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Abstract. Blockchain technology has gained popularity as a decentral-
ized, tamper-proof, and verifiable data structure. Apart from financial
transactions and assets management, there is also a growing interest in
using it as a backbone for metadata management systems. Metadata
systems aim to facilitate the organization of big data and to provide
a comprehensive interface to users for data discovery and navigation.
However, the fundamental design of the blockchain has the limitations
in data querying and visualization that results in poor user experience.
On the other side, the graph databases are widely adapted for building
user friendly metadata systems with efficient relationship discovery capa-
bilities. In our paper, we attempt to preserve the benefits of both types of
systems through the integration of blockchain and property graph tech-
nologies. First, we formalize the structures used for metadata storage
and a metadata conceptual model. Second, we provide the algorithms
for mapping the (meta)data from the blockchain to the property graph
model. And third, we show a prototype implementation of the integrated
system to validate our proposal.

Keywords: Metadata Management - Blockchain - Property Graphs

1 Introduction

The proliferation of blockchain technology within enterprise information sys-
tems introduced a new direction of research. Beyond the financial bookkeeping
applications (e.g. Bitcoin), there is a growing interest in applying this immutable,
verifiable, and decentralized data structure for metadata management [5,6,8-10].
In this case, the metadata (e.g. format, location, size) is stored as the on-chain
information about the off-chain data assets (e.g. datasets, media artifacts). Such
architectural design aims to provide better scalability, verifiable records history,
and to eliminate the downsides of storing the data in the blockchain directly [11].
Generally, metadata systems are required to provide an interface to the users
for enabling data discovery, querying, analytics etc. In recent years, the graph
databases become widely adapted for metadata management of big data plat-
forms, both, in industrial tools [14,15] and in the academic works [7,12,19]. The
main motivation for graph-model data storage is that it naturally supports data
relationship modeling and it is not constrained to the strict schema enforcement
compared to relational databases which enables scalability and flexibility [1].
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A number of recent research studies have dedicated efforts to using graph
technologies for enhancing blockchain capabilities. One of the directions is Di-
rected Acyclic Graph (DAG) based ledgers [18]. But the goal of implementing
the DAG structure is to overcome the fundamental transaction bandwidth issues
seen in traditional blockchains.

Another direction focuses on conducting blockchain analytics by mapping
the underlying on-chain data into the graphs. The majority of these analytical
tasks are related to financial market predictions, fraud prevention, or community
detection and evolution. According to the literature [13], almost all these systems
are based on nodes representing account addresses or smart contracts, and edges
representing asset flows or communication channels (e.g. contract calls).

We highlight that there is a growing demand for further research on the inte-
gration of graph technologies with the blockchain, particularly in the context of
metadata management. As part of our contribution, we propose a formal model
for metadata transformation from blockchain to property graphs and present a
proof-of-concept system.

The paper is organized as follows: in Section 2 we review the related works
and provide the necessary theoretical foundation. Section 3 depicts our formal
model for generic and schema-dependent blockchain transformation. Section 4
outlines our prototype that implements the proposed formal models and in Sec-
tion 5 we summarise our contribution and provide future research perspectives.

2 Background

In this section, we describe the related works of metadata systems and graph-
enhanced blockchains. Then we introduce the blockchain and property graph
formal models that will be used latter for our metadata mapping rules.

2.1 Related Works

Recently, there have been a growing number of proposals to use the blockchain
structure as a decentralized metadata storage and management solution.

Garcia-Barriocanal et al. have researched the way of storing the metadata by
using the globally accessible IPFS distributed technology [8]. Kumar et al. have
considered the case of a widely utilized HDFS data storage and processing solu-
tion and proposed to improve the fault-tolerance mechanisms of the coordinator
nodes by distributing the metadata information with the blockchain [9].

Demichev et al. have developed a system for tracking and managing the
provenance metadata in the healthcare data-sharing scenarios [5], while Dol-
hopolov et al. have introduced a generalized blockchain-based metadata man-
agement system for a decentralized data mesh platform [6].

On the other side, as Sawadogo et Darmont point out [12], graph-based mod-
elling is the most common way to implement the metadata systems thanks to the
advantages of automatic information enrichment and advanced querying. Indeed,
such commercial products as Apache Atlas [14] and DataHub Project [15] adopt



Verifiable and Friendly Metadata Management 3

the property-graph data modelling for providing flexible and efficient metadata
system. Eichler et al. have used a Neo4j graph database for implementing a gen-
eral and expandable metadata model called HANDLE [7] and Ziegler et al. have
used Neo4j for metadata management in the data lake context [19].

