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Abstract1
Seasonality in light, temperature, and nutrient availability are well-known to 2

regulate phytoplankton blooms and the bacterioplankton community. During the 3

spring bloom, phytoplankton release biomolecules as part of the dissolved organic 4

matter (DOM) pool exploited by the bacterioplankton. Here, we investigated the 5

seasonal variability of phytoplankton biomass, enantiomers of dissolved 6

hydrolyzable amino acids (DHAA), bacterioplankton abundances and community 7

composition at the Microbial Observatory Laboratory Arago (MOLA) in the NW 8

Mediterranean Sea from 2019 to 2021. Phytoplankton biomass estimated from 9

pigment biomarkers suggests a spring bloom succession from cryptophytes, 10

haptophytes, and prasinophytes in March to diatoms in April. The spring bloom 11

coincided with a 50% increase in L-enantiomers of DHAA and an increase in12

bacterial abundance. After the spring bloom, elevated concentrations of D-13

enantiomers of DHAA and gamma-aminobutyric acid suggest bacterial processing14

of labile biomolecules contributed to the seasonal accumulation of dissolved 15

organic carbon (DOC). Linking organic molecules with the free-living 16

bacterioplankton community showed a seasonal succession of niches and substrate 17

regimes. The parallel analysis of DOM and bacterioplankton community provides 18

an important baseline for bacteria-substrate relationships over the seasonal cycle 19

in the northwestern Mediterranean Sea.20

21



1 Introduction22

Marine dissolved organic matter (DOM) is a diverse mixture of compounds that 23

account for 662 Pg of organic carbon and play a critical role in global 24

biogeochemical cycles (Hansell, 2013). A single water sample can contain up to 25

20,000 molecular formulas, most of which remain uncharacterized to date (Riedel 26

and Dittmar, 2014; Wagner et al., 2020). The characterizable fraction of DOM is 27

frequently described based on its physical properties, i.e., size, and/or 28

characterizing major biochemical groups, such as amino acids, to determine the 29

bioavailability, diversity, and origin. Specifically, amino acids can be used to 30

estimate the labile, semi-labile, and refractory DOC reservoirs (Davis and Benner, 31

2007).32

DOM sources and sinks can be estimated using L- and D-enantiomers of 33

amino acids. The main sources of marine DOM are phytoplankton biomass that 34

produce L-enantiomers of amino acids, which are essential building blocks for all 35

living organisms (Jørgensen et al., 1999). DOM is remineralized by heterotrophic 36

bacterioplankton (i.e., archaea and bacteria), which are enriched in D-enantiomers37

as key constituents of the peptidoglycan, capsules, lipopolysaccharides, 38

siderophores, and antimicrobial peptides (Park and Strominger, 1957; Hancock, 39

1960; Lam et al., 2009). Additionally, most bacterioplankton preferentially use L-40

over D-enantiomers of amino acids (Azúa et al., 2014; Zhang and Sun, 2014). Some 41

cultural representatives do use D-amino acids, with a preference for D-Alanine, D-42

Glx, D-Asx, and D-Serine over D-Methionine, D-Valine, and D-Leucine, which are 43

assumed to be less bioavailable (Zhang et al., 2016). Therefore, tracing the 44

evolution of both pools of enantiomers in dissolved hydrolyzable amino acids 45



(DHAA) can provide information on whether the main DOM sources are 46

phytoplanktonic versus bacterial origin.47

DOM bioavailability varies seasonally and controls the bacterioplankton48

community. Organic carbon is predominantly derived from phytoplankton blooms 49

that provide pulses of labile and semi-labile compounds, which sustain bacterial 50

carbon and energy requirements during a given year (Piontek et al., 2011; Liu et 51

al., 2020, 2022; von Jackowski et al., 2022). Upon the decay of the spring 52

phytoplankton bloom, members of the Roseobacter clade (class: 53

Alphaproteobacteria) and Flavobacteria (class: Bacteroidetes) typically dominate 54

the bacterioplankton community in early successional stages (Pinhassi and 55

Hagström, 2000; Teeling et al., 2016; Bunse and Pinhassi, 2017). In summer, 56

SAR86 (class: Gammaproteobacteria) and SAR11 (class: Alphaproteobacteria) 57

become dominant clades in the bacterioplankton community (Alderkamp et al., 58

2006; Alonso-Saez et al., 2007; Salter et al., 2015). Simultaneously, semi-labile 59

DOM compounds tend to accumulate since they resist rapid bacterial turnover and 60

possibly remineralized during fall or exported to the deep ocean during wintertime 61

convective mixing (Carlson et al., 1994; von Jackowski et al., 2020).62

In the NW Mediterranean Sea, abiotic factors control the seasonal niche 63

preferences of the autotrophic and heterotrophic community (Salter et al., 2015; 64

