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Abstract

We show the existence of Nash equilibria for the Navier-Stokes system and for the Oseen system. We
consider the cases of the Dirichlet boundary conditions and of the Navier slip boundary conditions. Then, we
study the asymptotic behavior of the Nash equilibria as the friction coefficient goes to ∞ in the Navier slip
boundary condition. More precisely, we show that the Nash equilibria for the Navier slip boundary condition
converge towards a Nash equilibrium for the Dirichlet boundary condition. We also show the convergence of
the corresponding direct and adjoint states.
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1 Introduction

In this article, we consider a multi-objective optimization problem for the motion of a viscous incompressible
fluid. There are many studies in the literature of mono-objective optimization problems for the Navier-Stokes
system or for different fluid models, see, for instance, [3], [17], [18], [28], [33], [31], etc. At the contrary, for
multi-objective optimization problems, there are very few results for the Navier-Stokes systems. First, let us
note that for multi-objective problems, there are several different strategies, coming from the game theory: see
[24], [27], [32], etc. One can quote [15] where the authors consider a Stackelberg-Nash strategy for the Stokes
system and [7, 8] where the authors show the existence of Nash equilibria for the stationary Navier-Stokes
systems. Let us also the works [23], [29] for the case of the Stackelberg strategy for the Navier-Stokes system.

Up to our knowledge, there are no results for the existence of Nash equilibria for the Navier-Stokes system
and our first objective is to show such a result. We consider the case of two different boundary conditions:
the Dirichlet boundary condition and the Navier slip boundary condition. The first boundary condition is the
most standard and corresponds to the case where the fluid adheres to the exterior boundary, that is a no-slip
boundary condition. The Navier slip boundary condition is less standard but is important in some physical
situations. This boundary condition was introduced by Navier in [25] and was used for instance in the following
works: [14], [16], [19], [20], [21], etc. Note that in [6], one can find a rigorous derivation of this condition
from the Boltzmann equation. These Navier slip boundary conditions model the possibility for the fluid to slip
tangentially to the boundary with a friction. Formally, if the corresponding friction coefficient goes to infinity,
one recover the standard no-slip boundary condition.
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Our second objective is to show such a convergence result for the Nash equilibria. We will also consider the
corresponding critical points called Nash quasi-equilibria and show a similar convergence result. We have done
a similar work for a mono-objective optimization problem in [9]. As in the previous work, we need to choose
carefully the functional framework. Working with weak solutions seems an interesting approach since in that
case one can prove existence of global solutions without restrictions on the size of data and of the controls.
Nevertheless, the uniqueness of weak solutions for the Navier-Stokes system is an open problem in dimension 3
and consequently the objective criterion are more complicated to handle in that case. We choose here to work
with strong solutions and the drawbacks is that, in that case, we has to restrict either the the size of the data or
the time of existence. Here, we consider solutions and a criterion written in (0, T ) where T > 0 is given, and we
thus need to have small data and small controls. Moreover, in the idea to show the convergence result, we need
to have a restriction that is uniform with respect to the friction coefficient in the Navier boundary condition.

We consider Ω ⊂ Rd, with d = 2, 3, a bounded domain of class C2,1 and we write the Navier-Stokes system
with Dirichlet boundary conditions:

∂tu+ (u · ∇)u− divT(u, p) = f + g(1)1ω1
+ g(2)1ω2

in (0, T )× Ω,
div u = 0 in (0, T )× Ω,

u = b on (0, T )× ∂Ω,
u(0, ·) = a in Ω.

(1.1)

We have denoted by T(u, p) the Cauchy stress tensor:

T(u, p) := 2D(u)− pI3, D(u) :=
1

2

(
∇u+ (∇u)>

)
.

Note that here, to simplify the notation, we have assumed that the viscosity of the fluid is equal to 1. In the
above system, u and p are respectively the fluid velocity and the pressure of the fluid. The functions a and b
are respectively the initial and the boundary conditions and f is a given source. The controls g(1) and g(2) are
acting on the open nonempty sets ω1, ω2 ⊂ Ω. We consider in this work the case where g :=

(
g(1), g(2)

)
aims at

minimizing the following functionals

Ji

(
g(1), g(2)

)
:=

1

2

∫ T

0

∫
Oi

∣∣∣ug − z(i)
∣∣∣2 dx dt+

M

2

∫ T

0

∫
ωi

∣∣∣g(i)
∣∣∣2 dx dt (1.2)

where Oi (i = 1, 2) are nonempty open subsets of Ω, z(i) ∈ L2(0, T ;L2(Oi))d (i = 1, 2) are given functions,
M > 0 and ug is the solution of (1.1) associated with g =

(
g(1), g(2)

)
.

We assume that the control
(
g(1), g(2)

)
∈ U1 × U2, where

Ui is a nonempty closed convex sets of L2(0, T ;L2(ωi))
d. (1.3)

We are interested by a Nash equilibrium for the above functionals, as defined in the following definition:

Definition 1.1. We say that (
ĝ(1), ĝ(2)

)
∈ U1 × U2

is a Nash equilibrium for (J1, J2) if{
J1

(
ĝ(1), ĝ(2)

)
6 J1

(
g(1), ĝ(2)

) (
g(1) ∈ U1

)
,

J2

(
ĝ(1), ĝ(2)

)
6 J2

(
ĝ(1), g(2)

) (
g(2) ∈ U2

)
.

(1.4)

In what follows, we will work in a framework for which J1 and J2 are Gateaux-differentiable and in that case
if
(
ĝ(1), ĝ(2)

)
is a Nash equilibrium for (J1, J2), then we have the following standard relations:{

D1J1

(
ĝ(1), ĝ(2)

) (
g(1) − ĝ(1)

)
> 0

(
g(1) ∈ U1

)
,

D2J2

(
ĝ(1), ĝ(2)

) (
g(2) − ĝ(2)

)
> 0

(
g(2) ∈ U2

)
.

(1.5)

In the above relations and in what follows, we have denoted by D1Jj(g)(h) and D2Jj(g)(h) the Gateaux-
differential of Jj at g respectively in the direction (h, 0) and (0, h).
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Definition 1.2. We say that
(
ĝ(1), ĝ(2)

)
∈ U1 × U2 is a Nash quasi-equilibrium for (J1, J2) if it satisfies (1.5).

As usual, in the case where
(
ĝ(1), ĝ(2)

)
∈ U1 × U2 is an interior point of U1 × U2, a Nash quasi-equilibrium

for (J1, J2) is characterized by the following relations:{
D1J1

(
ĝ(1), ĝ(2)

)
(h) = 0 (h ∈ U1) ,

D2J2

(
ĝ(1), ĝ(2)

)
(h) = 0 (h ∈ U2) .

1.1 Main results

Let us now consider the hypotheses on the data in (1.1). We assume

f ∈ L2(0, T ;L2(Ω))d, a ∈ H1(Ω)d, div a = 0, a = b(0, ·) on ∂Ω (1.6)

and

b ∈ L2(0, T ;H3/2(∂Ω))d ∩H1/4(0, T ;L2(∂Ω))d,

∫
∂Ω

b(t, ·) · ν dγ = 0 (t ∈ [0, T ]). (1.7)

We denote by Br the closed ball of radius r > 0 in L2(0, T ;L2(ω1)× L2(ω2))d:

Br :=

{
g =

(
g(1), g(2)

)
∈ L2(0, T ;L2(ω1)× L2(ω2))d :

∥∥∥g(i)
∥∥∥
L2(0,T ;L2(ωi))d

6 r (i = 1, 2)

}
. (1.8)

By standard results, if

‖f‖L2(0,T ;L2(Ω))d + ‖a‖H1(Ω)d + ‖b‖L2(0,T ;H3/2(∂Ω))d∩H1/4(0,T ;L2(∂Ω))d 6 r, (1.9)

and
U1 × U2 ⊂ Br (1.10)

with r > 0 small enough, then for any g ∈ U1 × U2, there exists a unique strong solution (ug, pg) of (1.1) with

ug ∈ H1(0, T ;L2(Ω))d ∩ C0([0, T );H1(Ω))d ∩ L2(0, T ;H2(Ω))d, pg ∈ L2(0, T ;H1(Ω)/R).

In particular, with such hypotheses, then J1 and J2 are well-defined in U1×U2. Our first result is the existence
of a Nash equilibrium for the system (1.1):

Theorem 1.3. Assume (1.9) and (1.10) for r small enough so that for any g ∈ U1 × U2, there exists a unique
strong solution (ug, pg) of (1.1).

There exists M0 > 0 such that if M >M0 then there exists a unique Nash equilibrium for (J1, J2) in U1×U2.
Moreover it is the unique Nash quasi-equilibrium for (J1, J2) in U1 × U2.

We also show the existence of a Nash equilibrium for the following system similar to (1.1) but with Navier
slip boundary condition instead of the Dirichlet boundary condition:

∂tu+ (u · ∇)u− divT(u, p) = f + g(1)1ω1
+ g(2)1ω2

in (0, T )× Ω,
div u = 0 in (0, T )× Ω,

u · ν = b · ν on (0, T )× ∂Ω,
[2 (Du) ν + α (u− b)]τ = 0 on (0, T )× ∂Ω,

u(0, ·) = a in Ω.

(1.11)

Here α > 0 is a friction coefficient, assume to be constant and to satisfy

α > ‖b‖L∞(0,T ;L∞(∂Ω))d + 1. (1.12)

We add in particular in (1.7) that
b ∈ L∞(0, T ;L∞(∂Ω))d. (1.13)

3



Similarly as for the Dirichlet case, we can define the functionals

Ji,α

(
g(1), g(2)

)
:=

1

2

∫ T

0

∫
Oi

∣∣∣uα,g − z(i)
∣∣∣2 dx dt+

M

2

∫ T

0

∫
ωi

∣∣∣g(i)
∣∣∣2 dx dt, (1.14)

where uα,g is the solution of (1.11) associated with g =
(
g(1), g(2)

)
. We can also define a Nash equilibrium or a

Nash quasi-equilibrium for (J1,α, J2,α) in a similar way than for (J1, J2) (see Definition 1.1 and Definition 1.2):(
ĝ

(1)
α , ĝ

(2)
α

)
is a Nash equilibrium for (J1,α, J2,α) in U1 × U2 if

 J1,α

(
ĝ

(1)
α , ĝ

(2)
α

)
6 J1,α

(
g(1), ĝ

(2)
α

) (
g(1) ∈ U1

)
,

J2,α

(
ĝ

(1)
α , ĝ

(2)
α

)
6 J2,α

(
ĝ

(1)
α , g(2)

) (
g(2) ∈ U2

)
.

