < ¢ < 2

Definition 3.1 A function u € C*(By \ {0}) is a solution of the singular Dirichlet problem

—Au + ae? — m|Vu|? = 2ry5y  in D'(B)

U= ¢ on 0By, (3.1)
where ¢ is a C' function, if u, €™ and |Vu|? are integrable in By and
/ (—uAC + (aebu - m\Vu|q) C) dz = 27v¢(0)  for all ¢ € C*(By). (3.2)
By

In view of Vazquez theorem, any solution u, of (3.1) is bounded from below by the solution v,

3.1 Radial solutions
The expression of (1.2) for a radial function u := u(r) defined in By \ {0} is

1
—u’ — =+ ae” —m|u|7=0 for0<r< 1. (3.3)
r

As a first gradient estimate for radial solutions we prove

Lemma 3.2 Let 1 < g < 2 and u be a nonnegative solution of (3.3) in By \ {0}. Then for any
0 < rg <1 there exists c = c¢(m,q) > 0 such that

lur ()] < for all 0 < r < r. (3.4)

S0

Proof. Clearly u cannot have a local maximum and up to a translation (it changes only the
value of a) we can assume that u vanishes on 0B, hence it is decreasing. There holds

1
—u" — =’ —mu]? <0,
r

1 |
<|ul|1q> + 7|u/‘17q S m,
1—gq T

then
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and thus

/
(rlq\u'\lq + mig _ 17"2q) > 0.

Therefore the function 7 +— r1=9u/|1=9 + m%r%q is increasing and nonnegative, and thus it
admits a limit £ > 0 when 7 — 0. This limit is the same as the one of r — r!=9/|179. If £ > 0

M7/ |17 = ¢(1 — o(1)) when r — 0.

Hence

lim 29/ |1 9 = ¢
r—0

which implies (3.4). If £ = 0, then
lim r|u/(r)| = oo.
r—0

This implies that for all A > 0, one has

lim inf (u(r) —Aln 1) = 00.
r

r—0

This contradicts the a priori estimate obtained before. O

The next easy to prove result will be used several times in the sequel.

Lemma 3.3 Let v >0, F € LY(By), ¢ € C(0By) and w € LY(B1) N C(B1 \ {0}) be the weak
solution of
—Aw = F + 2ny6y in D'(By)

w=¢ in OB,. (3.5)
Then there holds 1
w(r) =yln—+o(nr) as|z|=r—0 (3.6)
T
1 2m
where w(r) = 2/ u(r,0)do. If we assume that F' € L'**9(By) for some § > 0, then
T Jo
1
w(z) =~vIn Tl +0() as|z|—=0 (3.7)
Proof. We write w(z) = vE(z) + ¥ (x) where E(x) = In \71| and v is the solution of
—_ — 3 /
Ay =F inD'(B) (3.8)

w=¢ indB.
Let ¢(r), ¢ and F(r) be the circular averages of ¥(r,.), #(.) and F(r,.). Since
—(ry/(r)) = rF(r),

A standard approximation argument associated to uniqueness yields

o(r) =¢>+/rl Sl/ostﬁ’(t)dtds.
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By I'Hospital’s rule we obtain (3.6). If F € L'*°(By), then ) € WZ’HJ(Bl). By Morrey-Sobolev

loc

)
imbedding inequality, W2’1+5(B1) C CO’%(Bl). Hence 1) is Holder continuous in Bj, which

loc

ends the proof. O
Lemma 3.4 Let1 <q <2, mya,b>0and~ye€ (0, %] If u := uy is a radial solution of
—Au + ae? — m|Vu|?! = 215y in D'(By)

which vanishes on 0By, then

1-If0< vy < %, there exist a positive constant A and a continuous positive function ¢* in By
which vanishes on 0By such that in By \ {0},

1 y 1 _
Yin = 6%(2) < uy <yl = AlalT (@) + metn (@),

where ¢1 is the first eigenfunction of —A in Wol’Q(Bl) and n satisfies

—Anp=|z|7? in B

n=20 on 0Bj, (3.9)
with ¢ is the constant in (3.4), and actually, n(x) = ﬁ(l — |x[?79).
2- If v = 2, we have in By \ {0},
2 2 2 2
3 <lnm —In(1—1In |:17|)> + ko < u%(x) < 3 (ln‘w| —In(1—1In ]:E|)> + k1 +n(zx),
where the k; have been defined in (2.11).
Proof. Because of (3.4) u, satisfies
—Auy, + ae®™ <mcl|z|"T 4 2178 in D'(By).
Since vy 4+ mcin vanishes on By and satisfies
—A(vy 4+ metn) 4 aetC M) > el | x| 4 2798y in D'(By),
we deduce by the comparison principle as in [12], that
uy < vy +meln in B\ {0} (3.10)
On the other hand,
—Au, + ae®™ > 27176.
Since ae?r € LY(By), it follows by the comparison principle again, that
vy <uy in B\ {0}. (3.11)
Therefore, we conclude that
vy <uy<vy+n in By\{0}. (3.12)

Combining with Lemma 2.2, we finish the proof. O



2-D diffusion equation with mixed reaction 11

3.2 General solutions

In this section we deal with the questions of existence, classification and uniqueness of solutions
of (3.1).