Unsurprisingly, the interest in enhancing the blockchain with graphs has
been growing. In their vision paper, Bellomarini et al. have outlined the two-way
positive impact cycle between the knowledge graphs (KG) and the blockchain [3].
On one side, KG can help with the knowledge-based smart contract generation
process. On the other side, blockchain can be used for knowledge verification as
it represents the unmodified source of data.

Cano-Benito et al. have proposed to use the blockchain for storing the on-
tologies in a way that would help to build the semantic web [4] and Fluree [16]
database is an industrial solution based on Resource Description Framework
technology that supports immutable data structure similar to the blockchain.

The closest work to ours is a contribution made by Tsoulias et al. [17]. The
authors used the Neo4J database for directly storing the blockchain data as
nodes and edges. They implemented the proof-of-work and proof-of-stake pro-
tocols with Python programming language and used the property-graph model
to store the data. The work also verifies the solution against different real-world
situations, like 51% Attack.

However, their proposal does not account for the integration of already run-
ning blockchain systems, but rather considers the situation of a new system
bootstrap. It does not provide any discussion on the data migration from exist-
ing blockchains to the graph model what is in fact addressed in our proposal by
the means of provided algorithms and mapping rules.

2.2 Blockchain Model

We describe a general model that can be applied to a wide range of blockchains,
including Bitcoin, Ethereum, or Hypeledger Fabric that is used in our prototype.
Due to the space limits, we omitted a complete formal definition and rather
provide a general description thereafter.

Blockchain B is a sequence of cryptographically signed blocks. The blocks
are made of transactions issued by user accounts and a header h that has a hash
value of all transactions within that block. The first block in the blockchain is
a genesis block that may contain arbitrary data. Each following block contains
a header that also has a reference to the previous header and its hash value
(established via function refy,). This way the blockchain provides a verifiable
and tamper-proof data structure.

Usually, transactions change the account state. They are comprised of the
operations over the assets, e.g. substitution of some currency from account x
and equivalent amount addition to the account y. We can write it down as a
key-value pair (k,v) that represents the account label and balance respectively.

In scenario of using the blockchain as a metadata system, we can apply this
approach for storing information about the data assets by using (k,v) pairs for
describing its metadata entries (e.g. k = format and v = CSV).
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DataAsset DataAsset
User HasQueried User

[Timestamp = 14-01-2024 12:00:00]
Name = Alice ») Name = Alice
Role = Analyst h Role = Analyst

Fig. 1. Property graph example: node types (left) and edge formation (right)

lame = Products
Format = CSV

Location = Blob://aws.com
Version =2.0.0

Name = Products
Format = CSV

Depending on the blokchain implementation, user transaction tx can also
contain different platform-related information. In our model, we assume that
each transaction is composed of a user signature (for establishing its ownership)
and a set of properties P reflecting the metadata, that is to = (sign(a), P).

Usually, each transaction is signed by a single account which establishes
it’s ownership rights. But sometimes, it is possible to have a multi-signature
transaction, which requires the participation of more than a single account to
consider a transaction to be valid. In this case, we will use a special function
lms to denote an “ownership” of the transaction tx; across multiple accounts.

Attention should be paid to the header reference function ref; that always
holds true, except the case of the genesis block (absence of the block before). To
overcome it, we define a self-referencing function refy, (ho) = ho.

2.3 Property Graph Model

In recent years property graphs (PGs) have gained popularity as a NoSQL data
model. It provides a way to efficiently represent the relationships and connections
of natural phenomena in the form of nodes and edges that are enriched with
properties. For instance, data assets and users can be seen as nodes while the
actions performed by users over the data will be represented as edges. When a
user queries an asset, we create an edge with a label HasQueried from the user
to the asset of interest and add the timestamp when it was done as an edge
property. In Figure 1 we show the described property graph example.

We define the formal PG model as a tuple PG = (N, E, L, P,1bl, edge, prop):

e N is a finite set of nodes, F is a finite set of edges, L is a finite set of
labels, and P is a finite set of properties such that Nn EnPn L=

e [bl: NUFE — L is a function that assigns a single label to a node or an edge

e edge : E — N x N is a function that assigns each edge to a pair of nodes
(n,n’), where n is the source node and n' is the target node

e prop: NUE — PT(P) is a partial function that associates a node or an edge
with non-empty set of properties P, such that p = (k,v),pe P,ke K,ve V.