(1.15)

As for system (1.1), there exists r > 0 small enough such that if (1.9) and (1.10) hold, then for any g ∈ U1×U2,
there exists a unique strong solution (uα,g, pα,g) of (1.11) with

uα,g ∈ H1(0, T ;L2(Ω))d ∩ C0([0, T );H1(Ω))d ∩ L2(0, T ;H2(Ω))d, pα,g ∈ L2(0, T ;H1(Ω)/R).

However the value of r may depend on α. In order to have a constant uniform in α, we need to strengthen
our hypotheses on the data. We use a lift of the boundary condition and assume the existence of a solution
u(0) ∈ H1(0, T ;H1(Ω))d of the system

∂tu
(0) − divT(u(0), p(0)) = 0 in (0, T )× Ω,

div u(0) = 0 in (0, T )× Ω,
u(0) = b on (0, T )× ∂Ω,

u(0)(0, ·) = a in Ω.

(1.16)

Then we replace condition (1.9) by the condition

‖f‖L2(0,T ;L2(Ω))d +
∥∥∥u(0)

∥∥∥
H1(0,T ;H1(Ω))d

6 r. (1.17)

We have shown in [9] that there exists r > 0 small enough such that if (1.10) and (1.17) hold then for any
g ∈ U1 × U2 and for any α satisfying (1.12), there exists a unique strong solution (uα,g, pα,g) of (1.11) (see
also Proposition 4.1). In particular, with such hypotheses, then for any α satisfying (1.12), J1,α and J2,α are
well-defined in U1 × U2. Then we have the following result

Theorem 1.4. Assume (1.10) and (1.17) for r small enough so that for any g ∈ U1×U2 and for any α satisfying
(1.12), there exists a unique strong solution (uα,g, pα,g) of (1.11).

There exists M0 > 0 such that if M > M0, then for any α satisfying (1.12), there exists a unique Nash
equilibrium ĝα for (J1,α, J2,α) in U1 × U2. Moreover it is the unique Nash quasi-equilibrium for (J1,α, J2,α) in
U1 × U2.

Note that in the above result the smallness conditions (1.10) and (1.17) are independent of α. We prove
Theorem 1.4 in Section 6, we skip the proof of Theorem 1.3 since it is completely similar. For these proofs, we
need in particular the adjoint system associated with (1.1) given by

−∂tϕ(i) − (ug · ∇)ϕ(i) + (∇ug)> ϕ(i) − divT
(
ϕ(i), πϕ(i)

)
=
(
ug − z(i)

)
1Oi in (0, T )× Ω,

divϕ(i) = 0 in (0, T )× Ω,
ϕ(i) = 0 on (0, T )× ∂Ω,

ϕ(i)(T, ·) = 0 in Ω.

(1.18)
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The adjoint system associated with (1.11) is given by
−∂tϕ(i) − (uα,g · ∇)ϕ(i) + (∇uα,g)> ϕ(i) − divT

(
ϕ(i), πϕ(i)

)
=
(
uα,g − z(i)

)
1Oi in (0, T )× Ω,

divϕ(i) = 0 in (0, T )× Ω,
ϕ(i) · ν = 0 on (0, T )× ∂Ω,[

2
(
Dϕ(i)

)
ν + (α+ b · ν)ϕ(i)

]
τ

= 0 on (0, T )× ∂Ω,

ϕ(i)(T, ·) = 0 in Ω.

(1.19)

We denote in what follows by ϕ
(i)
g and ϕ

(i)
α,g the solutions of the above systems.

In what follows, we write

V 0
ν :=

{
u ∈ L2(Ω)d ; div u = 0, u · ν = 0 on ∂Ω

}
, (1.20)

V 1
0 :=

{
u ∈ H1(Ω)d ; div u = 0, u = 0 on ∂Ω

}
, (1.21)

V −1
0 := (V 1

0 )′.

We denote by P the Leray projector, that is the orthogonal projection P : L2(Ω)d → V 0
ν .

If M is not large enough, it is not clear if we have existence or uniqueness of Nash equilibria or of Nash
quasi-equilibria. Moreover, a Nash quasi-equilibrium is not necessarily a Nash equilibria. In the case where
we have, for any α large enough, a family of Nash quasi-equilibria or a family of Nash equilibria, one can
nevertheless pass to the limit as α→∞. We have the following convergence results:

Proposition 1.5. Assume (1.10) and (1.17) for r small enough so that for any g ∈ U1 × U2 and for any α
satisfying (1.12), there exists a unique strong solution (uα,g, pα,g) of (1.11).

Let us consider a family of Nash equilibria ĝα =
(
ĝ

(1)
α , ĝ

(2)
α

)
for (J1,α, J2,α) in U1 ×U2. Then, there exists a

Nash equilibrium ĝ =
(
ĝ(1), ĝ(2)

)
for (J1, J2) in U1 × U2 and a subsequence α→∞, such that(

ĝ(1)
α , ĝ(2)

α

)
→
(
ĝ(1), ĝ(2)

)
in L2(0, T ;L2(ω1)× L2(ω2))d. (1.22)

Moreover, the corresponding states (direct and adjoint) satisfy

uα,ĝα ⇀ uĝ weakly * in L2(0, T ;H1(Ω))d ∩ L∞(0, T ;L2(Ω))d, (1.23)

uα,ĝα → uĝ strongly in L2(0, T ;L2(Ω))d, (1.24)

uα,ĝα → b strongly in L2(0, T ;L2(∂Ω))d, (1.25)

∂tuα,ĝα ⇀ ∂tuĝ weakly in L4/3(0, T ;V −1
0 ), (1.26)

ϕ
(i)
α,ĝα

⇀ ϕ
(i)
ĝ weakly * in L2(0, T ;H1(Ω))d ∩ L∞(0, T ;L2(Ω))d, (1.27)

ϕ
(i)
α,ĝα
→ ϕ

(i)
ĝ strongly in L2(0, T ;L2(Ω))d, (1.28)

ϕ
(i)
α,ĝα
→ 0 strongly in L2(0, T ;L2(∂Ω))d. (1.29)

∂tϕ
(i)
α,ĝα

⇀ ∂tϕ
(i)
ĝ weakly in L4/3(0, T ;V −1

0 ). (1.30)

We have the following result of convergence for the Nash quasi-equilibria:

Proposition 1.6. Assume the hypotheses of Proposition 1.5 and let us consider a family of Nash quasi-equilibria

ĝα =
(
ĝ

(1)
α , ĝ

(2)
α

)
for (J1,α, J2,α) in U1 × U2. Then, there exists a Nash quasi-equilibrium ĝ =

(
ĝ(1), ĝ(2)

)
for

(J1, J2) in U1 × U2 and a subsequence α → ∞, such that we have the convergence (1.22). Moreover, the
corresponding states (direct and adjoint) satisfy (1.23)–(1.30).
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As a consequence of Proposition 1.5 or Proposition 1.6, we have the following result in the case where the
Nash equilibria are unique:

Corollary 1.7. Assume the hypotheses of Theorem 1.4. Then we have the convergence (1.22) for the Nash
equilibria ĝα of (J1,α, J2,α) towards the Nash equilibrium ĝ of (J1, J2). Moreover the corresponding states (direct
and adjoint) satisfy (1.23)–(1.30).

The above results of convergences in particular Corollary 1.7 can be seen as extensions of previous results
obtained for other partial differential equations: [10], [11], [12], [13], in the case of elliptic problems and [4], [22],
in the case of parabolic systems. We have also obtained in [9] a similar result for the Navier-Stokes system.
Here the main difference is that we consider the case of a multi-objective optimization (Nash equilibrium).

1.2 The bidimensional case

The above results are valid for d = 2 or d = 3. In the case d = 2, we can improve these results. First, we
can work here with weak solutions since one can show the uniqueness of such solutions. Moreover, we assume
(instead of (1.6) and (1.7))

f ∈ L2(0, T ;L2(Ω))d, a ∈ L2(Ω)d, div a = 0, a · ν = b(0, ·) · ν on ∂Ω (1.31)

with

b ∈ L2(0, T ;H3/2(∂Ω))d ∩H1/4(0, T ;L2(∂Ω))d,

∫
∂Ω

b(t, ·) · ν dγ = 0 (t ∈ [0, T ]). (1.32)

To simplify, we consider a lift of b on the boundary, that we still denote by b:

b ∈ H1(0, T ;L2(Ω))d ∩ C0([0, T );H1(Ω))d ∩ L2(0, T ;H2(Ω))d, div b = 0 in (0, T )× Ω. (1.33)

We also assume relation (1.12) (and thus (1.13)). With such hypotheses, we can show the existence and
uniqueness of weak solutions for systems (1.1) and (1.11). We can thus define (J1, J2) and (J1,α, J2,α) by (1.2)
and (1.14) and the Nash equilibrium and Nash quasi-equilibrium by using Definition 1.1 and Definition 1.2.
The main difference with the three-dimensional case is that we do not have any constraint on the size of the
data or on the controls; nevertheless, we need to have bounded controls and we replace (1.3) by the following
hypothesis:

Ui is a nonempty closed bounded convex sets of L2(0, T ;L2(ωi))
d. (1.34)

More precisely our results in that case are

Theorem 1.8. Assume d = 2, (1.31), (1.33) and (1.34). There exists M0 > 0 such that if M >M0 then

• there exists a unique Nash equilibrium for (J1, J2) in U1 × U2. Moreover it is the unique Nash quasi-
equilibrium for (J1, J2) in U1 × U2.

• Assume moreover (1.13). For any α satisfying (1.12), there exists a unique Nash equilibrium ĝα for
(J1,α, J2,α) in U1 × U2. Moreover it is the unique Nash quasi-equilibrium for (J1,α, J2,α) in U1 × U2.

As for the tridimensional case, if M is not large enough, it is not clear that we have the existence or the
uniqueness of Nash equilibria or if a Nash quasi-equilibrium is a Nash equilibrium. Below, we state general
results of convergences that simplify for M large enough.