3.2.1 Existence of general solutions

Theorem 3.5 Let 1 < ¢ < 2 and m,a,b > 0. Then for any v € (0, %] and ¢ € CY(OBy) there
exists a function u = u, € C1(By \ {0}) such that " and |Vul|? are integrable in By satisfying
(3.1) and

u@) _ (3.13)

z—0 — In ’%‘ -

Proof of Theorem 3.5. Step 1: existence. For the sake of simplicity, we assume ¢ > 0; this can
be achieved up to replacing a by some a. The function v, which satisfies (1.8) with boundary
data ¢ is a subsolution in By \ {0}. We look for a supersolution under the form

1
h(z) = Yoo+ c(1 = [2[*77) + M,

where ¢ and M are to be found. Since —A(1 — |2[?79) = (2 — ¢)?|x| ¢
() = alz| Dbl NHOM || (c(2 — g —my" (1 n C(2—q)r2q> q>
There exists 1o € (0,1) and ¢p > 0 such that
co(2 — q)? — my? (1 + m(%y—(DTQ_q>q >0 forall0<r<rg.

Then we choose M > 0 large enough such that
_ 2 — 1
aetM > v - (1 co( C])) 7

and

V(@) =M = [0l Lo @om,) -
Hence £(¢) > 0in By \ {0}, and ¥ > ¢ on 0B;. It follows that v is a supersolution, larger than
vy. Therefore there exists u = ., coinciding with v,, such that

vy <uy <9 (3.14)

which satisfies (1.4) in B; \ {0}.

Step 2: upper estimate. The function u, may not be radial since it is not assumed that v,
is so. But replacing vy, by vqq~ which satisfies the same equation (1.8) with boundary data
]l < (9B,), We have that vyqy > vy with boundary data [|¢[[;yp,)- Hence there exists a
radial solution u,qq of (1.4) satisfying

U~y < Urad,y < Urad,y < @ZJ (315)
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and Upqq~ > u, by the standard construction iterative scheme. By Lemma 3.2 there holds

Therefore
—AUpad + aellrady — m|Vipeg|? < metr™9,

and (3.15) gives that
lim Urad () — lim Uy () _
r—0 —Inr 2—0 —In |z|

Let {0,} ¢ CY1(R?) defined by

1\ 2
2n? <|m| - ) if |z < &
e o
xTr) =
" —2n?(z|® 4+ 8nlz| -7 if £ <|z| < 2
1 if |z > 2,

then 0 <0, <1,0,=0o0n Bi, 0, =1o0n BS, |[V0,| <cnlp,\p, and

Ab,(z) = 4n? (2 — 1) 1p,\5, — 4n? (2 — 2) 1, \Ba.

nlz| nlz|

If ¢ € C2°(B) is nonnegative with ((0) = 1 = max|¢|<; ((z). We have

—/B umdﬁGnACdac—i—a/B ebumdﬁwnd:r—/B (CAb, 4+ 2V0,. V() Urqaydr < mc? OnClz| " Ydx.
1 1 1

B1
(3.16)
Clearly there holds when n — oo,
/ Urad,yOn AldT — Urad yACdT,
Bl Bl
and
mc? 0.Clx|"9dx — mc? Clx| " dx.
B1 B
Next
/ V0, V(| tpaadr < cn/ Upad,y|V¢|dx — 0,
B 2\B1
since @y (x) = yln(ﬁ)(l + 0(1)). The last term is more delicate to estimate:
— AbOptypqq Cdr = —/ AbOptyqq Cdr — / AbOptpqqqCdr =1+ 11.
By B3 \B1 B2\B 3
2n n n 2n
Since ((x) =14 O(|z|)., and @ satisfies (3.15), estimates on v, and 1 yield
1 1
yIn — — M < Upgqy(x) < yIn— + M (3.17)

]

]
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for some M > 0, and therefore

I:—4n2/
B
Hence
1 3 1 1 3 1
—6m max § Upedy 1 — < |2| < — p+0 un < I < —6mmin  Upgdy 1 — < 2| < — > +0 2
on 2n n on 2n n

2 1
1T = 4n%¢(0) / (2 = ) UpagnCdz + O ( n”) .
B;\B% n|z| n
Hence

2 1 2 1
67Tmln{u7 %<]w\< }—l—O(nn)<II<67rmaLx{u7 %<]w\< }—i—O(I;n)

Using (3.17) we see that up to some constants M > 0 Therefore on

1 1
(2 s ) e+ 0 (1))
\B nlz| n

3 1
2n n

In the same way

1
—67rlnn—M—|—O< ><I< 67rlnn—|—M—|—O<nn>,

n n

and
Inn

67Tlnn—M—|—O< ><II<67rlnn+M—|—O<lnn>.

n n

Thus I + I remains bounded independently of n. Combining these estimates with (3.16) we
conclude that | B, erady (0, dxr remains bounded independently of n too. By Fatou’s lemma

ePurada¢ € L1(By). Since uy < Upqq~ we infer that e? € LY(B;). Because
—Au, = m|Vu,|? — ae?™
it follows by Brezis-Lions lemma that |Vu|? € L'(B;) and there exist 4 > 0 such that
—Auy, = m|Vu,|? — ae®™ 4 27786 in D'(By).
Set F' = m|Vu,|? — ae®™, Since F € L'(By) it follows by Lemma 3.3 that
Uy (r) = —=FInr + o(lnr).
Combined with (3.14) we obtain that 5 = . O