As follows, K is a set of possible property keys and V is a set of possible
property values. In Figure 1 the labels User and DataAsset from set L are also
assigned to nodes and offer further functionality for distinguishing node types.

In Section 1 we pointed out that often metadata systems are implemented
with a property graph model [12]. The flexible and schema-free nature of the PG
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model supports the quick evolution of enterprise data assets and their relation-
ships. Modern graph databases do not require any predefined data schema for
using it (contrary to relational databases). Moreover, there is always an option
to enforce the user-provided schema to guarantee data consistency and integrity.

In general, labels are used for defining the semantic meaning of the data
through the user schema. In Figure 1 HasQueried label describes the nature of
the action relationship between the two nodes. At all times, we assume to have a
PG schema that defines the structure of possible relationships between the nodes.
Put it formally, schema Spg is composed of node labels Ly and edge labels Lg,
such that Ly U Lg = L, Ly nLg = ; and a function n : Ly x Ly — Lg that
defines allowed relationships between a given pair of nodes.

In this section, we have described the related works and the necessary theo-
retical background. The following section goes more into the detail of metadata
mapping from the blockchain to PG data structure.

3 Designing a Formal Model for Metadata Mapping

In this section, we outline the first part of our contribution. We start by describ-
ing the properties of the data transformation we want to comply with. Then
we consider a running example of the metadata system and provide a generic,
schema-independent conversion. As a subsequent step, we propose a conceptual
metadata model and introduce a procedure for schema-dependent conversion.

Due to the space limits, we note that the complete formal rules of the mapping
are provided as part of the prototype code that is discussed in Section 4.

3.1 Properties of Metadata Mapping

We recall three properties of the database transformation from Angles et al.
[2], which are: computability, information and semantic preservation. We briefly
introduce it here and we address the reader to the original paper for more details.

Computability indicates that for any two given databases D; and D, there
exists an algorithm A that computes a database mapping DM : D; — Ds. Our
goal is to provide an algorithm showing that mapping DM : B — PG is feasible.

Information preservation means that for a computable mapping DM there
exists an inverse translation DM ™' : Dy — Dy, or that D = DM~ (DM(D)).
It is a required property for us since we are only interested in translations that
don’t lose the source information.

Semantic preservation indicates that the result of the mapping is a valid
database. In this context, a valid database means a database instance Z which is
compliant with rules and constraints of the target schema S, denoted as Z = S.
To be more precise, when we discuss database mapping, we assume that any
database is composed of an instance and a schema, or that D = (Z,S). If the
schema is not defined, it means that D = (Z, ), so we will use the terms
“database” and “instance” interchangeably.
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3.2 Generic Transformation from Blockchain to Property Graph

As a first step, we consider an existing metadata system based on Hyperledger
Fabric [6]. Our first goal is to show the feasibility of transforming the on-chain
metadata from the blockchain to the property graph structure.

A running example of the blockchain-based catalog, presented in Figure 2,
has three blocks modeling different metadata entries. The first block is a genesis
block with a self-referencing header. It describes a data asset in transaction Tz A1l
and its owner (displayed to the left). The second block has a similar structure,
where the header points to the previous block as expected. In our case, block
TxB1 has two signing accounts and one transaction that references another one:
TxBl1 — TxAl, which is valid according to our formal model. Finally, the third
block describes 2 data assets from different users.

To perform a generic, schema-independent metadata mapping, we introduce
a generic property graph schema Sg that defines the structure of the generated
graph. It enables us to map any blockchain-based catalog into the PG-based
catalog. Our target schema consists of a set of node labels Ly and a set of
edge labels Ly, where Ly = {User Account, BlockHeader, Transaction}, Ly =
{PreviousHeader, Re ferencesTo, BelongsTo, Signed}, Lny U Ly = Lg.