Proposition 1.9. Assume (1.34). Let us consider a family of Nash equilibria ĝα =
(
ĝ

(1)
α , ĝ

(2)
α

)
for (J1,α, J2,α)

in U1 × U2. Then, there exists a Nash equilibrium ĝ =
(
ĝ(1), ĝ(2)

)
for (J1, J2) in U1 × U2 and a subsequence

α→∞, such that we have the convergences (1.22), (1.23)–(1.25), (1.27)–(1.29), and

∂tuα,ĝα ⇀ ∂tuĝ weakly in L2(0, T ;V −1
0 ), (1.35)

∂tϕ
(i)
α,ĝα

⇀ ∂tϕ
(i)
ĝ weakly in L2(0, T ;V −1

0 ). (1.36)
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Proposition 1.10. Assume (1.34). Let us consider a family of Nash quasi-equilibria ĝα =
(
ĝ

(1)
α , ĝ

(2)
α

)
for

(J1,α, J2,α) in U1×U2. Then, there exists a Nash quasi-equilibrium ĝ =
(
ĝ(1), ĝ(2)

)
for (J1, J2) in U1×U2 and a

subsequence α→∞, such that we have the convergences (1.22), (1.23)–(1.25), (1.27)–(1.29) and (1.35)–(1.36).

The proofs of these results are completely similar and easier than in the tridimensional-case, and we thus
skip them.

The paper is structured as follows. In Section 2, we establish preliminaries results, which are necessary for
the development of the following sections. In Section 3, we consider a simplified case where we replace the
Navier-Stokes system by the linear Oseen systems. This part can be seen as a warm-up before the proof of the
main result. We show the existence and uniqueness of Nash equilibrium and Nash quasi-equilibrium and prove
the asymptotic behavior of the Nash controls and states (direct and adjoint), when the parameter α → ∞. In
Section 4, we go back to the nonlinear problem and we show estimates on the direct and adjoint states for a
Navier-Stokes systems with slip boundary conditions. Section 5 is devoted to the proof of the existence of Nash
quasi-equilibria for the Navier-Stokes system. Finally, in Section 6, we prove the main results of this paper.

2 Preliminaries

2.1 Some useful inequalities

In what follows, we use many times the following Sobolev embeddings valid since d = 2, 3:

H1(Ω) ↪→ L6(Ω), W 1,6(Ω) ⊂ L∞(Ω). (2.1)

We recall the Korn inequality (see, for instance, [26]): there exists C > 0 such that for any w ∈ H1(Ω)d,

‖w‖2H1(Ω)d 6 C
(
‖w‖2L2(Ω)d + ‖Dw‖2L2(Ω)d×d

)
. (2.2)

In order to estimate the nonlinear term in the Navier-Stokes system, we have the following standard result:

Lemma 2.1. There exists a positive constant C > 0 such that for any t > 0 and for any

w ∈ L2(0, t;H1(Ω)d) ∩ L∞(0, t;L2(Ω)d), u ∈ L2(0, t;W 1,6(Ω)d),

we have the estimate∣∣∣∣∫ t

0

∫
Ω

((w · ∇)u) · w dx ds

∣∣∣∣ 6 C

∫ t

0

(
‖u‖W 1,6(Ω)d + ‖u‖2W 1,6(Ω)d

)
‖w‖2L2(Ω)d ds+

∫ t

0

∫
Ω

|Dw|2 dx ds.

Proof. First, we use a Hölder inequality:∣∣∣∣∫ t

0

∫
Ω

((w · ∇)u) · w dx ds

∣∣∣∣ 6 C

∫ t

0

‖∇u‖L6(Ω)d×d ‖w‖L6(Ω)d ‖w‖L2(Ω)d ds.

Then, using the Sobolev embedding in (2.1) and the Korn inequality (2.2), we deduce∣∣∣∣∫ t

0

∫
Ω

((w · ∇)u) · w dx ds

∣∣∣∣ 6 C

∫ t

0

‖∇u‖L6(Ω)d×d

(
‖w‖L2(Ω)d + ‖Dw‖L2(Ω)d×d

)
‖w‖L2(Ω)d ds.

Combining the above estimate with a Young inequality, we conclude the proof of this lemma.

For the next result, we recall that V 0
ν is defined by (1.20).

Lemma 2.2. There exists a constant C > 0 independent of α such that for any w ∈ H2(Ω)d ∩ V 0
ν , we have

‖w‖W 1,6(Ω)d 6 C
(
‖P∆w‖L2(Ω)d + ‖[2D(w)ν + αw]τ‖H1/2(∂Ω)d

)
.
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Proof. We write that w is solution of the following Stokes system:
−∆w +∇Q = −P∆w in Ω,

divw = 0 in Ω,
w · ν = 0 on ∂Ω,

[2D(w)ν + αw]τ = jτ on ∂Ω,

where j := 2D(w)ν + αw. Then, we obtain the result by applying Theorem 2.2 in [2] (see also [1]).

Since Ui is a nonempty closed convex subset of L2(0, T ;L2(ωi))
d, we can consider the projection PUi onto

Ui. Let us consider an element e(i) ∈ Ui. Then we have the relation for any g(i) ∈ L2(0, T ;L2(ωi))
d:∥∥∥PUig(i) − g(i)

∥∥∥
L2(0,T ;L2(ωi))d

6
∥∥∥e(i) − g(i)

∥∥∥
L2(0,T ;L2(ωi))d

and in particular, there exists a constant C > 0 such that for any g(i) ∈ L2(0, T ;L2(ωi))
d∥∥∥PUig(i)

∥∥∥
L2(0,T ;L2(ωi))d

6 C

(
1 +

∥∥∥g(i)
∥∥∥
L2(0,T ;L2(ωi))d

)
. (2.3)

2.2 Derivatives of the states

As we recall it in the introduction, it is classical that for r > 0 small enough, (1.9)-(1.10) imply the existence
and uniqueness of a strong solution (ug, pg) of (1.1) for any g =

(
g(1), g(2)

)
∈ U1 × U2. We can thus consider

the control-to-state mapping

L : g =
(
g(1), g(2)

)
∈ U1 × U2 7→ (ug, pg) .

One can show (see, for instance [18]) that L is Gateaux-differentiable in any direction h ∈ L2(0, T ;L2(ωi))
d and

the corresponding derivative
(
w

(i)
g , π

w
(i)
g

)
:= DiL (g) (h) is the solution of

∂tw
(i)
g + (ug · ∇)w

(i)
g +

(
w

(i)
g · ∇

)
ug − divT

(
w

(i)
g , π

w
(i)
g

)
= h1ωi in (0, T )× Ω,

divw
(i)
g = 0 in (0, T )× Ω,

w
(i)
g = 0 on (0, T )× ∂Ω,

w
(i)
g (0, ·) = 0 in Ω.

This shows that Ji defined by (1.2) is Gateaux-differentiable in any direction h ∈ L2(0, T ;L2(ωi))
d and the

corresponding derivative writes

DiJi (g) (h) =

∫ T

0

∫
Oi

(
ug − z(i)

)
· w(i)

g dx dt+M

∫ T

0

∫
ωi

g(i) · h dx dt.

Note that we have the following useful relation with the adjoint system (1.18):∫ T

0

∫
Oi

(
ug − z(i)

)
· w(i)

g dx dt =

∫ T

0

∫
ωi

ϕ(i)
g · h dx dt.

Therefore,

DiJi (g) (h) =

∫ T

0

∫
ωi

(
ϕ(i)
g +Mg(i)

)
· h dx dt. (2.4)

In particular, the relations in (1.5) write∫ T

0

∫
ωi

(
ϕ

(i)
ĝ +Mĝ(i)

)
·
(
g(i) − ĝ(i)

)
dx dt > 0

(
g(i) ∈ Ui

)
.

We have shown the following result:
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Lemma 2.3. The couple
(
ĝ(1), ĝ(2)

)
is a Nash quasi-equilibrium for (J1, J2) if and only if

(
ĝ(1), ĝ(2)

)
=

PU1

−
(
ϕ

(1)
ĝ

)
|ω1

M

 ,PU2

−
(
ϕ

(2)
ĝ

)
|ω2

M


 (2.5)

where PUi is the projection from L2(0, T ;L2(ωi))
d onto Ui.

We can now consider the control-to-adjoint state mapping

M(i) : g =
(
g(1), g(2)

)
∈ U1 × U2 7→

(
ϕ(i)
g , π

ϕ
(i)
g

)
.

One can show that M(i) is Gateaux-differentiable in any direction h ∈ L2(0, T ;L2(ωi))
d and the corresponding

derivative
(
ψ

(i)
g , π

ψ
(i)
g

)
:= DiM(i) (g) (h) is the solution of

−∂tψ(i)
g − (ug · ∇)ψ

(i)
g + (∇ug)> ψ(i)

g − divT
(
ψ

(i)
g , π

ψ
(i)
g

)
= (w

(i)
g · ∇)ϕ

(i)
g −

(
∇w(i)

g

)>
ϕ

(i)
g + w

(i)
g 1Oi in (0, T )× Ω,

divψ
(i)
g = 0 in (0, T )× Ω,

ψ
(i)
g = 0 on (0, T )× ∂Ω,

ψ
(i)
g (T, ·) = 0 in Ω.

Using this property and (2.4), we can differentiate Ji a second time and we obtain

D2
i Ji (g) (h, h) =

∫ T

0

∫
ωi

(
ψ(i)
g +Mh

)
· h dx dt.

This formula is the cornerstone of the proof of the strict convexity that will be done in Section 6. We have similar
formulas and results for the case of the Navier slip boundary conditions. We can define the control-to-state
mapping and the control-to-adjoint state mappings:

Lα : g =
(
g(1), g(2)

)
∈ U1 × U2 7→ (uα,g, pα,g) , M(i)

α : g =
(
g(1), g(2)

)
∈ U1 × U2 7→

(
ϕ(i)
α,g, πϕ(i)

α,g

)
.