The next estimate compares v, and u.,

Proposition 3.6 Let v € (0,%] and ¢ € C'(9By) is nonnegative. If u € C1(B1 \ {0}) satisfies
e € LY(By) and |Vul|? € LY(By) is a solution of (3.1), then there evists K > 0 such that

vy <u(z) <vy+ K forxze B\ {0}, (3.18)

where v, is the solution of (1.8) which vanishes on 0B .
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Proof. Since u is a solution, it is a supersolution of (1.8), and by the order principle it is larger
than solution v, with the same boundary value. Using the regularity estimates of the Laplacian
in the space of bounded Radon measures 9,(B1) we have that Vu € M?(B;) where M?(By)
is the Marcinkiewicz space coinciding with the Lorentz space L?°°(B;). What is important to

know is that M?(By) C L?>~¢(B) for any ¢ > 0. Therefore |Vu|? € L ¢ (Bj). Since ¢ < 2 we
take € > 0 such that % =146 > 1. Let uj be the solution of

2—¢
q

—Au; = m|Vul? in By
U = ¢ on Bj.
The function u; is nonnegative and belongs to W21+9 (B1). By Morrey-Sobolev imbedding
25—
theorem, W21+(BY) ¢ ¢%1%5 (By). This implies that u; is bounded from above by some K > 0.

The function v, + u; satisfies
—A(uy +vy) + a1 > _A(ug + v,) + ae® = m|Vu|? + 2778,

Since ae’(“1+v) € L1(By) we can apply Vazquez’ monotonicity estimate [12] between uj +v., and
u since the right-hand side of the respective equations coincide and belong to 9t,(By). Therefore

u(z) < vy(z) + K, (3.19)

and (3.59) follows. O
As a consequence of Lemma 2.2 we obtain global estimates on the solutions

Corollary 3.7 Under the assumptions of Proposition 5.6 any function u € C*(By \ {0}) such
that e € LY(By) and |Vul|? € LY(B1) of solution of (3.1) satisfies, for some K > 0, the
following two-sided inequalities for all x € By \ {0},

1-If0<~vy< %, then

1 1
yIn— — K <wu(z) <ylnh— + K. (3.20)
] |
2-Ifv= %, then
2 1 2 1
3 lnm —In(l-In|z]) ) - K <u(z) < 3 lnm —In(1 —1Inlz|) ) + K. (3.21)

Combining Proposition 77, Proposition ?? and Corollary 3.7 we have a general existence
and uniqueness result of solutions of (3.1).
3.2.2 Classification of isolated singularities

In this section we prove the following

Theorem 3.8 Let 1< q <2, m,a,b>0. Ifu € C'(By\{0}) is a solution of (1.4) in By \ {0},
then there exists v € [0, 2] such that

u(z)
= . .22
] (3:22)

Furthermore e® € LY(By), |Vul? € LY (By) and u is a solution of (3.1).
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Proof. We can assume that u|sp,= ¢ € C'(0B;) is nonnegative.
1- If e € LY(By), it follows by Brezis-Lions Lemma [5] that |Vu|? € L'(B;) and there exists
~ > 0 such that (3.1) holds. By Lemma 3.3 the circular average @ of u satisfies

1
a(r)=vyIn—+o(lnr) asr — 0.
r
By convexity
ebu(r) > ).

Since for any € > 0 there holds
_ 1
a(r)y > (y—€)ln- — K,
r

we obtain
—bK.
bii(r) e

- |x’b(7_5) ’
Ifv > % we can choose € > 0 such that b(y —€) > 2. Hence e*®\) is not integrable in By, neither
e contradiction. This implies that v € [0, 2]. By Proposition 3.6 and Corollary 3.7 we obtain
b
(3.22).
2- Next we assume that e®® ¢ L'(B;), then using the inequality satisfied by @
) g q y y U,

1 1
ri'(r) + a / ebutdt = u'(1) +m / |Vulatdt (3.23)

where %, EY and |Vul|? denote the averages of u, E and |[Vu|? on S*. Next we will distinguish
according |Vul? is or is not integrable in By, although if u is radial Lemma 3.2 implies that
\Vu]q S Ll(Bl)

2-(i)- If |Vu|? € L'(B;) we obtain from (3.23) that

lim r@' (r) = —oo0.
r—0
By integration, it implies that
_u(r)
lim = 00,
r—0 —Inr

which again contradicts the a priori estimate (2.1).
2-(ii)- Tf |Vul? ¢ LY(By), then for any € € (0, 1),

/ |Vu|ldr = oo.

Then for any k > 0 there exists 7 = 7(¢, k) such that

m/ |V min{u, 7}|%dz = 27k.
B

Since
—Amin{u, 7} + ae®™™M® > |V min{u, 7}|91p, in B
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min{u, 7} is bounded from below by the solution vy . of
—Auvy, . + ae?te = m|Vmin{u,7}|1p, in Bj.