Algorithm 1: Generic Metadata Mapping

Data: Sequence of blocks B
Result: Nodes N & edges E

1 N E«—J;
2 for b € Sorted(B) do
3 h < b.header;
4 Ibl(h) < BlockHeader;
5 Push(N, h) /* appending the header h to the set of nodes N */ ;
6 e — &
7 Ibl(e) « PreviousHeader, edge(e) « (h,ref(h));
8 Push(FE, e);
9 for tx € b.transactions do
10 ne— g e—J a—J;
11 Ibl(n) <« Transaction, n.P « tz.P;
12 Push(NV, n);
13 Ibl(e) <« BelongsTo, edge(e) <« (n, h);
14 Push(E, e);
15 if p(tz) is not in N then
16 Ibl(a) <« UserAccount, a.Sign « tz.sign;
17 Push(V, a);
18 else
19 | a <« Get (N, tz.sign) /* finding a user a by the transaction signature in N */
20 end
21 e «— H
22 Ibl(e) < Signed, edge(e) <« (a,n);
23 Push(FE, e);
24 for r € ref(tz) do
25 e — J;
26 Ibl(e) <« ReferencesTo, edge(e) < (n,r);
27 Push(FE, e);
28 end
29 end
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f Header Block 3
[HeadevJ Block 2 T<C1
Block 1 Account X
(T Account TxB1 13ABC “:)ataAsset.Name:RevenueJ
- - DataAsset Name=Revenue 123ABC | Contract.Name=DataShare DataAsset.Location=Blob://..
CoOUNt | i -taAsset Location=Blob/..|  (Account | Contract UsedAsset=Revenue Account | TxC2
123ABC | pataAsset Version=1.0.0 Contract.Date=10/10/2023 256xv2 | DaiaAsset.Name=Forecast
456XYZ DataAsset.Location=<URL>

Fig. 2. A running example of the blockchain-based metadata catalog.

We provide an Algorithm 1 that guarantees the computability of the mapping
DM : B — PG. To prove that DM is information preserving we need to have
a mapping DM such that Z = DMg' (DMg(ZT)) for any given instance Z that
represents blockchain catalog B. It should be noted that we consider a blockchain
model as defined in Section 2.2. Therefore, it is sufficient to recover the initial
database structure, including chain blocks, headers, transactions, accounts, and
their relations. The solution to this is provided in the Algorithm 2.

The output of the generic transformation DMy is a graph PG = (Zg,Sq),
where Z¢ is a graph database instance as described in Section 2.3 and S¢ is a
generic schema created for any input blockchain catalog. It means that Zg | S¢
by definition and that transformation DM is semantic preserving.

The result of the proposed schema-independent transformation complies with
all three properties: it is computable, information and semantic preserving. One
of the benefits of this mapping is that metadata stored in the form of property-
graph model gives a way to detect transaction clusters or to query all transactions
created by a given user by simply following the outgoing Signed edges.

However, most of the time the metadata system users will define their own
catalog schema which is enforced within the blockchain. Therefore, we have to
have a schema-dependent mapping in order to generate an appropriate graph.

Algorithm 2: Inverse Metadata Mapping

Data: Nodes N & edges E
Result: Sequence of blocks B
B «—
H < Find(BlockHeader) /* finding all nodes with BlockHeader node label */ ;
for h € Sorted(H) do
b— &;
b.header «— h;
h* « Find(PreviousHeader, h) /*get a node by traversing a PreviousHeader edge*/;
ref(b.header) < h¥*;
b.transactions «— ;
T « Find(BelongsTo, h);
for n € T do

a « Find(Signed, n);

te < (a,n.P);

for r € Find(ReferencesTo, n) do

| Push(tx.references, r)
end
Push(b.transactions, tx)

© 0N O s W@N R

i o e =
oM pWNR O

end

[
<

18 end
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ConnectedTo [ Describes GroupedTogether
Oxrer: Owns |
IsSubjectOf ProposedB) Creates
Data Asset |Soubiectl  Data Contract  [£10POSed0Y | User ] Metadata
Signs
PK Assetld: Int NOT NULL PK Contractid: Int NOT NULL PK Userld: Int NOT NULL] PK Metadatald: Int NOT NULL
FK Ownerld: Int NOT NULL FK Authorld: Int NOT NULL Name: String NOT NULL FK Ownerld: Int NOT NULL
FK Metadatald: Int NOT NULL FK Assetld: Int NOT NULL Role: String FK Assetld: Int NOT NULL
Location: String NOT NULL EffectiveDate: Date NOT NULL Context: String

Fig. 3. Conceptual model of metadata catalog.

3.3 Conceptual Metadata Catalog Model

Before implementing the schema-dependent metadata mapping, we need a con-
ceptual catalog model. Considering the vast amount of different metadata mod-
els, we adopt a simple, generic and extensible model called HANDLE [7].

We extend the HANDLE according to our previous running example and
present an Entity-Relationship diagram model in Figure 3. We omit a full defi-
nition here, but briefly state that it is seen as a tuple M = (D, M, C,U), where:
D is a finite set of data assets, M is a finite set of assets metadata, C is a
finite set of data contracts, U is a finite set of system users.