Galand et al., 2018; Lambert et al., 2019). Seasonal changes in the DOM pool are 65

driven by the interplay between bacterioplankton during the spring bloom and low 66

salinity water (LSW, PSU < 37.9) events in summer (Laghdass et al., 2010; 67

Gonzalez et al., 2019). Additionally, the release of phytoplankton-derived68

transparent exopolymer particles (TEP) have been linked to a peak in bacterial 69



extracellular enzyme activities resulting in an accumulation of recalcitrant70

dissolved organic carbon (DOC) in the euphotic zone (0-200 m) during the summer 71

stratification period (Copin-Montégut and Avril, 1993; Romera-Castillo et al., 72

2010; Vila-Reixach et al., 2012; Jones et al., 2013; Ortega-Retuerta et al., 2018). It 73

is possible that the seasonal accumulation of recalcitrant DOC causes a74

malfunctioning of the microbial loop in summer to late fall (Thingstad et al., 1997; 75

Sánchez-Pérez et al., 2020). To understand seasonal DOC accumulation and its 76

factors in regulating bacterioplankton community patterns, we conducted a 3-year 77

survey at the Microbial Observatory Laboratory Arago (MOLA) in the Gulf of Lion, 78

northwestern Mediterranean Sea (NWMED). We hypothesized that the 79

pronounced seasonal variability of DHAA regulates the bioavailability, which has80

consequences for microbial loop dynamics. Assessing relationships between 81

microbes (i.e., phytoplankton and bacterioplankton) and the DOM pool over the 82

seasonal cycle is important to understanding carbon cycling and substrate regimes 83

in the NW Mediterranean Sea.84

85

2 Material and Methods86

2.1 Sampling Site87

The “Microbial Observatory Laboratory Arago” (MOLA) time series station is 88

located at the edge of the continental shelf in the NW Mediterranean Sea 89

(42°27′205′′N - 3°32′565′′E) (Fig. 1). MOLA core parameters are sampled almost 90

every month since 2004 and the time series was incorporated into the 91

Mediterranean Ocean Observing System for the Environment (MOOSE) research 92

infrastructure in 2010. At MOLA, the conductivity, temperature, and depth sensor93



(CTD) is equipped with two temperature probes, two conductivity probes, and a 94

Digiquarz pressure sensor. Seawater is collected using 12-L Niskin bottles to 95

sample nine discrete depths: 5 m, 20 m, 40 m, 80 m, 120 m, 150 m, 200 m, 300 m, 96

and 500 m.97

MOLA was sampled 20 times for MOOSE core parameters and additional 98

microbial parameters between 2019 and 2021 (Supplementary Table 1). In brief, 99

MOOSE core parameters include the concentration of oxygen determined with 100

titration (Winkler, 1888), inorganic nutrients determined on a continuous flow 101

nutrient analyzer (AA3HR AutoAnalyzer, Bran-Luebbe, Ireland), chlorophyll-a 102

(chl-a) extracted from GF/F filters (Whatman, USA) with acetone and determined 103

fluorometrically (Evans et al., 1987), particulate organic carbon and nitrogen 104

determined on a CHNS-O Elemental Analyzer (Sharp, 1974), and bacterial cell 105

counts determined using flow cytometry (Cytoflex, Beckman Coulter, USA) and 106

converted into abundances using the software FlowJo (v7.6, USA). The protocols 107

for the core parameters and data management are available on the MOOSE 108

website (https://www.moose-network.fr/). Additional microbial parameters 109

included pigment-based chemotaxonomy, dissolved organic carbon (DOC), total 110

dissolved nitrogen (TDN), total dissolved phosphorus (TDP), dissolved 111

hydrolyzable amino acids (DHAA), and bacterioplankton community composition 112

using the 16S rRNA marker gene.113

114

2.2 Characterization of DOM and Amino Acid Enantiomers115

Seawater for DOM was filtered through a double-layer of combusted GF/F filters 116

(450°C for 8 hours, Whatman, USA), equivalent to 0.2 µm pore-size, and collected 117



at all MOLA depths between 5-500 m. Samples for DOC were fixed with 10 µL 118

phosphoric acid (pH < 2), and measured using high-temperature catalytic 119

oxidation (Sugimura and Suzuki, 1988; Qian and Mopper, 1996). Samples for TDN 120

and TDP were submitted to persulfate wet-oxidation (Pujo-Pay and Raimbault, 121

1994) and using inorganic nutrients were then used to derive dissolved organic 122

nitrogen and phosphorus (DON and DOP) concentration.123

Samples for DHAA were collected at 5 and 500 m. Seawater was filtered124

through a double-layer of combusted GF/F filters (Whatman, USA) and collected 125

in combusted glass vials and frozen (-20°C). Samples and blanks using ultrapure 126

water were analyzed following the protocol by Escoubeyrou and Tremblay (2014). 127