They are Gateaux-differentiable in any direction h ∈ L2(0, T ;L2(ωi))
d and the corresponding derivatives(

w(i)
α,g, πw(i)

α,g

)
:= DiLα (g) (h) and

(
ψ(i)
α,g, πψ(i)

α,g

)
:= DiM(i)

α (g) (h)

are respectively the solutions of

∂tw
(i)
α,g + (uα,g · ∇)w

(i)
α,g + (w

(i)
α,g · ∇)uα,g − divT(w

(i)
α,g, πw(i)

α,g
) = h1ωi in (0, T )× Ω,

divw
(i)
α,g = 0 in (0, T )× Ω,

w
(i)
α,g · ν = 0 on (0, T )× ∂Ω,[

2
(
Dw(i)

α,g

)
ν + αw

(i)
α,g

]
τ

= 0 on (0, T )× ∂Ω,

w
(i)
α,g(0, ·) = 0 in Ω,

(2.6)

and 

−∂tψ(i)
α,g − (uα,g · ∇)ψ

(i)
α,g + (∇uα,g)> ψ(i)

α,g − divT
(
ψ

(i)
α,g, πψ(i)

α,g

)
= (w

(i)
α,g · ∇)ϕ

(i)
α,g −

(
∇w(i)

α,g

)>
ϕ

(i)
α,g + w

(i)
α,g1Oi in (0, T )× Ω,

divψ
(i)
α,g = 0 in (0, T )× Ω,

ψ
(i)
α,g · ν = 0 on (0, T )× ∂Ω,[

2
(
Dψ(i)

α,g

)
ν + (α+ b · ν)ψ

(i)
α,g

]
τ

= 0 on (0, T )× ∂Ω,

ψ
(i)
α,g(T, ·) = 0 in Ω.

(2.7)

We have the following result
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Lemma 2.4. The couple
(
ĝ

(1)
α , ĝ

(2)
α

)
is a Nash quasi-equilibrium for (J1,α, J2,α) if and only if

(
ĝ(1)
α , ĝ(2)

α

)
=

PU1

−
(
ϕ

(1)
α,ĝα

)
|ω1

M

 ,PU2

−
(
ϕ

(2)
α,ĝα

)
|ω2

M


 . (2.8)

Moreover, Ji,α is two times Gateaux-differentiable and

D2
i Ji,α (g) (h, h) =

∫ T

0

∫
ωi

(
ψ(i)
α,g +Mh

)
· h dx dt. (2.9)

3 The linear case

In this section, we consider a simplified case, where we replace the (nonlinear) Navier-Stokes system by the
following linear Oseen systems. We can work here for d = 2 or d = 3.

∂tu+ (U · ∇)u+ (u · ∇)U − divT(u, p) = f + g(1)1ω1
+ g(2)1ω2

in (0, T )× Ω,
div u = 0 in (0, T )× Ω,

u = b on (0, T )× ∂Ω,
u(0, ·) = a in Ω,

(3.1)

and 
∂tu+ (U · ∇)u+ (u · ∇)U − divT(u, p) = f + g(1)1ω1 + g(2)1ω2 in (0, T )× Ω,

div u = 0 in (0, T )× Ω,
u · ν = b · ν on (0, T )× ∂Ω,

[2 (Du) ν + α (u− b)]τ = 0 on (0, T )× ∂Ω,
u(0, ·) = a in Ω,

(3.2)

where
U ∈ L2(0, T ;H2(Ω))d ∩H1(0, T ;L2(Ω)d), divU = 0 in (0, T )× Ω.

In that case, there are several simplifications with respect to the nonlinear case. First, we can work with weak
solutions and we can weaken the hypotheses on the data. More precisely, we can consider the same hypotheses
on the data than in the bidimensional nonlinear case: we assume relations (1.31), (1.32) and (1.33) instead of
(1.6) and (1.7).

We also replace the relation (1.12) by

α > ‖U‖L∞(0,T ;L∞(∂Ω))d + 1 (3.3)

and the relation (1.13) by
U ∈ L∞(0, T ;L∞(∂Ω))d.

The weak solutions ug of (3.1) are defined as functions satisfying

ug ∈ L2(0, T ;H1(Ω)d) ∩ C0([0, T ];L2(Ω)d) ∩H1(0, T ;V −1
0 ),{

div ug = 0 in (0, T )× Ω,
ug = b on (0, T )× ∂Ω,

and

−
∫ T

0

∫
Ω

∂tϕ · ug dx dt−
∫ T

0

∫
Ω

[(U · ∇)ϕ] · ug dx dt+

∫ T

0

∫
Ω

[(ug · ∇)U ] · ϕ dx dt

+

∫ T

0

∫
Ω

2D(ϕ) : D(ug) dx dt =

∫ T

0

∫
Ω

f · ϕ dx dt+

∫
Ω

ϕ(0, ·) · a dx

+

∫ T

0

∫
ω1

g(1) · ϕ dx dt+

∫ T

0

∫
ω2

g(2) · ϕ dx dt,
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for any ϕ ∈ C1
c ([0, T );V 1

0 ). We recall that V 1
0 is defined by (1.21).

We define similarly the weak solutions uα,g of (3.2): they are the functions satisfying

uα,g ∈ L2(0, T ;H1(Ω)d) ∩ C0([0, T ];L2(Ω)d) ∩H1(0, T ;V −1
ν ),{

div uα,g = 0 in (0, T )× Ω,
uα,g · ν = b · ν on (0, T )× ∂Ω,

and

−
∫ T

0

∫
Ω

∂tϕ · uα,g dx dt−
∫ T

0

∫
Ω

[(U · ∇)ϕ] · uα,g dx dt+

∫ T

0

∫
Ω

[(uα,g · ∇)U ] · ϕ dx dt

+

∫ T

0

∫
Ω

2D(ϕ) : D(uα,g) dx dt+

∫ T

0

∫
∂Ω

[
(U · ν) (uα,g)τ + α(uα,g − b)τ

]
· ϕτ dγ dt

=

∫ T

0

∫
Ω

f · ϕ dx dt+

∫
Ω

ϕ(0, ·) · a dx

+

∫ T

0

∫
ω1

g(1) · ϕ dx dt+

∫ T

0

∫
ω2

g(2) · ϕ dx dt,

for any ϕ ∈ C1
c ([0, T );V 1

ν ) where

V 1
ν :=

{
u ∈ H1(Ω)d ; div u = 0, u · ν = 0 on ∂Ω

}
,

V −1
ν := (V 1

ν )′.

We also introduce the functionals

Ji

(
g(1), g(2)

)
:=

1

2

∫ T

0

∫
Oi

∣∣∣ug − z(i)
∣∣∣2 dx dt+

M

2

∫ T

0

∫
ωi

∣∣∣g(i)
∣∣∣2 dx dt (3.4)

and

Ji,α

(
g(1), g(2)

)
:=

1

2

∫ T

0

∫
Oi

∣∣∣uα,g − z(i)
∣∣∣2 dx dt+

M

2

∫ T

0

∫
ωi

∣∣∣g(i)
∣∣∣2 dx dt. (3.5)

As for the nonlinear case, we can define the Nash equilibrium and the Nash quasi-equilibrium for (J1,α, J2,α)
and for (J1, J2) as in Definition 1.1 and Definition 1.2.

Theorem 3.1. There exists M0 > 0 such that for any M > M0 and for any α satisfying (3.3), there exists a

unique Nash equilibrium
(
ĝ

(1)
α , ĝ

(2)
α

)
for (J1,α, J2,α). There exists also a unique Nash equilibrium

(
ĝ(1), ĝ(2)

)
for

(J1, J2).

In order to show the above result, we introduce the adjoint systems associated with (3.1) and with (3.2):
−∂tϕ(i) − (U · ∇)ϕ(i) + (∇U)

>
ϕ(i) − divT(ϕ(i), πϕ(i)) =

(
ug − z(i)

)
1Oi in (0, T )× Ω,

divϕ(i) = 0 in (0, T )× Ω,
ϕ(i) = 0 on (0, T )× ∂Ω,

ϕ(i)(T, ·) = 0 in Ω,

(3.6)


−∂tϕ(i) − (U · ∇)ϕ(i) + (∇U)

>
ϕ(i) − divT(ϕ(i), πϕ(i)) =

(
uα,g − z(i)

)
1Oi in (0, T )× Ω,

divϕ(i) = 0 in (0, T )× Ω,
ϕ(i) · ν = 0 on (0, T )× ∂Ω,[

2
(
Dϕ(i)

)
ν + (α+ U · ν)ϕ(i)

]
τ

= 0 on (0, T )× ∂Ω,

ϕ(i)(T, ·) = 0 in Ω.

(3.7)

In what follows, we denote by ϕ
(i)
g and ϕ

(i)
α,g the solutions of the above systems. As in the nonlinear case, we can

use these adjoint systems to characterize the Nash equilibrium as the Nash quasi-equilibrium. We show below
the existence and uniqueness of these quasi-equilibria.
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Proposition 3.2. There exists M0 > 0 such that if M > M0, for any α satisfying (3.3), then there exists a
unique ĝα ∈ U1 × U2 such that

(
ĝ(1)
α , ĝ(2)

α

)
=

PU1

−
(
ϕ

(1)
α,ĝα

)
|ω1

M

 ,PU2

−
(
ϕ

(2)
α,ĝα

)
|ω2

M


 . (3.8)

There exists a unique ĝ ∈ U1 × U2 such that

(
ĝ(1), ĝ(2)

)
=

PU1

−
(
ϕ

(1)
ĝ

)
|ω1

M

 ,PU2

−
(
ϕ

(2)
ĝ

)
|ω2

M


 . (3.9)

Proof. We only perform the proof for the Navier boundary conditions since it is completely similar for the
Dirichlet boundary conditions. We consider the following map

Λα : U1 × U2 → U1 × U2,

PU1

−
(
ϕ

(1)
α,g

)
|ω1

M

 ,PU2

−
(
ϕ

(2)
α,g

)
|ω2

M


 . (3.10)

We are going to show that for M large enough (independently of α) Λα is a strict contraction (and thus admits
a unique fixed point). Let us consider

g], g[ ∈ U1 × U2

and let us denote by
(
uα,], ϕ

(1)
α,], ϕ

(2)
α,]

)
and

(
uα,[, ϕ

(1)
α,[, ϕ

(2)
α,[

)
the corresponding solutions of (3.2), (3.7). We set

u := uα,] − uα,[, ϕ(i) := ϕ
(i)
α,] − ϕ

(i)
α,[, g := g] − g[

that satisfy the following systems
∂tu+ (U · ∇)u+ (u · ∇)U − divT(u, p) = g(1)1ω1

+ g(2)1ω2
in (0, T )× Ω,

div u = 0 in (0, T )× Ω,
u · ν = 0 on (0, T )× ∂Ω,

[2 (Du) ν + αu]τ = 0 on (0, T )× ∂Ω,
u(0, ·) = 0 in Ω,

(3.11)


−∂tϕ(i) − (U · ∇)ϕ(i) + (∇U)

>
ϕ(i) − divT(ϕ(i), πϕ(i)) = u1Oi in (0, T )× Ω,

divϕ(i) = 0 in (0, T )× Ω,
ϕ(i) · ν = 0 on (0, T )× ∂Ω,[

2
(
Dϕ(i)

)
ν + (α+ U · ν)ϕ(i)

]
τ

= 0 on (0, T )× ∂Ω,

ϕ(i)(T, ·) = 0 in Ω.