In this model, a data asset represents the raw data and it has links to the
storage location, connected assets, its metadata, and owner. Metadata describes
a single asset on a higher abstraction, like when, who, and how it was created.
There can be many metadata entries related to the same asset but with a different
context (creation, access, etc). A data contract defines a data-sharing relation
between different parties, or simply users. It also has two “ends” of a relation:
the contract should be proposed by a single user. At the same time, users can
sign zero or many data contracts.

Eventually, we want to check if a given blockchain catalog B = (Zy, Saq) is
valid w.r.t. the model M, or that Zaq = Saq. Since we can’t have explicit labels
of the references in the blockchain, we fall back to considering only transaction
types and the implicit link map between them. We assume that L, is a set of
entity type labels corresponding to model M and that X : tx — L, is a function
that returns the label of a given transaction. We say that Zy = Saq, iff:

e M1: for any tx € T, such that A(tx) = DataAsset, there is a ta’ € T', where:

* \(tz') = Metadata o ref(te’) = tx o ute) = p(ta');

o M2: for any tx € T, such that \(tx) = Metadata, there is a ta’ € T, where:
* A\(t2') = DataAsset o ref(tx) = ta';

e M3: for any tx € T, where A(tx) = DataContract, there is tz’ € T, where:
* A\(tz') = DataAsset o ref(tx) = tz’ o pu(tx) # p(te');

e M4: for any pair (tz,tz’) < T, such that:
* \tz) = A(tz') = DataAsset o ref(tx) = t’ o u(tx) # p(ta’)
> there exists a transaction tz, such that:
¢ Mtz) = DataContract & py,s(tx) = (u(tx), u(tz'));

where Ly, = {DataAsset, Metadata, DataContract}. We intentionally omit the
distinction of a User entity because this information is always present as part
of the considered transaction.
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3.4 Schema-Dependent Metadata Catalog Mapping
As a last part of our formalisation, we design a schema-dependent catalog map-

ping DM : Bar — PG, where By = (2, SB, ) and PG aq = (ngM,Sfng)
are valid databases w.r.t. previously defined model M.

Algorithm 3: Schema-Dependent Metadata Mapping

Data: Sequence of blocks B
Result: Nodes N & edges E
1 N—g, E—g;
2 for b; € Sorted(B) do

3 h <« b.header, Ibl(h) <« Block, h.OrderNo « i;

a Push(N, h) /* appending the header h to the set of nodes N */ ;
5 e — J, lbl(e) « Previous, edge(e) < (h,ref(h));

6 Push(E, e) /* appending the edge e to the set of edges E */ ;
7 for tx € b.transactions do

8 ne— g, e—J, a—J;

9 Ibl(n) « A(tz), n.P < tz.P;

10 Push(NV, n);

11 Ibl(e) < BelongsTo, edge(e) « (n,h);

12 Push(FE, e);

13 if p(tz) is not in N then

14 Ibl(a) <« User, a.Sign < tx.sign;

15 Push(N, a);

16 else

17 | a <« Get(N, tz.sign) /* finding a user a by the transaction signature in N */
18 end

19 for r € ref(tz) do

20 e — J, ea — I

21 edge(e) < (n,Get(N, r));

22 if Ibl(n) is DataAsset then

23 Ibl(e) «— ConnectedT o;

24 Ibl(eq) < Owns, edge(eq) «— (n,a);

25 Push(F, e, e4);

26 else

27 if bl(n) is Metadata then

28 if A\(r) is DataAsset then

29 | Ibl(e) < Describes;

30 else

31 | ibl(e) « GroupedTogether;

32 end

33 Ibl(eq) < Creates, edge(eq) < (n,a);

34 Push(FE, e, e4);

35 else

36 /* Means that [bl(n) is DataContract */ ;
37 ibl(e) « IsSubjectOf ;

38 (a1, a2) < pms(tz) ;

39 if as is & then

40 Ibl(eq) < ProposedBy, edge(es) «— (n,a);
a1 Push(FE, e, e,);

42 else

a3 Ibl(ea, ) < ProposedBy, edge(eq,) < (n,a1);
a4 Ibl(eay) < Signs, edge(eay) «— (n,az2);
a5 Push(FE, €, €ay; €ay);

46 end

a7 end

48 end

49 end
50 end

51 end
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The outlined catalog conversion DMg : Byy — PG aq is computable and we
provide a corresponding solution in the Algorithm 3.