In brief, hydrolysis (110°C for 20 h) with hydrochloric acid (30% Suprapur, Merck 128

Millipore, USA) under vacuum and o-phthaldialdehyde derivatization with either 129

N-Isobutyryl-L-Cysteine (Sigma-Aldrich, USA) for the L-DHAA reagent run or N-130

Isobutyryl-D-Cysteine for D-DHAA reagent run separated enantiomeric amino 131

acids and achiral amino acids by reversed-phase high-performance liquid 132

chromatography (HPLC). The HPLC (UltiMate 3000, Thermo Fisher Scientific, 133

USA) was equipped with a Gemini C18 column (Phenomenex, USA), an 134

autosampler, and a fluorescence detector (excitation at 335 nm, emission at 450 135

nm). A gradient of the organic phase (methanol, acetonitrile) and phosphate buffer 136

was used with a constant flow rate of 0.8 mL per minute (Escoubeyrou and 137

Tremblay, 2014). DHAA identification and quantification in unknown samples 138

were achieved by comparing the retention times and peak areas with those of 139

standard amino acid solutions and procedural blanks were subtracted from final 140

concentrations. Asparagine and Glutamine were deaminated during the 141



hydrolysis and were quantified as Aspartic acid (Asx) and Glutamic acid (Glx). 142

Overall, 13 L-DHAA were detected: Alanine, Arginine, Asx, Glx, Histidine, 143

Isoleucine, Leucine, Lysine, Phenylalanine, Serine, Threonine, Tyrosine, and 144

Valine. A total of 6 D-DHAA were detected: Alanine, Asx, Glx, Leucine, Serine, 145

and Valine. Additionally, we detected Beta-Alanine, Glycine, and Gamma-146

aminobutyric acid (GABA).147

148

2.3 Phytoplankton Pigment Analysis149

Seawater (1-2 L) for pigment-based chemotaxonomy was collected at 5 m, filtered 150

onto combusted GF/F filters (Whatman, USA), and stored frozen (-20°C). The 151

filters were extracted using 3 mL methanol (100%) for two hours, disrupted by 152

sonication, and clarified by vacuum filtration through GF/F filters. The extracts 153

were quantified using reversed-phase HPLC (Agilent Technologies, USA), after154

Ras et al. (2008). Phytoplankton taxonomy was assessed from pigment 155

concentrations (Table 1) and converted into class abundances and pigment-to-chl-156

a ratios (Supplementary Table 2) using r-package “phytoclass” (v.1.0.0) (Hayward 157

et al., 2023) that is based on CHEMTAX program (Mackey et al., 1996).158

Table 1. List of the pigments used in this study and their taxonomic significance159

(Roy et al., 2011).160

Chlorophylls Taxonomic or biochemical significance

Alloxanthin Cryptophytes

Bacteriochlorophyll-a Photoheterotrophic bacteria

Chlorophyll-b Chlorophytes, Prasinophytes

19-Butanoyloxyfucoxanthin Haptophytes, Pelagophytes



Fucoxanthin Diatoms, Haptophytes, some Dinoflagellates, 

Pelagophytes

19-Hexanoyloxyfucoxanthin Haptophytes

Lutein Chlorophytes, Prasinophytes,

Neoxanthin Prasinophytes, Chlorophytes

Peridinin Dinoflagellates

Prasinoxanthin Prasinophytes

Violaxanthin Chlorophytes, Prasinophytes

Zeaxanthin Cyanobacteria, Chlorophytes, Prasinophytes,

Flavobacteria

161

2.4 Bacterioplankton Community Analysis162

Samples for genomic DNA were collected at 5 and 500 m. Around 5 L of seawater 163

was filtered through 3.0-μm and then 0.22-μm filters (Nucleopore, USA) using a 164

peristaltic pump and stored frozen (-80°C). The genomic DNA was lysed with 165

lysozyme (20 mg mL-1, 45 min at 37°C, Sigma-Aldrich, USA), proteinase K (20 mg 166

mL-1, 60 min at 55°C, Sigma-Aldrich, USA), and extracted using Zymobionics167

DNATM Miniprep Kit (Cat. No.: D6005, Zymo Research, USA). PCR-amplification 168

using the universal 16S rRNA 515F and 926R primer pair covering the v4-v5 169

hypervariable region (Parada et al., 2016) and sequenced on a MiSeq platform 170

(Illumina, USA) at LGC Genomics GmbH (Berlin, Germany).171

Amplicon reads were processed in RStudio (v2023.09.1+). FastQ files were 172

processed into amplicon sequence variants (ASVs) using the R-package ‘dada2’ 173

(v1.16.1) (Callahan et al., 2016). Filtering settings were truncLen=c(190,200), 174

maxN=0, minQ=2, maxEE=c(3,3) and truncQ=0, followed by merging using 175



minOverlap=10 and chimera removal. After singleton removal, we obtained an 176

average of 53,387 reads per sample. ASVs were taxonomically classified using the 177