(3.12)

Then, using the property of the projection, we deduce from (3.10) the existence of a constant C > 0 such
that

‖Λα(g])− Λα(g[)‖L2(0,T ;L2(ω1)×L2(ω2))d 6
C

M

∥∥∥(ϕ(1), ϕ(2)
)∥∥∥

L2(0,T ;L2(Ω))2d
(3.13)

Multiplying the first equation of (3.12) by ϕ(i), we deduce the existence of a constant C > 0 such that for
α satisfying (3.3),∥∥∥(ϕ(1), ϕ(2)

)∥∥∥
L2(0,T ;H1(Ω))2d

+
∥∥∥(ϕ(1), ϕ(2)

)∥∥∥
L∞(0,T ;L2(Ω))2d

6 C ‖u‖L2(0,T ;L2(Ω))d . (3.14)

Multiplying the first equation of (3.11) by u, we deduce the existence of a constant C > 0 such that for α
satisfying (3.3),

‖u‖L2(0,T ;H1(Ω))d + ‖u‖L∞(0,T ;L2(Ω))d 6 C ‖g‖L2(0,T ;L2(Ω))2d . (3.15)

Combining (3.13), (3.14), (3.15), we conclude the proof.
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We are now in position to prove Theorem 3.1:

Proof of Theorem 3.1. We only show the proof in the case of the Navier slip boundary conditions, the proof in

the case of the Dirichlet boundary condition is similar. We are going to show that
(
ĝ

(1)
α , ĝ

(2)
α

)
given by (3.8) in

Proposition 3.2 is the unique Nash equilibrium for (J1,α, J2,α).
Assume θ ∈ [0, 1] and g(1) ∈ U1. Let us also consider the system

∂tw + (U · ∇)w + (w · ∇)U − divT(w, πw) =
(
g(1) − ĝ(1)

α

)
1ω1

in (0, T )× Ω,

divw = 0 in (0, T )× Ω,
w · ν = 0 on (0, T )× ∂Ω,

[2 (Dw) ν + αw]τ = 0 on (0, T )× ∂Ω,
w(0, ·) = 0 in Ω.

(3.16)

Then, using the linearity of the Oseen system (3.2), we have the following relation

u
α,
(
θg(1)+(1−θ)ĝ(1)

α ,ĝ
(2)
α

) = uα,ĝα + θw.

In particular, from (3.5),

J1,α

(
θg(1) + (1− θ)ĝ(1)

α , ĝ(2)
α

)
= J1,α (ĝα) + θ

∫ T

0

∫
O1

(
uα,ĝ − z(1)

)
· w dxdt+

1

2

∫ T

0

∫
O1

θ2|w|2 dx dt

+Mθ

∫ T

0

∫
ω1

ĝ(1)
α ·

(
g(1) − ĝ(1)

α

)
dx dt+

M

2

∫ T

0

∫
ω1

θ2
∣∣∣g(1) − ĝ(1)

α

∣∣∣2 dx dt. (3.17)

Then multiplying the first equation of (3.16) by ϕ̂
(1)
α and the first equation of (3.7) by w, we obtain after some

integrations by parts that∫ T

0

∫
O1

(
uα,ĝ − z(1)

)
· w dxdt =

∫ T

0

∫
ω1

ϕ̂(1)
α ·

(
g(1) − ĝ(1)

α

)
dx dt. (3.18)

We deduce from the above relation and (3.17) that

J1,α

(
θg(1) + (1− θ)ĝ(1)

α , ĝ(2)
α

)
> J1,α (ĝα) +Mθ

∫ T

0

∫
ω1

(
ĝ(1)
α +

ϕ̂
(1)
α

M

)
·
(
g(1) − ĝ(1)

α

)
dx dt.

Using (3.9), the above relation implies

J1,α

(
θg(1) + (1− θ)ĝ(1)

α , ĝ(2)
α

)
> J1,α (ĝα)

and thus
J1,α

(
g(1), ĝ(2)

α

)
> J1,α (ĝα) .

With a similar proof for J2,α, we deduce that ĝα is a Nash equilibrium.
Conversely, if ĝα is a Nash equilibrium, then we deduce from (3.17) and (3.18) that∫ T

0

∫
ω1

(
ĝ(1)
α +

ϕ̂
(1)
α

M

)
·
(
g(1) − ĝ(1)

α

)
dx dt > 0

for any g(1) ∈ U1 and this yields that

ĝ(1)
α = PU1

−
(
ϕ̂

(1)
α

)
|ω1

M

 .

By proceeding similarly for i = 2, we deduce that ĝα is the solution of (3.8) which yields the uniqueness of the
Nash equilibrium, by applying Proposition 3.2.
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Theorem 3.3. There exists M0 > 0 such that for any M > M0, we have convergence as α → ∞ of the Nash
equilibria: (

ĝ(1)
α , ĝ(2)

α

)
→
(
ĝ(1), ĝ(2)

)
in L2(0, T ;L2(ω1)× L2(ω2))d.

Moreover, the corresponding states (direct and adjoint) satisfy (1.23)–(1.25), (1.27)–(1.29) and (1.35)–(1.36).

Proof. First, let us recall that uα,ĝα and ϕα,ĝα are the solution of (3.2), (3.7) and (3.8). Setting

ũ := uα,ĝα − b, f̃ := f − ∂tb+ ∆b− (U · ∇)b− (b · ∇)U,

we have 
∂tũ+ (U · ∇)ũ+ (ũ · ∇)U − divT(ũ, p) = f̃ + ĝ

(1)
α 1ω1 + ĝ

(2)
α 1ω2 in (0, T )× Ω,

div ũ = 0 in (0, T )× Ω,
ũ · ν = 0 on (0, T )× ∂Ω,

[2 (Dũ) ν + αũ]τ = − [2 (Db) ν]τ on (0, T )× ∂Ω,
ũ(0, ·) = a− b(0, ·) in Ω.

By multiplying the first equation of the above system by ũ and integrating in time and space, we obtain

1

2

∫
Ω

|ũ(t, ·)|2 dx+

∫ t

0

∫
Ω

2 |Dũ|2 dx ds+

∫ t

0

∫
∂Ω

α |ũτ |2 dγ ds

+

∫ t

0

∫
Ω

(ũ · ∇)U · ũ dx ds+

∫ t

0

∫
∂Ω

U · ν |ũ|
2

2
dγ

=

∫ t

0

∫
Ω

f̃ · ũ dx ds+

∫ t

0

∫
ω1

ĝ(1)
α · ũ dx ds+

∫ t

0

∫
ω2

ĝ(2)
α · ũ dx ds

−
∫ t

0

∫
∂Ω

[2 (Db) ν]τ · ũτ dγ ds+
1

2

∫
Ω

|a(x)− b(0, x)|2 dx. (3.19)

Using Lemma 2.1, there exists a constant C > 0 such that∣∣∣∣∫ t

0

∫
Ω

(ũ · ∇)U · ũ dx ds
∣∣∣∣ 6 C

∫ t

0

(
‖U‖H2(Ω)d + ‖U‖2H2(Ω)d

)
‖ũ‖2L2(Ω)d ds+

∫ t

0

∫
Ω

|Dũ|2 dx ds.

Combining the above estimate with (3.19) and the Grönwall inequality, we deduce that there exists a constant
C > 0 such that

‖uα,ĝα‖
2
L∞(0,T ;L2(Ω))d + ‖uα,ĝα‖

2
L2(0,T ;H1(Ω))d + α ‖uα,ĝα − b‖

2
L2(0,T ;L2(∂Ω))d

6 C
(

1 + ‖ĝα‖2L2(0,T ;L2(ω1)×L2(ω2))d

)
. (3.20)

Then we multiply the first equation of system (3.7) by ϕ
(i)
α,ĝα

and integrating in time and space, we obtain

1

2

∫
Ω

∣∣∣ϕ(i)
α,ĝα

(t, x)
∣∣∣2 dx+

∫ T

t

∫
Ω

2
∣∣∣Dϕ(i)

α,ĝα

∣∣∣2 dx ds+
α

2

∫ T

t

∫
∂Ω

∣∣∣ϕ(i)
α,ĝα

∣∣∣ dγ ds
6 −

∫ T

t

∫
Ω

(
(∇U)

>
ϕ

(i)
α,ĝα

)
· ϕ(i)

α,ĝα
dx ds+

∫ T

t

∫
Oi

(
uα,ĝα − z(i)

)
· ϕ(i)

α,ĝα
dx ds.

Proceeding as above, we deduce

‖ϕα,ĝα‖
2
L∞(0,T ;L2(Ω))d + ‖ϕα,ĝα‖

2
L2(0,T ;H1(Ω))d + α ‖ϕα,ĝα‖

2
L2(0,T ;L2(∂Ω))d

6 C
(

1 + ‖uα,ĝα‖
2
L2(0,T ;L2(Ω))d

)
. (3.21)
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On the other hand, from (3.8) and (2.3), there exists a constant C > 0 such that

‖ĝα‖2L2(0,T ;L2(ω1)×L2(ω2))d 6 C

(
1 +

1

M2
‖ϕα,ĝα‖

2
L2(0,T ;L2(Ω))d

)
.

Combining the above relation with (3.20) and (3.21), we deduce the existence of two constants M0 and C > 0
such that for any M >M0 and for any α satisfying (3.3),

‖uα,ĝα‖
2
L∞(0,T ;L2(Ω))d + ‖uα,ĝα‖

2
L2(0,T ;H1(Ω))d + α ‖uα,ĝα − b‖

2
L2(0,T ;L2(∂Ω))d

+ ‖ϕα,ĝα‖
2
L∞(0,T ;L2(Ω))d + ‖ϕα,ĝα‖

2
L2(0,T ;H1(Ω))d + α ‖ϕα,ĝα‖

2
L2(0,T ;L2(∂Ω))d

+ ‖ĝα‖2L2(0,T ;L2(ω1)×L2(ω2))d 6 C.