We have m|V min{u, 7}|91p, — 27k in the weak sense of bounded Radon measures in B;. By
Vazquez’ stability theorem, if k < %, Uk,e — Uk as € — 0. Taking in particular k = % we obtain

u(x) > v%(x) for all z € By \ {0}. (3.24)

Combining this estimate with (2.1) and the estimate on vz yields, for some K > 0,
b

2 1
—In— 4+ K forallze B\ {0} (3.25)

2 1
Il <ln —1In(1 —1H|$|)> — K su(e) < b |z

b\ |zl

We set w(t,.) = u(r,.) + %lnr with ¢ = In7. Then w satisfies in (—o00,0) x S*

s+ g — A€ & e (<z2) _ wt)2 n wg) E: 0, (3.26)
and the two-sided estimate 5
~3 In(l1—¢)— K <w(t,.) <K. (3.27)
Thus the function z(t,.) = % satisfies in (—o0,0) x S,
Zu + 209 — 2 2 — 2 s ® (-0

1 -l —1)

92 P 2 2
@=q)t 1ya—1(1 _ _ 2| _
+ me In’"(1 t><<bln(1—t) Zt+(1—t)ln(1—t)> —|—Z@> 0,

and (3.27) yields for some T" < 0,

1—t)2W(1—t) In(l—1)
(3.28)

_2 o) < a(t,) < = <o(1) in (—oc0,T] x S'.

b (1—1)
Since z is bounded and negative and all the coefficients are smooth and bounded, the standard
regularity theory implies that z is bounded in C**([T" — 1,T" + 1] x S'). Since w(t,.) =
z(t,.)In(1 — t) we have also

1
(w?(t, 0) 4+ wi(t, 0))% <cIn(1 —1t). (3.29)
Returning to u(r, §) implies
2 -2 2\ In(1 —In |x)
Vu(z)| = |Vu(r, )] = (u; +r “ug)2 < cﬁ for all z € By \ {0}. (3.30)
x

Since ¢ < 2, the right-hand side of (3.30) belongs to L9(B;) and we get a contradiction. This
ends the proof. O
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3.2.3 Uniqueness

Sharp estimates of the gradient of singular solutions near = 0 are the key-step for proving
their uniqueness.

Theorem 3.9 Let q,m,a,b be as in Theorem 3.5. Then for any v € (0, %] and ¢ € C1(0By)
there exists a unique function u € C1(By \ {0}) satisfying equation (1.4) in By \ {0} and

u(z) = fyln‘; (1+40(1)). (3.31)

Furthermore €® and |Vu|? are integrable in By, and u satisfies (3.1).

Proof. Let u be any solution nonnegative solution of (1.4) in By \ {0} satisfying (3.31) (the sign
requirement is not a restriction since we can change a). By Theorem 3.8 ¢ and |Vu|? are
integrable in By and w satisfies (3.1). Therefore the estimates of Corollary 3.7 hold.

1- The case 0 < v < %.

1-(i) Convergence and gradient estimates. Under the assumption (3.31) we first show that there
holds

1
lim <u(x) —vln ) =/{ and lim |z|Vu(z) = —ni (3.32)
|z|—0 || |z|—0
for some ¢ € [-K, K] and i = %. For the proof, we set

||
1
w(t,0) =u(r,d) —vyln—,
”
with ¢t = In7 € (—00,0] and 6 € S1. Then w is bounded in (—oo,0] x S! where there holds

q
Wyt + weg — aeZTINEbY 4 (20t ((fy — wt)2 + w%) 2 =0. (3.33)

Since 2 — by > 0 and 2 — ¢ > 0, by the standard regularity theory [10, Theorem Al], we have
the estimate

max{|w(t, 0)| + |wa(t,0)|: (t,0) € [T —1,T + 1] x S}
< cmax{|w(t,0)|: (t,0) € [T —2,T +2] x S'} < cK,

for all T < —2. Equivalently |ug| + |ru, + 7| is bounded. Now, by linear elliptic equation
regularity theory w is bounded locally in CY*([T' — 1, T + 1] x S') independently of T" and thus
in C>*([T —1,T + 1] x SY), for some a € (0,1).

1

1-(ii) Convergence and sharp gradient estimates. Let w(t) = 5- 027r w(t,0)dO be the average of
w(t,.) on S*. Then
—@"(t) + aeP" Hy (1) + =D Gy(t) = 0,

where

) ,
Ho(t) = o /S e"ds and Go(t) = —3= [ (7 —wi)? +wf)? do.

21 S1
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Since Hy and G are bounded, @w'(t) admits a limit when ¢t — —o0o, and this limit is necessarily
equal to zero since w is bounded. Thus

t t
w'(t) + a/ =T By (r)dr + / e~ Gy(1)dT = 0.

Therefore
@ ()] < emax{e?~0t (20t (3.34)

which implies that w(t) admits a finite limit £ when ¢ — —oco. Set w* = w — w. Then

—w}, — wpy + aeP TV 4 2Dt Gr =, (3.35)
where

. w1 buw wipy M o2, ok N2, 2\
H*(t,.)=¢e¢ e’dd and G*(t) = |(v — we)® + wi|? dd—m (v — wy)” + w)
™ Js1 27 St

Since |, g1 w*df = 0, we have by Wirtinger inequality,

—/ wppw*dh = —/ U);gw*dg > Hw*H%Q(Sl)7
51 St

and

H* (¢, )w*do :/

S

1 _
. 1 <ebw “or Ja ebwde) (w—w)do = /Sl (eb“’ — aebw) (w —w)do > 0.