The obtained property graph PG, is a valid database, meaning that DMg
is semantic preserving. We note that resulting schema Spg,,, as well as Sg,,,
is directly derived from the conceptual model M. It is composed of node la-
bels Ly = {DataAsset, Metadata, User, DataContract} and edge labels Ly =
{Describes, Owns, Creates, ProposedBy, Signs, [sSubjectO f, ConnectedT o,
GropedTogether}. The respective entities are guaranteed by node generation
code lines 8-10 and required relationships are guaranteed by edge generation
code lines 20-44.

To guarantee the information preservation of our mapping based on model
M, we follow a similar approach as in generic algorithm and thefore introduce
the block ordering with code lines 3-6 and 11-12.

In this section, we proposed two formal procedures for performing meta-
data catalog mapping from blockchain to property graph database. The schema-
independent procedure allows us to obtain a generic graph that enhances the
user’s capacity to traverse and analyse the metadata. At the same time, the
schema-dependent procedure also provides a way to systematize the metadata
according to the user-defined conceptual model. In addition, both translations
are computable, information and semantic preserving.

In the following section we show a proof-of-concept implementation of our
formal models alongside its performance assessment.

4 Implementing Metadata Mapping from Blockchain to
Property Graph

This section provides details about the developed system used for validating the
defined formal models. Then it continues with evaluation methodology, provides
quantitative and qualitative results, and concludes with a results discussion.

4.1 Implementation Details

For validating our theoretical proposal with a practical evidence, we have devel-
oped a proof-of-concept (PoC) system for testing the transformation of metadata
information from blockchain to property graph model from two perspectives.
First aspect includes the validation of the real-world, end-to-end transforma-
tion or mapping system, which provides a suitable interface to the users. Our PoC
has a decentralized ledger deployed with Hyperledger Fabric (HLF) and a Neo4J
graph database that supports the property graph model. The mapping module
is implemented as a middleware RESTful API service with a Swagger support.
In addition to metadata transformation (Mapping Module), this middleware ser-
vice also enables the communication channels with HLF (via LedgerDriver) and
Neo4J (via GraphDriver) with direct HTTP(s) requests or a graphical interface
provided by Swagger. The architecture of the system is presented in Figure 4.
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@_@ API Service (Swagger) |, >
@ _@ LedgerDriver |

IGraphDriver
HYPERLEDGER I_){ Mapping Module T
FABRIC ’ e I
Data Flow Neo4J
—>

Fig. 4. Prototype system architecture.

We use the HLF because it naturally extends our running example from
Section 3.2 and enables us to store the information as key-document or key-
value pairs which are required by the formal models. We employ the Neo4lJ
database because it is a leading, ACID-compliant graph storage and processing
solution that has a lot of driver libraries.

Second aspect includes testing the performance and scalability of the pro-
posed metadata catalog mapping. We developed two algorithms for generic and
schema-dependent mappings based on the formal models in Section 3.

For excluding the external factors on the algorithm performance evaluation,
such as database indexing or network delays, we use beforehand extracted ledger
metadata information which is stored according to the blockchain model from
Section 2. The output of each transformation algorithm is a text file containing
the instructions necessary for creating required nodes, edges, and their corre-
sponding labels and properties. The instructions are written in Cypher querying
language that is supported by Neo4J database. Both algorithms support the
parallel computation model that is used for scalability assessment.

The system’s code and full formal rules are available on Google Drive 1.

4.2 Methodology and Experimental Setup

In order to conduct the prototype performance assessment we used the stable
release of Ubuntu 22.04 (desktop version) with default post-installation parame-
ters. The system hardware characteristics were: AMD Ryzen 5600x CPU with 6
cores (12 threads), 32 GB of RAM, 1 TB of HDD disk storage with 5400 rpm. The
transformation module used in performance benchmark was implemented as a
Go binary program using version 1.20. The provided input files were represented
as a JSON files and the output text files contained Cypher-based instructions.

Our primary metric of the benchmark was the measurement of a transforma-
tion time from the underlying files representing metadata in blockchain’s format
to the property graph nodes and edges. We employed standard library time pack-
age? to test the mapping duration with ms precision. We run the tests 10 times
per transformation type per varying number of blocks.

! https://drive.google.com/file/d/1ueml6 ZT5UF0qoLumUB-KVqhZWOyFq52T
2 https://pkg.go.dev/time
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Generic mapping Schema-dependent mapping

— 1core(s)
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Algorithm running time (sec)
-
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Fig. 5. Algorithm running time: generic (left) and schema-dependent method (right).