We can now show the convergence of the controls and of the state. First we deduce from the above bounds and
the linearity of the system the existence of g̃ ∈ U1 × U2 that

ĝα ⇀ g̃ in L2(0, T ;L2(ω1)× L2(ω2))d, (3.22)

uα,ĝα ⇀ ug̃ weakly * in L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L2(Ω))d, (3.23)

∂tuα,ĝα ⇀ ∂tug̃ weakly in L2(0, T ;V −1
0 ), (3.24)

uα,ĝα → ug̃ strongly in L2(0, T ;L2(Ω))d, (3.25)

uα,ĝα → b strongly in L2(0, T ;L2(∂Ω))d, (3.26)

ϕ
(i)
α,ĝα

⇀ ϕ
(i)
g̃ weakly * in L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L2(Ω))d, (3.27)

∂tϕ
(i)
α,ĝα

⇀ ∂tϕ
(i)
g̃ weakly in L2(0, T ;V −1

0 ), (3.28)

ϕ
(i)
α,ĝα
→ ϕ

(i)
g̃ strongly in L2(0, T ;L2(Ω))d, (3.29)

ϕ
(i)
α,ĝα
→ 0 strongly in L2(0, T ;L2(∂Ω))d. (3.30)

Using the continuity of the projection PUi , we deduce from (3.29), (3.8) and (3.9) that

ĝα → ĝ in L2(0, T ;L2(ω1)× L2(ω2))d,

and thus we obtain that g̃ = ĝ, which concludes the proof of the theorem.

4 Estimates on the direct and the adjoint states

In this section, and all that follows, we go back to the study of the nonlinear problem, that is the study of
the Nash equilibria for (1.1) and (1.11). This section is devoted to several estimates, independent of α of the
systems (1.11), (1.19), and their derivatives, (2.6) and (2.7).

We define the following norm:

‖u‖W :=
(
‖u‖2L∞(0,T ;H1(Ω))d + ‖P∆u‖2L2(0,T ;L2(Ω))d + ‖u‖2L2(0,T ;W 1,6(Ω))d

)1/2

,

where we recall that P is the Leray projection. First we recall a result obtained in [9]:

Proposition 4.1. Assume T > 0 and that (1.16) admits a solution u(0) ∈ H1(0, T ;H2(Ω))d. There exist
positive constants r and K such that if (1.10) and (1.17) hold, then for any g ∈ U1 × U2 and for any α >
‖b‖L∞(0,T ;L∞(∂Ω))d + 1, system (1.11) admits a unique strong solution

(uα,g, pα,g) ∈
(
H1(0, T ;L2(Ω))d ∩ L2(0, T ;H2(Ω))d

)
× L2(0, T ;H1(Ω)/R).

Moreover,
‖uα,g‖2W + α ‖uα,g − b‖2L∞(0,T ;L2(∂Ω))d 6 K. (4.1)
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Remark 4.2. Note that in [9], we consider a different lifting than u(0) for the nonhomogeneous boundary
condition in system (1.11). Nevertheless, the proof is completely similar and the additional regularity hypothesis
u(0) ∈ H1(0, T ;H2(Ω))d only involves a and b here (see (1.16)), which is why we choose to consider such a
lifting instead of the lifting in [9].

Let us state now the result for the adjoint system (1.19):

Proposition 4.3. With the hypotheses of Proposition 4.1, there exists a constant C > 0 such that if (1.10) and
(1.17) hold, then for any g ∈ U1 × U2 and for any α > ‖b‖L∞(0,T ;L∞(∂Ω))d + 1, system (1.19) admits a unique
strong solution (

ϕ(i)
α,g, πϕ(i)

α,g

)
∈
(
H1(0, T ;L2(Ω))d ∩ L2(0, T ;H2(Ω))d

)
× L2(0, T ;H1(Ω)/R).

Moreover, ∥∥∥ϕ(i)
α,g

∥∥∥2

W
+ α

∥∥∥ϕ(i)
α,g

∥∥∥2

L∞(0,T ;L2(∂Ω))d
6 CeCK , (4.2)

where K is the constant appearing in Proposition 4.1.

The proof is similar to the proof of Proposition 4.1 and also to the proof of Proposition 4.5 below, and we
thus skip it.

For the system (2.6), we have the following result:

Proposition 4.4. With the hypotheses of Proposition 4.1, there exists a constant C > 0 such that if (1.10) and
(1.17) hold, then for any g ∈ U1 × U2, for any α > ‖b‖L∞(0,T ;L∞(∂Ω))d + 1, and for any h ∈ L2(0, T ;L2(ωi))

d,

system (2.6) admits a unique strong solution(
w(i)
α,g, πw(i)

α,g

)
∈
(
H1(0, T ;L2(Ω))d ∩ L2(0, T ;H2(Ω))d

)
× L2(0, T ;H1(Ω)/R).

Moreover, ∥∥∥w(i)
α,g

∥∥∥2

W
+ α

∥∥∥w(i)
α,g

∥∥∥2

L∞(0,T ;L2(∂Ω))d
6 CeCK ‖h‖2L2(0,T ;L2(ωi))d

, (4.3)

where K is the constant appearing in Proposition 4.1.

Proof. The proof can be done by a standard Galerkin method. The key point in a such a proof is the a priori
estimates for the approximated solutions obtained by the Galerkin method. Since these proofs are classical (see,
for instance, [30, pp. 255–260, pp. 283–289]) we show here only the a priori estimates on the solutions (without
approximation).

We multiply the first equation of (2.6) by w
(i)
α,g and we integrate in time and space:

1

2

∫
Ω

∣∣∣w(i)
α,g

∣∣∣2 dx+

∫ t

0

∫
Ω

2
∣∣∣Dw(i)

α,g

∣∣∣2 dx ds+

∫ t

0

∫
∂Ω

α

2

∣∣∣w(i)
α,g

∣∣∣2 dγ ds

6
∫ t

0

∫
Ω

(
h1ωi − (w(i)

α,g · ∇)uα,g

)
· w(i)

α,g dx ds. (4.4)

Using Lemma 2.1, we have∫ t

0

∫
Ω

(
(w(i)

α,g · ∇)uα,g

)
· w(i)

α,g dx ds

6 C

∫ t

0

(
‖uα,g‖W 1,6(Ω)d + ‖uα,g‖2W 1,6(Ω)d

)∥∥∥w(i)
α,g

∥∥∥2

L2(Ω)
ds+

∫ t

0

∫
Ω

∣∣∣Dw(i)
α,g

∣∣∣2 dx ds.
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Combining the above estimate with (4.4) and (4.1) and using the Grönwall lemma, we deduce that∥∥∥w(i)
α,g

∥∥∥2

L∞(0,T ;L2(Ω))d
+
∥∥∥w(i)

α,g

∥∥∥2

L2(0,T ;H1(Ω))d
+ α

∥∥∥w(i)
α,g

∥∥∥2

L2(0,T ;L2(∂Ω))d
6 C ‖h‖2L2(0,T ;L2(ωi))d

eCK .

Then, we multiply the first equation of (2.6) by −P∆w
(i)
α,g and we integrate in time and space:∫

Ω

∣∣∣Dw(i)
α,g(t, x)

∣∣∣2 dx+

∫ t

0

∫
Ω

∣∣∣P∆w(i)
α,g

∣∣∣2 dx ds+
α

2

∫
∂Ω

∣∣∣w(i)
α,g

∣∣∣2 dγ

6 C

∫ t

0

∫
Ω

∣∣∣(uα,g · ∇)w(i)
α,g + (w(i)

α,g · ∇)uα,g

∣∣∣2 dx ds+ C ‖h‖2L2(0,T ;L2(ωi))d
. (4.5)

Then, from Hölder’s inequality,∫ t

0

∫
Ω

∣∣∣(uα,g · ∇)w(i)
α,g + (w(i)

α,g · ∇)uα,g

∣∣∣2 dx ds

6 C

∫ t

0

(
‖uα,g‖2L∞(Ω)d

∥∥∥∇w(i)
α,g

∥∥∥2

L2(Ω)d×d
+
∥∥∥w(i)

α,g

∥∥∥2

L6(Ω)d
‖∇uα,g‖2L6(Ω)d×d

)
ds. (4.6)

Applying Lemma 2.2, the Korn inequality and Sobolev embeddings, we deduce from (4.5) and (4.6) that

∥∥∥w(i)
α,g(t, ·)

∥∥∥2

H1(Ω)d
+

∫ t

0

∫
Ω

∣∣∣P∆w(i)
α,g

∣∣∣2 dx ds+

∫ t

0

∥∥∥w(i)
α,g

∥∥∥2

W 1,6(Ω)d
ds+

α

2

∫
∂Ω

∣∣∣w(i)
α,g

∣∣∣2 dγ

6 C

∫ t

0

‖uα,g‖2W 1,6(Ω)d

∥∥∥w(i)
α,g(t, ·)

∥∥∥2

H1(Ω)d
ds+ C ‖h‖2L2(0,T ;L2(ωi))d

.

Thus, combining (4.5), (4.6), and the Grönwall lemma we deduce the result.

Proposition 4.5. With the hypotheses of Proposition 4.1, there exists a constant C > 0 such that if (1.10) and
(1.17) hold, then for any g ∈ U1 × U2, for any α > ‖b‖L∞(0,T ;L∞(∂Ω))d + 1, and for any h ∈ L2(0, T ;L2(ωi))

d,

system (2.7) admits a unique strong solution(
ψ(i)
α,g, πψ(i)

α,g

)
∈
(
H1(0, T ;L2(Ω))d ∩ L2(0, T ;H2(Ω))d

)
× L2(0, T ;H1(Ω)/R).

Moreover, ∥∥∥ψ(i)
α,g

∥∥∥2

W
+ α

∥∥∥ψ(i)
α,g

∥∥∥2

L∞(0,T ;L2(∂Ω))d
6 CeCK ‖h‖2L2(0,T ;L2(ωi))d

. (4.7)

where K is the constant appearing in Proposition 4.1.

Proof. As the proof of Proposition 4.4, the proof of this proposition can be done by a standard Galerkin method
where the main point is to show the a priori estimates for the approximated solutions obtained by the Galerkin
method. We refer for instance to [30, pp. 255–260, pp. 283–289] where more details are given. Here, we show
only the a priori estimates on the solutions (without approximation).