Using the inequality

~ 0”25y gz 10 oy < = [ wwiodd
we obtain
d2 * * Bt
7] lw™ |l p2es1) + lw" [ 251y < Lo(t)e™,

where 8 = min{2 — ¢,2 — by} > 0 and Lo(t) is some bounded function. Since [|w*[|;2(g1) is
bounded and 8 < 1, it implies that

w21y < Cet. (3.36)
Combining this estimate with the fact that w(t) — ¢ when ¢ — —oo we deduce that
i (e, ) — Az sy =0 (3.7

Let
Tlw] = [J{(w(t,.), w)}

t<0

be the negative trajectory of (w,wy). It is relatively compact in C?(S1) x C1(S!) and because of
the uniqueness of the limit, we have that w(t,.) — £ in C?(S') and thus wy(t,.) — 0 in C1(S1).
In order to make precise the behaviour of wy, we differentiate (3.35) with respect to ¢ and get

—w}y — wipy + GV 4 Cm0IG = 0 (3.38)
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where H* = a(2 — by)H* — aH} and G* = (2 — q)G* — G} are bounded functions (from the C?
a priori bounds on w). Hence by Wirtinger inequality again,

d2

— gz 1ellzzgsny + lwill 2 sy < Lo(t)e™,

where Lg is a bounded function. Since ||wf]|;2 (s1) is bounded on (—o0,0] it implies again that
i (& Ml 2sny < C'e™. (3:39)
By (3.34), w¢(t) — 0 as t — —oo. This implies

i [un(t, ) pagen) = 0. (3.40)

As in the case of the function w(t,.), the relative compactness of the set {w;(t,.) }+<o in C*(S?)
combined with (3.40) implies that w;(t,.) — 0 in C1(S') as t — —oo. This implies (3.32).

1-(iii) End of the proof. Next we consider two solutions u, and @ satisfying (3.31) with v € (0, %)
and coinciding on 0B;. Denote u = u and @ = . For € # 0 we recall that E(z) = In ﬁ and

U(r) = Ue(x) = u(x) + eE(x). (3.41)

Then

1S

2 2
—AU + ae®¥ — m|VU|? = ae® (ebEE - 1) —m <]Vu\2 v 26Vu.i> — |Vul?

jz2 ||

q

€2 € v 2
1 -2 i —1].
( TRV T [ Vul? “)

= aeb® (eb€E — 1) — m|Vul|?

Then, when r — 0,

62 € 62 .
+ 22| V2 |x|’vu|2Vu1 + 72( +0o(1)) + 7( +o(1)),
thus
€2 € 3 fyq qe q(q . 1)62
Vul? 1 ) Vi Y e ag—1)¢ , |
|Vul < + ‘$|2‘VU|2 ’vau‘Q Ul) |x‘q <’7 + 2y (1+ of ))>

Since byIn ﬁ +bK > bu(x) > byln ﬁ — bK, we have in the case where € > 0:

x
aebK‘x|fb'y(|$‘fbe _ 1) > aebu (ebeE . 1) > aefbK‘x|fb’y(|$’7be _ 1)7
and in the case where ¢ < 0:

aebK|x|fb'y(|x‘fbe o 1) < aebu <ebEE . 1) < aefbK‘x|fb’y(|x’7be o 1)
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1-(iii)-(i): Case § <~ < 2. we take e > 0 and get

q € —1)é?
sw>2w*Km4wur&—n—m;H(i+q@}ﬁu+mn0.

Fix ro € (0,1) and g > 0 such that for any 0 < r < rg and 0 < € < ¢ there holds

2

—1
mry? (‘16 + M(l + 0(1))> < 2gmryTLe.
gl 2y

Therefore
EU) = |«[™" (ae_bK(rabe -1)— 2qm7q_le|x’b7—q) ‘

Up to reducing ro we have £(U) > 0 in B,, \ {0} for any € € (0, ¢g]. Next, in By \ B,, we have
that Vu, is bounded, therefore
EU) > —Ce

for some constant C' > 0 whenever ¢ is small enough, Consequently this last inequality holds in
whole Bj \ {0}. Finally the function

1
= U*(z)=U(x) + gln(l + Ce)
is a supersolution of (3.1) larger than % in a neighbourhood of x = 0 and near 9B;. Hence
U* > 1. Letting € — 0 yields u, > @. Similarly @ > u, which implies that @ = u, that is
Uy = Usy.
1-(iii)-(i1): Case 0 <y < {. We denote by 7 the solution of

—An=|z|7? in B;

n=20 on 0By, (3.42)

th}(len n(z) = (2—q)?(1—|x|*>79). For e, > 0, set U(z) = u(z)—eE(z) and Uy (z) = U(z)—en(z).
Then

VU = VU + (2 —q)|z|'™4 and — AU} = AU +€Anp = —Au— €|z|79,

q
_ 2, -9  22-q)d . )?
]VUl\q_OVU\ + 22D + ot VUi

q
2

_ 4\2.72 _ !
(2—q)%€ 2(2 — q)e WH) ’

2|2 D|VU[2  [z]r= VU
U1 _ ebUe—be’n,

e (14

e

and
—AU = —Au = m|Vu|?! — ae® = m|V(U + eE)|? — ae?U+<E),
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Since n > 0 and 0 < |z| < 1, %Y (e‘bd” - |x]_b5) < 0. Therefore

—AU; 4 ae®' —m|VU |7 = —€|z|79 + Y (e_bg" - |ac]_be>

(2 —q)2%€? 2(2 — q)¢ A €2 2¢ A\ 2
— Ul? 1 U. — 1|1 — U.
mivUl (+rm\2<q—l>|vm2+\xw—lrvwv ‘ T RPNOR VoY
! 12 2
< —d|z[7 + C|VU ‘ ‘ c ‘ 1+o0(1
< i+ 0P (g + oo * e+ eoe) 040

(3.43)
for some C > 0 as r — 0. In order U; be a subsolution, the problem is reduced to proving that,
under suitable conditions on € and ¢, the expression

’ 2 2
Alz) = —€|z| 1 + 20|V ‘ - e g
() := —€'lz[ 77 + 2C| VU <|x\q—1|VU]+|x|2(q1)|VU|2+!£E||VU\+\$|2WU|2

is negative for r small enough. Because ‘2%' > |VU(z)| > ﬁ near 0, there holds

2¢ |2~ 4P|z 2 462)
v 72 v o)

Az) < —€|z|71+ 29T Cyl|z| 1 ( + +—+ =

We fix € = 20+1CH4 (276/ gty 2y g), then
0 for 0 < |z| <rg.