To conduct the scalability evaluation, we tested our application with variable
number of utilized CPU cores. To achieve it on the same testing hardware, we
used the runtime. GOMAXPROCS package function® that provides a way to
specify the maximum number of utilized processor cores by a program. We used
randomly generated data to populate the Hyperledger Fabric ledger and then
extracted it into the JSON.

4.3 Results and Discussions

The transformation running time results are presented in Figure 5. It reveals
that our algorithms exhibit acceptable performance and scalability properties.
For instance, processing 10 thousands blocks (approximately 220 Mb) with 1
processor core takes 7.5 seconds, while using 4 cores reduces the processing time
to 2 seconds, on average, with the generic and the schema-dependent methods.
If we scale up the ledger to a larger number of blocks, we observe that the
processing time increases approximately linearly for both methods. This trend
is evident when handling the 50 thousands blocks (approximately 1100 Mb),
where the execution runtime, on average, extends to about 29 seconds for 1 core
setup and to about 9 seconds for 4 core setup. The proposed transformation
algorithm passes through source blocks and transactions only once, meaning
that it has the complexity of O(n). This is also evident from the performance
evaluation since the processing time grows linearly to the input data size.

We assume that the low improvement between 4 and 8 cores setups is due to
the hardware constraint, which has only 6 full cores with hyper-threading.

The visual difference between the standard ledger visualization and graph
view is presented in Figure 6. On the left side of the figure, we can see transac-
tion information in the form of JSON properties. The tool, called Hyperledger
Explorer, automatically extracts the ledger data and stores it in the relational
database. In fact, we see that such metadata presentation provides poor usability
and leaves the problem of navigation and querying to the user.

3 https://pkg.go.dev/runtime#GOMAXPROCS
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Fig. 6. Explorer transaction view (left) and Neo4J web UI sub-graph view (right).

On the opposite side, the built-in web interface to the graph data, provided
by the Neo4J, models a lot of different entities and relationships on a single
screen, which has considerably higher utility compared to the previous tool.
Additionally, users can employ a Cypher querying language for efficient data
querying, manipulation, and discovery. Cypher syntax is similar to SQL and it
provides a way to easily define the querying graph patterns naturally.

5 Conclusions and Further Research

To conclude, this paper presents a novel way for improving data discovery and
querying of the decentralized metadata management system built on top of the
blockchain. It discusses the research on the integration of blockchains with graphs
and highlights the missing functionalities that are satisfied by our method.

The proposed approach is based on two parts. First, we define the formal
models for generic (schema-independent) and schema-dependent metadata trans-
formation from the ledger storage to the property graph database. Furthermore,
the models comply with three essential properties of database model mapping:
computability, information and semantic preservation.

Second, we design and implement a prototype system that proves the feasi-
bility and correctness of the formal models as and we provide the transforma-
tion algorithm performance and scalability evaluation. The system is based on
a widely deployed permissioned blockchain - Hyperledger Fabric, and a leading
transactional graph database - Neo4J.

We envision further research on several axes. We note that even though
the currently used metadata model is generic and extensible, the users may still
need to apply the proprietary metadata models. To achieve it, we are required to
have a comprehensive metadata transformation module that processes any user-
defined schema. Moreover, such a module will also benefit from incorporating
the processing of a time dimension, that is from supporting the evolution of
properties of entities and relationships, which is lacking as of today.
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A Generic Mapping Rules.

We define the generic metadata catalog mapping DM as follows:

e G1: for any account a € A:

= there will be a node n € N, where Ibl(n) = UserAccount;
e G2: for any header h € H:

> there will be a node n € N, where Ibl(n) = BlockH eader;
e G3: for any transaction tx € T"

> there will be a node n € N, such that:

¢ Ibl(n) = Transaction * prop(n) = w(tx);

e G4: for any pair of headers (h,h') ¢ H, where ref(h) = h':

>

there will be an edge e € E, edge(e) = (n,n’), such that:
¢ Ibl(e) = PreviousHeader ¢ [bl(n) = Ibl(n") = BlockHeader
where nodes (n,n’) correspond to block headers (h, k') respectively;

e G5: for any pair (tz,tz’) € T, where tz’ € ref(tz):

>

there will be an edge e € E, edge(e) = (n,n’), such that:
+ [bl(e) = ReferencesTo ¢ Ibl(n) = Ibl(n") = Transaction
where nodes (n,n’) correspond to transactions (tx,tx’) respectively;

e G6: for any pair (h,tx) that belongs to the same block b € B:

>

there will be an edge e € E, edge(e) = (n,n’), such that :
+ bl(n) = Transaction 1bl(e) = BelongsTo 1bl(n') = BlockH eader;

e GT7: for any account a € A and tx € T, where sign(a) € tz, there will be:

>

an edge e € E, edge(e) = (n,n’), such that :
¢ Ibl(n) = User Account « lbl(e) = Signed o Ibl(n') = Transaction.