We multiply the first equation of (2.7) by ψ
(i)
α,g

1

2

∫
Ω

∣∣∣ψ(i)
α,g(t, x)

∣∣∣2 dx+

∫ T

t

∫
Ω

2
∣∣∣Dψ(i)

α,g

∣∣∣2 dx ds+

∫ T

t

∫
∂Ω

α

2

∣∣∣ψ(i)
α,g

∣∣∣2 dγ ds

6
∫ T

t

∫
Ω

(
(∇uα,g)> ψ(i)

α,g

)
· ψ(i)

α,g dx ds

+ C

∫ T

t

∫
Ω

∣∣∣∣(w(i)
α,g · ∇)ϕ(i)

α,g −
(
∇w(i)

α,g

)>
ϕ(i)
α,g + w(i)

α,g1Oi

∣∣∣∣2 dx ds+ C

∫ T

t

∫
Ω

∣∣∣ψ(i)
α,g

∣∣∣2 dx ds.
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From Lemma 2.1, we have∫ T

t

∫
Ω

(
(∇uα,g)> ψ(i)

α,g

)
· ψ(i)

α,g dx ds 6 C

∫ T

t

(
‖uα,g‖2W 1,6(Ω)d + ‖uα,g‖W 1,6(Ω)d

)∥∥∥ψ(i)
α,g

∥∥∥2

L2(Ω)d
ds

+

∫ T

t

∫
Ω

∣∣∣Dψ(i)
α,g

∣∣∣2 dx ds.

Moreover,∫ T

t

∫
Ω

∣∣∣∣(w(i)
α,g · ∇)ϕ(i)

α,g −
(
∇w(i)

α,g

)>
ϕ(i)
α,g

∣∣∣∣2 dx ds

6 C

(∥∥∥w(i)
α,g

∥∥∥2

L∞(0,T ;H1(Ω))d

∥∥∥ϕ(i)
α,g

∥∥∥2

L2(0,T ;W 1,6(Ω))d
+
∥∥∥w(i)

α,g

∥∥∥2

L2(0,T ;W 1,6(Ω))d

∥∥∥ϕ(i)
α,g

∥∥∥2

L∞(0,T ;H1(Ω))d

)
.

Applying the Grönwall lemma, we deduce∥∥∥ψ(i)
α,g

∥∥∥2

L∞(0,T ;L2(Ω))d
+
∥∥∥ψ(i)

α,g

∥∥∥2

L2(0,T ;H1(Ω))d
+ α

∥∥∥ψ(i)
α,g

∥∥∥2

L2(0,T ;L2(∂Ω))d

6 C

(∥∥∥w(i)
α,g

∥∥∥2

L∞(0,T ;H1(Ω))d

∥∥∥ϕ(i)
α,g

∥∥∥2

L2(0,T ;W 1,6(Ω))d
+
∥∥∥w(i)

α,g

∥∥∥2

L2(0,T ;W 1,6(Ω))d

∥∥∥ϕ(i)
α,g

∥∥∥2

L∞(0,T ;H1(Ω))d

+
∥∥∥w(i)

α,g

∥∥∥2

L2(0,T ;L2(Ω))d

)
exp

(
C ‖uα,g‖2L2(0,T ;W 1,6(Ω))d

)
.

Combining the above relation with (4.1), (4.2) and (4.3), we deduce∥∥∥ψ(i)
α,g

∥∥∥2

L∞(0,T ;L2(Ω))d
+
∥∥∥ψ(i)

α,g

∥∥∥2

L2(0,T ;H1(Ω))d
+ α

∥∥∥ψ(i)
α,g

∥∥∥2

L2(0,T ;L2(∂Ω))d
6 CeCK ‖h‖2L2(0,T ;L2(ωi))d

.

Now, we multiply the first equation of (2.7) by −P∆ψ
(i)
α,g and we integrate in time and space:∫

Ω

∣∣∣Dψ(i)
α,g(t, x)

∣∣∣2 dx+ α

∫
∂Ω

|ψτ (t, ·)|2 dγ +

∫ T

t

∫
Ω

∣∣∣P∆ψ(i)
α,g

∣∣∣2 dx ds

6 C

(∥∥∥w(i)
α,g

∥∥∥2

W

∥∥∥ϕ(i)
α,g

∥∥∥2

W
+
∥∥∥w(i)

α,g

∥∥∥2

W

)
+ C

∫ T

t

∫
Ω

‖uα,g‖2W 1,6(Ω)d

∥∥∥ψ(i)
α,g

∥∥∥2

H1(Ω)d
ds.

Combining the above relation with (4.1), (4.2) and (4.3), we deduce (4.7).

5 Existence of the Nash quasi-equilibria

This section is devoted to the proof of the existence of Nash quasi-equilibria for (J1,α, J2,α) in U1 × U2. More
precisely, we show the following result:

Theorem 5.1. Assume (1.10) and (1.17) with r > 0 given in Proposition 4.1. There exists a constant C > 0
such that if

M > CeCK (5.1)

with K in Proposition 4.1, then, for any α > ‖b‖L∞(0,T ;L∞(∂Ω))d+1, there exists a unique Nash quasi-equilibrium

ĝα for (J1,α, J2,α) in U1 × U2. Moreover, the corresponding (direct and adjoint) states satisfy(
uα,ĝα , ϕ

(1)
α,ĝα

, ϕ
(2)
α,ĝα

)
∈
(
H1(0, T ;L2(Ω))d ∩ L2(0, T ;H2(Ω))d

)3
and there exists a constant C > 0 independent of α such that

‖uα,ĝα‖
2
W +

2∑
i=1

∥∥∥ϕ(i)
α,ĝα

∥∥∥2

W
+ α ‖uα,ĝα − b‖

2
L∞(0,T ;L2(∂Ω))d + α

∥∥∥ϕ(i)
α,ĝα

∥∥∥2

L∞(0,T ;L2(∂Ω))d
6 CeCK .
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Proof. Assume α > ‖b‖L∞(0,T ;L∞(∂Ω))d + 1. We define the following mapping:

Λα : U1 × U2 → U1 × U2,

PU1

−
(
ϕ

(1)
α,g

)
|ω1

M

 ,PU2

−
(
ϕ

(2)
α,g

)
|ω2

M


 ,

where
(
ϕ

(1)
α,g, ϕ

(2)
α,g

)
are the solutions of (1.19) obtained in Proposition 4.3. From Lemma 2.4, the fixed points

gα of Λα are the Nash quasi-equilibria for (J1,α, J2,α). We thus have to show the existence and the uniqueness
of a fixed point of Λα in U1 × U2.

Assume
g], g[ ∈ U1 × U2

and let us denote by
(
uα,], ϕ

(1)
α,], ϕ

(2)
α,]

)
and

(
uα,[, ϕ

(1)
α,[, ϕ

(2)
α,[

)
the corresponding solutions of (1.11), (1.19). We

set
u := uα,] − uα,[, ϕ(i) := ϕ

(i)
α,] − ϕ

(i)
α,[, g := g] − g[

We can check that
∂tu+ (u · ∇)uα,] + (uα,[ · ∇)u− divT(u, p) = g(1)1ω1

+ g(2)1ω2
in (0, T )× Ω,

div u = 0 in (0, T )× Ω,
u · ν = 0 on (0, T )× ∂Ω,

[2 (Du) ν + αu]τ = 0 on (0, T )× ∂Ω,
u(0, ·) = 0 in Ω.

(5.2)

Multiplying the first equation by u and integrating in time and space, we deduce that

1

2

∫
Ω

|u(t, ·)|2 dx+

∫ t

0

∫
Ω

2 |Du|2 dx ds+

∫ t

0

∫
∂Ω

α |u|2 dγ ds

+

∫ t

0

∫
Ω

(u · ∇)uα,] · u dx ds+

∫ t

0

∫
∂Ω

b · ν |u|
2

2
dγ

=

∫ t

0

∫
ω1

g(1) · u dx ds+

∫ t

0

∫
ω2

g(2) · u dx ds.

Using the Grönwall lemma, we obtain

‖u‖2L∞(0,T ;L2(Ω)) + ‖u‖2L2(0,T ;H1(Ω)) 6 C ‖g‖2L2(0,T ;L2(ω1)×L2(ω2))d e
C‖uα,]‖2L2(0,T ;W1,6(Ω))d .

Multiplying the first equation of (5.2) by −P∆u and integrating in time and space, we deduce that∫
Ω

|Du(t, x)|2 dx+

∫ t

0

∫
Ω

|P∆u|2 dx ds+

∫
∂Ω

α |uτ (t, ·)|2 dγ ds

6 C

∫ t

0

∫
Ω

∣∣(u · ∇)uα,] + (uα,[ · ∇)u
∣∣2 dx ds+ C ‖g‖2L2(0,T ;L2(ω1)×L2(ω2))d . (5.3)

On the other hand, there exists a positive constant C > 0 such that∫ t

0

∫
Ω

∣∣(u · ∇)uα,] + (uα,[ · ∇)u
∣∣2 dx ds

6 C

∫ t

0

(
‖u‖2L6(Ω)d ‖uα,]‖

2
W 1,6(Ω)d +

∥∥uα,[∥∥2

L∞(Ω)d
‖∇u‖2L2(Ω)d×d

)
ds. (5.4)
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Thus, combining (5.3), (5.4), and the Grönwall lemma we deduce

‖u‖2W + α ‖u‖2L∞(0,T ;L2(∂Ω))d

6 C ‖g‖2L2(0,T ;L2(ω1)×L2(ω2))d exp

(
C

∫ t

0

(
‖uα,]‖2W 1,6(Ω)d +

∥∥uα,[∥∥2

W 1,6(Ω)d

)
ds

)
.

Using (4.1), we obtain

‖u‖2W + α ‖u‖2L∞(0,T ;L2(∂Ω))d 6 CeCK ‖g‖2L2(0,T ;L2(ω1)×L2(ω2))d . (5.5)

Using (1.19), we obtain the system satisfied by ϕ:

−∂tϕ(i) − (uα,] · ∇)ϕ(i) + (∇uα,])> ϕ(i) − (u · ∇)ϕ
(i)
[ + (∇u)

>
ϕ

(i)
[

−divT(ϕ(i), πϕ(i)) = u1Oi in (0, T )× Ω,

divϕ(i) = 0 in (0, T )× Ω,
ϕ(i) · ν = 0 on (0, T )× ∂Ω,[

2
(
Dϕ(i)

)
ν + (α+ b · ν)ϕ(i)

]
τ

= 0 on (0, T )× ∂Ω,

ϕ(i)(T, ·) = 0 in Ω.