Proceeding as in is the case (3-1) there exists ¢y and C' > 0 such that, for any 0 < € < ¢y there
holds
S(Ul) S Ce in B1 \ {O} (3.44)

The function z — V.(x) := a(z) + #1In(1 + Ce) satisfies
E(V,) = Cee”™ > C.

Therefore V, is a super solution of (3.44) which is larger than Uy near z = 0 and |z| = 1. Then

by the maximum principle, V. > U;. Letting € — 0 yields @ > w. Similarly u > @, thus u, = .
_ 2

2- The case v = 7.

2-(i) Gradient estimates. We first show that

. 2 1 : 2,
lim (u(a;) ~3 <ln|x —In(1—1In |x])>) =/¢ and ilir(l) |z|Vu(z) = —3i (3.45)

z—0

for some ¢ € [-K, K] with K from inequality (3.21) in Corollary 3.7 and i = ik

We set again w(t,.) = u(r,.) + 2 In7 with ¢ = Inr. Thus w satisfies

2 2
—Zln(l—t)—ng(t,.) < —gln(l—t)—l—K
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and
q
2

wiy + wep — ael’ + me2~Dt ((2 —w)? +wp)? =0. (3.46)

Introducing again z(¢,.) = (In(1 — ¢))~tw(t,.), then

_g_L< (t )<_2+L
b (-t = 7= T (1 —0)

and z which is bounded satisfies equation (3.28); thus w; satisfies (3.29). Since z is bounded
and negative and all the coefficients are smooth and bounded, the standard regularity theory
implies that z is bounded in C%([T" — 1,T' 4 1] x S') independently of T”, thus

lim z(t,.) = —% in C%(S1) (3.47)

t——o0

Set

ML) = w(t, )+ %111(1 1)

Then ) is uniformly bounded and it satisfies in (—oo, 0] x S*,

2 a
b1—12  (1=1)2

q
—Ait — Nop — e — me-0)t (2 —w)? +wj)? = 0. (3.48)

Let A(t) be the circular average of A(¢,.) and A\*(t,.) = A(t,.) — A(t). Then

N — N + 5 (€ =) 4 eCmm9iGr =

a

(1-1)

where G is a bounded function. Again, by Wirtinger inequality we obtain that
[A*(E, )l p2(s1) < € max {et, 6(2_‘1_6)75} = Ce2=a-9t

hence
i [JA(E )l pze1) = 0 (3.49)

By Gagliardo-Nirenberg inequality we have for any p > 1

1—1 1
[ VA% (¢, -)leyp(sl) < C|[VA*(t, -)szzjz(gl) [VA*(t, -)||Z2(51)

i (3.50)
< CIVN ()l gnfn A2, )

1
2qsn

Since \ is bounded in C?(S'), we combined (3.50) with Morrey-Sobolev inequality and obtain,
by taking p > 2,

1
IIVA*(¢, ')HCO’I_%(Sl) < [[A*(¢, ‘)||£2(51) < Ceét, (3.51)
where ¢ = % > 0. The function \ satisfies
I s > N R e A (3.52)
b(1—1)2 (1 —1t)2 ¢
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If it is monotone at —oo, then it converges to some ¢ € [—K, K]|. If it oscillates infinitely many
times when t — —o0, there exists a sequence {t¢,} tending to —oo such that A(t) achieves a local
maximum when ¢ = t3,, and a local minimum when ¢ = to, 1. Hence

Aie(tan) <0 and Apy(tang1) > 0.

We have ) B )
DA — eb)\(t)(e)\(t,.)f)\(t)) NG (1 + D, ')eét)

for some bounded function D, hence
ebX = () (1 + D(t, .)e‘st)

Plugging this estimate into (3.52) we obtain that there exists a bounded function B(t) and v > 0
such that

2 3 -
—3+ ae? ) L eV B(t,) = (1 — t,)* A (tn) (3.53)
This yields
bX(tan) 2 vt bA(t ) 2 vt
eMen) < — — e"2n B(ty,) and e\t > — — P20t Bty 1) (3.54)
ab ab
and finally
- - - 1 2
lglfgop At) = ltiin_i&f)\(t) = t_l}r_noo A(t) = 3 In 0= L. (3.55)
This implies
. 2 1
il_)l)% (u(x) ~3 <ln i In(1 —1In \x|))> =/. (3.56)

To end the estimate we have still to prove that w; — 0. Differentiating (3.46) with respect
to t we obtain

—wyy — wigp + abewy + e* VG =0 (3.57)
where G = O(In(1 — t)). Since " > % we get
d? abe K

—z lwel[ 251y + a— [wil 21y < Aet

where y < 2—¢gand A > 0. Put X(¢t) = |lw(t, .)HLQ(Sl) + %e“t with A’ > A. Then there exists
T* < 0 such that for ¢t <T™ we have

—bK b
—x"+ S D x <o,
+ TN
The corresponding equation
—bK b
L(z):=—a" + ¢ azxz() with ¢t <0