B Schema-Dependent Mapping Rules.

We define the schema-dependent mapping DM as follows:

e S1:

>

e S2:

>

e S3:

>

e S4:

>

e S5:

for any tx € T, such that \(tz) = DataAsset, there will be:

a node n € N, where [bl(n) = DataAsset;

for any tx € T, such that A(tx) = Metadata, there will be:

a node n € N, where [bl(n) = Metadata;

for any tx € T, such that A(tx) = DataContract, there will be:

a node n € N, where [bl(n) = DataContract;

for any property p € w(tx), where A(tx) € L there will be:

a corresponding property p’ € prop(n), where node n corresponds to tz;
for any pair of transactions (tx,tz’) < T, such that:

¢ A\(tx) = DataAsset * \(ta') = Metadata o ref(te’) = tx
S5.1: there will be a node n* € N, such that Ibl(n*) = User

S5.2: there will be an edge e; € F, edge(e;) = (n’,n), such that:

* bl(n') = Metadata ¢ [bl(e1) = Describes + bl(n) = DataAsset
S5.3: there will be an edge e; € F, edge(es) = (n*,n’), such that:

o [bl(n*) = User ¢ Ibl(es) = Creates * [bl(n') = Metadata
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> S5.4: if u(tx) = p(ta’), there will be e3 € E, edge(ez) = (n*,n), where:
o [bl(n*) = User ¢ [bl(e3) = Owns ¢ Ibl(n) = DataAsset
e S6: for any pair of transactions (tz,tz’) T, such that:
¢ A(tx) = DataAsset & A(tx') = DataContract e ref(te’) =tz
S6.1: there will be a node n* € N, where (bl(n*) = User
S6.2: there will be an edge e; € E, edge(e1) = (n’,n*), such that:
¢ 1bl(n') = DataContract  1bl(e;) = ProposedBy & lbl(n*) = User
> S6.3: and there will be an edge e; € E, edge(es) = (n,n’), such that:
+1bl(n) = DataAsset «1bl(ez) = [sSubjectOf 1bl(n') = DataContract
e S7: for any pair of transactions (tx,tz’) T, such that:
¢ A\(tx) = M(tz') = DataAsset e txeref(ta’)
> S7.1: there will be an edge e € E, edge(e) = (n’,n), such that:
¢ [bl(n) = Ibl(n') = DataAsset + Ibl(e) = ConnectedT o

if u(tz) # p(ta’), then there will be:

> S7.2.1 three nodes (n1,n2,n3) < N, such that:
¢ [bl(ny) = bl(ny) = User ¢ Ibl(ng) = DataContract
where p(tz) correspond to ny and p(tz’) to ng

> S7.2.2 and three edges (e1,e2,€3) < E, such that:

VRY

v edgefer) = (n,ng) » edge(es) = (no,n1)  » edge(es) = (na,n3)
¢ Ibl(n) = DataAsset #lbl(e;) = IsSubjectOf o1bl(n3) = DataContract
o Ibl(ng) = User +[bl(e3) = Signs + [bl(n3) = DataContract

¢ [bl(n3) = DataContract  «1bl(ez) = ProposedBy  #1bl(ny) = User
e S8: for any pair of transactions (tx,tz’) c T, such that:
o \Ntz) = M\(ta") = Metadata e txeref(ta’)
= there will be an edge ¢ € E, edge(e) = (n,n’), such that:
¢ Ibl(n) = Ibl(n'") = Metadata ¢ bl(e) = GropedTogether
where (n,n’') correspond to the (tz,tz’) respectively;
e S9: for any pair (h;,tx) of a header and transaction, and block b;, such that:
o h;€b; etz b b, eB o A(tx) € Ly
= there will be two nodes (n,n’) < N, such that:
o Ibl(n) = A(tx) & Ibl(n') = Block * prop(n’).OrderNo =i
= there will be edge e € F, edge(e) = (n,n’) , such that:
e lbl(n) e Ly ¢ [bl(e) = BelongsTo & bl(n') = Block;
> and there will be edge ¢’ € E, edge(e’) = (n',n”) , such that:
¢ Ibl(n') = Ibl(n") = Block + [bl(e') = Previous
where (n,n’,n”) correspond to (tz, h;, h;—1) respectively.