Multiplying the first equation by ϕ(i) and integrating in time and space, we deduce that

1

2

∫
Ω

∣∣∣ϕ(i)(t, x)
∣∣∣2 dx+

∫ T

t

∫
Ω

2
∣∣∣Dϕ(i)

∣∣∣2 dx ds+
α

2

∫ T

t

∫
∂Ω

∣∣∣ϕ(i)
∣∣∣ dγ ds

6 −
∫ T

t

∫
Ω

(
(∇uα,])> ϕ(i) − (u · ∇)ϕ

(i)
[ + (∇u)

>
ϕ

(i)
[

)
· ϕ(i) dx ds+

∫ T

t

∫
Oi
u · ϕ(i) dx ds. (5.6)

In order to estimate the right-hand side of (5.6), we first use an integration by parts to obtain∫
Ω

(
(∇u)

>
ϕ

(i)
[

)
· ϕ(i) dx = −

∫
Ω

((
ϕ(i) · ∇

)
ϕ

(i)
[

)
· u dx.

Then, using the above relation and combining it with Lemma 2.1 and with Hölder inequalities, we find∣∣∣∣∣
∫ T

t

∫
Ω

(
(∇uα,])> ϕ(i) − (u · ∇)ϕ

(i)
[ + (∇u)

>
ϕ

(i)
[

)
· ϕ(i) dx ds

∣∣∣∣∣
6 C

∫ T

t

(
‖∇uα,]‖2L6(Ω)d + ‖∇uα,]‖L6(Ω)d

)∥∥∥ϕ(i)
∥∥∥2

L2(Ω)d
ds+

∫ T

t

∥∥∥Dϕ(i)
∥∥∥2

L2(Ω)d×d
ds

+ C

∫ T

t

‖u‖2H1(Ω)d

∥∥∥∇ϕ(i)
[

∥∥∥2

L6(Ω)d×d
ds+ C

∫ T

t

∥∥∥ϕ(i)
∥∥∥2

L2(Ω)d
ds. (5.7)

Combining (5.6) and (5.7), we deduce

1

2

∫
Ω

∣∣∣ϕ(i)(t, x)
∣∣∣2 dx+

∫ T

t

∫
Ω

∣∣∣Dϕ(i)
∣∣∣2 dx ds+

α

2

∫ T

t

∫
∂Ω

∣∣∣ϕ(i)
∣∣∣ dγ ds

6 C

∫ T

t

(
‖∇uα,]‖2L6(Ω)d×d + 1

)∥∥∥ϕ(i)
∥∥∥2

L2(Ω)d
ds+ C

∫ T

t

‖u‖2H1(Ω)d

(∥∥∥∇ϕ(i)
[

∥∥∥2

L6(Ω)d×d
+ 1

)
ds.

Applying the Grönwall lemma, we obtain∥∥∥ϕ(i)
∥∥∥2

L∞(0,T ;L2(Ω))d
+
∥∥∥ϕ(i)

∥∥∥2

L2(0,T ;H1(Ω))d
+ α

∥∥∥ϕ(i)
∥∥∥2

L2(0,T ;L2(∂Ω))d

6 C ‖u‖2L∞(0,T ;H1(Ω))d

(∫ T

t

(∥∥∥∇ϕ(i)
[

∥∥∥2

L6(Ω)d×d
+ 1

)
ds

)
exp

(
C

∫ T

t

(
‖∇uα,]‖2L6(Ω)d×d + 1

)
ds

)
.
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Using (4.1), (4.2) and (5.5), the above estimate implies∥∥∥ϕ(i)
∥∥∥2

L∞(0,T ;L2(Ω))d
+
∥∥∥ϕ(i)

∥∥∥2

L2(0,T ;H1(Ω))d
+ α

∥∥∥ϕ(i)
∥∥∥2

L2(0,T ;L2(∂Ω))d
6 CeCK ‖g‖2L2(0,T ;L2(ω1)×L2(ω2))d .

The above estimate and the property of the projection yield

‖Λα(g])− Λα(g[)‖L2(0,T ;L2(ω1)×L2(ω2))d 6
C

M

∥∥∥(ϕ(1), ϕ(2)
)∥∥∥

L2(0,T ;L2(Ω))2d

6
CeCK

M
‖g‖2L2(0,T ;L2(ω1)×L2(ω2))d .

Thus, we deduce that if M satisfies (5.1) for a constant C sufficiently large, then Λα is a strict contraction on
U1 × U2 and thus admits a unique fixed point.

6 Proof of the main results

6.1 Proof of Theorem 1.4

Proof of Theorem 1.4. Assume α > ‖b‖L∞(0,T ;L∞(∂Ω))d + 1. First, from (2.9) and Proposition 4.5, we deduce

that if M satisfies (5.1) for C large enough, then for any g ∈ U1 × U2, and for any h ∈ L2(0, T ;L2(ωi))
d,

D2
i Ji,α (g) (h, h) > C ‖h‖2L2(0,T ;L2(ωi))d

.

By assuming (5.1) for C possibly larger, we can also apply Theorem 5.1 and deduce the existence and uniqueness
of a Nash quasi-equilibrium ĝα for (J1,α, J2,α) in U1 × U2. It satisfies in particular D1J1,α

(
ĝ

(1)
α , ĝ

(2)
α

)(
g(1) − ĝ(1)

α

)
> 0

(
g(1) ∈ U1

)
,

D2J2,α

(
ĝ

(1)
α , ĝ

(2)
α

)(
g(2) − ĝ(2)

α

)
> 0

(
g(2) ∈ U2

)
.

We thus deduce (1.15) and this ends the proof of the theorem.

6.2 Proof of Proposition 1.5

Proof. Since
(
ĝ

(1)
α , ĝ

(2)
α

)
∈ Br (where we recall that Br is defined by (1.8)), we can use the Banach-Alaoglu

theorem: there exists ĝ :=
(
ĝ(1), ĝ(2)

)
∈ Br such that, up to a subsequence, as α→∞,(

ĝ(1)
α , ĝ(2)

α

)
⇀ ĝ in L2(0, T ;L2(ω1)× L2(ω2))d. (6.1)

Since U1 × U2 is a closed convex sets of L2(0, T ;L2(ω1) × L2(ω2))d, then using the Mazur theorem (see, for
instance, [5, Theorem 3.7, p.60]) we deduce that ĝ ∈ U1 × U2. Then, using [9, Proposition 3.1], we deduce
(1.23)-(1.30). Assume now that g(1) ∈ L2(0, T ;L2(ω1)). Then as α→∞,(

g(1), ĝ(2)
α

)
⇀
(
g(1), ĝ(2)

)
in L2(0, T ;L2(ω1)× L2(ω2))d.

We deduce again from [9, Proposition 3.1] that if α→∞,

u
α,
(
g(1),ĝ

(2)
α

) → u(g(1),ĝ(2)) strongly in L2(0, T ;L2(Ω))d.
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In particular, taking the lim sup of the relation

J1,α

(
ĝ(1)
α , ĝ(2)

α

)
=

1

2

∫ T

0

∫
Oi

∣∣∣∣uα,(ĝ(1)
α ,ĝ

(2)
α

) − z(1)

∣∣∣∣2 dx dt+
M

2

∫ T

0

∫
ω1

∣∣∣ĝ(1)
α

∣∣∣2 dx dt

6 J1,α

(
ĝ(1), ĝ(2)

α

)
=

1

2

∫ T

0

∫
Oi

∣∣∣∣uα,(ĝ(1),ĝ
(2)
α

) − z(1)

∣∣∣∣2 dx dt+
M

2

∫ T

0

∫
ω1

∣∣∣ĝ(1)
∣∣∣2 dx dt

we deduce

lim sup
α→∞

∫ T

0

∫
ω1

∣∣∣ĝ(1)
α

∣∣∣2 dx dt 6
∫ T

0

∫
ω1

∣∣∣ĝ(1)
∣∣∣2 dx dt.

From (6.1), we also have ∫ T

0

∫
ω1

∣∣∣ĝ(1)
∣∣∣2 dx dt 6 lim inf

α→∞

∫ T

0

∫
ω1

∣∣∣ĝ(1)
α

∣∣∣2 dx dt

and we deduce that
ĝ(1)
α → ĝ(1) in L2(0, T ;L2(ω1))d.

We have similarly
ĝ(2)
α → ĝ(2) in L2(0, T ;L2(ω2))d.

Then we can pass to the limit in (1.15) and we obtain (1.4). This implies that ĝ is a Nash equilibrium for
(J1, J2) in U1 × U2.

6.3 Proof of Proposition 1.6

Proof. We proceed as in the proof of Proposition 1.5: there exists ĝ :=
(
ĝ(1), ĝ(2)

)
∈ U1 ×U2 such that, up to a

subsequence, as α→∞, (
ĝ(1)
α , ĝ(2)

α

)
⇀ ĝ in L2(0, T ;L2(ω1)× L2(ω2))d. (6.2)

Then, using [9, Proposition 3.1], we deduce (1.23)-(1.30). From (2.8), (1.28) and (6.2), we deduce that ĝ
satisfies (2.5). Using Lemma 2.3, we conclude that ĝ is a Nash quasi-equilibrium and from (1.28), we also obtain
(1.22).
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from SECyT-UNRC, Ŕıo Cuarto, Argentina. T.T. was partially supported by the French National Research
Agency (ANR), Project TRECOS, ANR-20-CE40-0009. Part of this work was done when T.T. was visiting the
National University of Ŕıo Cuarto.
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[22] José Luis Menaldi and Domingo A. Tarzia. A distributed parabolic control with mixed boundary conditions.
Asymptot. Anal., 52(3-4):227–241, 2007.

[23] Cristhian Montoya and Luz de Teresa. Robust Stackelberg controllability for the Navier-Stokes equations.
NoDEA, Nonlinear Differ. Equ. Appl., 25(5):33, 2018. Id/No 46.

[24] John Nash. Non-cooperative games. Ann. Math. (2), 54:286–295, 1951.
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[29] Takéo Takahashi, Luz de Teresa, and Yingying Wu-Zhang. Stackelberg exact controllability for the Boussi-
nesq system. https://hal.science/hal-04228391, 2023.

[30] Roger Temam. Navier-Stokes equations, volume 2 of Studies in Mathematics and its Applications. North-
Holland Publishing Co., Amsterdam-New York, revised edition, 1979. Theory and numerical analysis, with
an appendix by F. Thomasset.
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