1—1
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admits two linearly independent solutions
z1(t) = (1—t)™ and xy(t) = (1 — 1),

when ¢ < 0 arbitrary and A\; < 0 < Aa. Since X (t) = o(x2(t)) when t — —o0, it follows that
X (t) = O(x1(t)). Hence
lwill 251y < B(L =)™ for t <0 (3.58)

for some B > 0. In order to have a uniform estimate, we use Poisson representation formula for
the solution U of the Dirichlet problem for the Laplacian in the disk of radius R

R%* —y2 (27 U(R, ¢))d
U(r,0) = : (R, 9))d¢ (3.59)
2rRJo  \/r2+ R%2—2rRcos(0 — ¢)
Using the variable t = In7 and U(t, ) = U(r,#), it follows that the bounded solution of
_ﬁtt — U@e =0 in (—OO,T) X Sl
U(T,0) = Ur(6) in S (3.60)
is expressed by
or _ 2t 27 ;
~ — AVA d
0(t,0) = (T, 9))dé (3.61)
2me 0 et +e2T —2et+T cos (0 — @)
Hence, for T = %
t
- 14+ez [27 .
0(1,0) < T /0 0, (5, 6)do (3.62)

From (3.57) there exists some A* > 0 such that the function W (t,0) = wy(t,0) + A*et satisfies
Wi —Wigp<0  in(—00,0)x St
Since
IW (T sy = () + A%y gr) < 20 A%ET + V27 (T, )2y

we derive from (3.58) and (3.62), that there holds for some C' > 0,

(wi(t,0) + A%et), = Wi (t,0) < C((t+1)M  for all (t,0) € (—o0,0] x S™. (3.63)
This implies
2
lim |z|Vu(z) = ——i. (3.64)
z—0 b
The end of the proof is similar to the case § <y < %. O

4 Singular solutions in the case ¢ > 2

In all this section we assume ¢ > 2 and m,b,a > 0.
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4.1 The eikonal equation

The eikonal equation associated to (1.4) is
ae?’ = m|Vw|? in R%\ {0}. (4.1)

This equation is completely integrable since it is equivalent to

By [8] w is radial with respect to 0. Since any solution cannot have extremum, it is either
decreasing or increasing with respect |z|. If it is decreasing on (0, 1] with u(0) = ¢, then

1

q gm?

bln( 1 1 bc> (42)
bad|x| 4+ qgmae

=3
&
1
g
)
[

Letting ¢ — oo yields

1 1

. q qme q 1 q, [ame
lim we(z) := weo(x) = = In =-In <> + - In . (4.3)

emreo b ba%]az\ b ] b ba

This is also a solution of

—Au+ae®™ —m|Vul?=0  in R?\ {0}. (4.4)

1
It vanishes on 9B; if and only if gme = bas.

4.2 Singular solutions

Lemma 4.1 If u is a radial nonnegative solution of (4.4) in By \ {0} it is decreasing on some
(0,7*] C (0,1] and there holds

—/(r) = |/ (r)| > or T for all r € (0,7%], (4.5)
for some ¢ > 0,

Proof. If u is a positive radial function satisfying (4.4) in B; \ {0}, it cannot have any maximum
there in, hence either it is decreasing on (0, 1) which implies that u(0) < u(1), or it is decreasing
in some interval (0,7*) and increasing in (r*,1). For simplicity and without loss of generality,
we will assume that r* = 1 (this is always the case if u(1) = 0). We have

1
—u" — —u' —m|d]? <0,
T

then with V' = —u/, we obtain

1 1
VeV —mVI<0<= V'V I+ VI - m<0= """ +mg—-1)r'"7>0
T T
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Therefore the function 1
7 rl—qvl—q(r) — miq r2=a

q—2
is increasing, which implies
—1
vi=9(r) < ml Sr(L+o(1) asr— 0. (4.6)
q—
Replacing V by —u/ we obtain
1
u'(r) < — (q_2>qqull(1+o(1)) asr — 0 (4.7)
o \m(g—1) ' '

0

Proposition 4.2 Let u be a positive solution of (4.4) in By \{0}. The following statements are
equivalent:

(i) e € L'(By)

(ii) |Vu|? € LY(By).

(iii) u can be extended to in B1 as a Hélder continuous function and the extended function, still
denoted by u, is a solution of

—Au+ ae®™ — m|Vul? =0 in D'(By). (4.8)

Proof. (i) = (i4). If e™ € LY(B), it follows by Brezis-Lions Lemma [5] that |Vu|? € L'(B)
and there exists v > 0 such that

—Au + ae’™ — m|Vul? = 27y5 in D'(By). (4.9)
The average function u satisfies
—(riy ), =7 (m(u% +r2u2)3 — aeﬂ) : (4.10)

Therefore (ra,)’ € L'(0,1) which implies that ri,(r) admits a finite limit when » — 0. If this
limit is not zero, say 7, then

@ (r) = L(L+0(1)) = [ ()] ~ %q

Now

1

, 1

e \g/ e |d9</ (Vau(r,.)|df < </ yvu(r,.)yqde)q
27 27 Js1

Since ¢ > 2 we have |Vu|? ¢ L'(B), contradiction. Hence ¥ = 0. Therefore @,.(r) = o(r—!),
and this implies (4.11 ).
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(i) = (i). By contradiction assume that e®* ¢ L'(By). If |Vu|? € L'(By), then
1 44447 . 1
ry(r) —ur(1) = / <m|Vu\q — aebu> tdt = —a/ etitdt + O(1) — —oo  asr — 0.
T T

Hence rt,(r) = —oo when r — 0, which implies

lim u(r) = o0,
r—0 —Inr

bu is not integrable in B; which implies that the

which contradicts the a priori estimate. Hence e

same holds with |Vu|?. This proves the claim.

(iii) = (). Since u is continuous in By, e’ € L'(By).

(i) = (i44). Since |Vu| € L4(B;) and u is C' in By \ {0}, it follows by Morrey-Sobolev theorem

that it can be extelzlded by continuity to z = 0 and that the resulting function, still denoted by
q

u belongs to C*' 74 (B}). In particular
u(z) — u(0)] < clz|* 7. (4.11)

Furthermore, by Brezis-Lions lemma, there exists 7 > 0 such that (4.9) holds. By the same
averaging method that in the case (1) = (ii), we have also

u(r)

li =
TH%'—IHT 7
The previous estimate implies that v = 0. This ends the proof. g

Remark. If u is a radial function estimate (4.11) can be improved. Actually, since by Lemma 4.1
one has (4.5), the integration of this inequality yields

q—2

[u(r) —u(0)| < ere-t, (4.12)

—2 q—2
and == > =,
q—1 > q

4.3 Classification of solutions with an isolated singularity

The following result has already been proved in the proof of assertion 2-(ii) in Theorem 3.8.
Proposition 8 Let ¢ > 2 and u be a positive solution of (4.4) in By \ {0}. Then

/ Vultds = oo — liminf 4% > % (4.13)
By

z—0 -—ln\x]

Remark Using the estimates of Proposition 2 we have precisely

u(z) > % <ln|x1‘ (1 — ln|x)) K (4.14)
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Under the assumption of Proposition 8 a solution « vanishing on 0B is decreasing. In the
next result we prove that v’ is monotone.

Lemma 2 Let u be a positive radial singular solution of (4.4) in B1\{0}, then ru/(r) is monotone
near v =0
Proof. We set

W(r) = ae™ ") —mlu/(r)|7. (4.15)

Using the equation (4.4) we have
!/
W = o' aeb® (b — gm|u'|72) + gm|u/ |7 (]u’|q + u> )
r
Replacing ae?™ by W + m|u/|9, we obtain
W = (ab— qm]u'|q_2) W + mb|u |9 — (m — 1)gm|u|*92u + @|u’|q
r
Denote
O(r) = u'(r) (b — gm|u'|*7%(r)) ,
and m
N(r) = mblu |9 — (m — 1)gm|u/|?T %’ + q—\u'|q
r
By (4.5), u'r) is nonpositive near r = 0 and tends to —oco when r — 0. Then

qm

2(r) = (m — Dglu/|*7 (1 4+ o(1)) + /|9 asr — 0,

since ¢ > 2. By integration on [r,r] C (0,1),

% (efr,ro G(S)dSW(T)) _ ef:O @(s)dsz(r)

hence

T ro S
W(r)=e" e e(s)dSW(ro) — / e Jr G(t)dtﬁ(s)ds
There exists r* € (0,1) such that X(r) > 0 for (0 < r < r*. Therefore if for some rg € (0,7*]
there holds W(rg) < 0, it follows that W(r) < 0 for any r € (0,7p). Since

(ru') =r (aeb“ — m]u'\q) =W,
this implies that (ru’)’ < 0 on (0,70]. On the contrary, for any if for any r € (0,7*] we have
W(r) > 0, we conclude that (ru') <0 on (0, 79]. O
Proposition 9 Let ¢ > 2 and u be a positive radial solution of (4.4) in By \ {0} satisfying

[, [Vulldz = co. If ru/(r) is monotone then

. ulz) g
lim = -, 4.16
ac1—>0 —ln\a:| b ( )
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Proof. If u satisfies the above assumption, there holds by Propositions 2 and 8,

(+(e)). ()

where K(b) =1ifb>2and K(b) = 2 if 0 < b < 2. We set ¢ = Inr and w(t) = u(r). Then

2L C KM —2) < ulz) < T <1> +1

o B z] , (4.17)

—wy + ae” T2 — ey, |7 = 0. (4.18)

Moreover, if ru/(r) is monotone, then w; is monotone too. From (4.17),

(ln( bl)) —ln( b1>] on (—o0,0).
qma ) ) o qma

If wy is monotone, it admits a limit ¢, finite or not, when ¢ — —oo. The only possibility is that

2 q q
— 1t — — < < —= -
bt K@) In(l —t) < w(t) bt + b

q 2
T o< 2
b~ = b
and w(t) = ¢t(1 + o(1)) when t - —oo. From (4.18),
Wy = _m€(2—q)t|£’q(1 + 0(1)) + ae(bﬁ+2)t+o(t).

There always holds 2 — ¢ > b + 2. In order that wy does not tend to —oo (which would be a
contradiction), necessarily 2 — ¢ = bl + 2 which implies £ = —%. This yields (4.16). O

The proof of Theorem 3 follows by combining Proposition 7, Proposition 8, Lemma 2 and
Proposition 9.

Remark We conjecture that in case (ii) the assumption of radiality is unnecessary.
This type of dichotomy which occurs in this case between regular solutions and only one type
of singular solutions is wellknown for semilinear Lane-Emden equations

—Au=vP in B;\ {0} (4.19)

when N > 3 and p > % To our knowledge it is a novelty for equation of (4.4) and in a
2-dimensional framework.
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