SILVA SSU Reference dataset (release v138.1) (McLaren and Callahan, 2021).178

ASVs with less than three counts in less than 3% of samples were excluded. ASVs 179

were further analyzed using R-packages ‘phyloseq’ (v1.42.0) (McMurdie and 180

Holmes, 2013), ‘ampvis2’ (v2.8.3) (Andersen et al., 2018), and ‘microeco’ (v1.4.0) 181

(Liu et al., 2021).182

183

2.5 Statistical Analyses184

Data processing and statistical analyses were conducted in RStudio (v2023.09.1+). 185

Statistical analyses focused on changes within a Julian year, since the sampling 186

gaps over the course of the three-year time series made it inapt to determine 187

monthly averages or inter-annual variation within the discrete variables.188

For all environmental parameters, arithmetic means and standard 189

deviations were calculated using the ‘base’ package (v4.2.1) and Spearman 190

correlations were corrected using a false discovery rate (FDR) adjusted p-value 191

(also called q-value) of 0.05. Degradation indices of DHAA were calculated based 192

on Kaiser and Benner (2009) by summarizing L- and D-enantiomer 193

concentrations. Integrations of the upper 500 m were performed using trapezoidal 194

integration.195

For the amplicon data, alpha-diversity was analyzed with ‘iNEXT’ (v3.0.0) 196

(Hsieh et al., 2016) and permutational multivariate analysis of variance197

(PERMANOVA) were calculated using vegan (‘adonis2’ and ‘vegdist’ functions, 198

v2.6.4) (Oksanen et al., 2022). Log2fold-change (log2FC) had an adjusted p-value 199



of 0.05 using the ‘DESeq2’ (v1.38.3) (Love et al., 2014) to investigate the differences 200

in bacterioplankton community between the free-living (FL) and particle-attached 201

(PA) size fractions. Distance-based redundancy analysis (dbRDA) was fit with 202

significant environmental vectors using vegan (‘envfit’ function) to investigate 203

seasonal environmental drivers of FL bacterioplankton community at 5 m204

(Buttigieg and Ramette, 2014). Similarly, Pearson correlations with an FDR-205

adjusted p-value was performed between ASVs and the environmental data using 206

‘microeco’ (function ‘cal_cor’, v1.4.0) to investigate drivers of taxa (Liu et al., 2021). 207

Visualizations were performed in MATLAB with M_Map (Pawlowicz, 2020)208

and using R-package ggplot2 (v3.4.3) (Wickham, 2016). All scripts are publicly 209

available via https://github.com/anabelvonjackowski/.210

211

2.6 Remote Sensing and Simulation Approaches212

Remote sensing data products were used to fill in the gaps between discrete 213

sampling events of temperature, salinity, and chl-a at MOLA. For sea surface 214

temperature (SST), L4 satellite data was downloaded from the Copernicus Marine 215

Environment Monitoring Service (CMEMS), resulting in a high-resolution dataset 216

(VHR, 1/40°, ~1.4 km) of daily SST averages (Buongiorno Nardelli et al., 2013). 217

For salinity, we used two remote sensing data products to fill in the gaps 218

between discrete sampling events. Sea surface salinity (SSS) lacks a high-219

resolution satellite-derived data for the Mediterranean (SSS, > 30 km with the 220

SMOS satellite) (Olmedo et al., 2018) and artifacts (>40) in global ocean datasets. 221

Consequently, we chose to apply two simulations with assimilations of 222

observations: a reanalysis for the January 2019 to June 2021 period and an 223

https://github.com/anabelvonjackowski/


operational model from August to December 2021 to finalize the time series. The 224

high resolution (1/24°, ~4 km) of the daily reanalysis (Escudier et al., 2021), the 225

daily CMEMS analysis, and the forecast model (Clementi et al., 2019) allowed the226

assimilation of in situ temperature and salinity vertical profiles and satellite sea 227

level anomaly along the track data through an OceanVar assimilation scheme.228

For sea surface chl-a, mass concentration data was downloaded from the L4 229

CMEMS satellite-derived product at 1km resolution (Berthon and Zibordi, 2004; 230

Volpe et al., 2018, 2019). The data was reconstructed using satellite-merged 231

(SeaWiFS, MODI, MERIS, VIIRS-SNPP & JPSS1) bio-optical multi-sensors that 232

use empirical and semi-analytical algorithms to calculate the remotely sensed chl-233

a. Daily outputs were reprocessed with climatological data for the smoothing234

procedure of the sensor merging, in addition with the DINEOF (Data 235

INterpolating Empirical Orthogonal Functions) algorithm to fill in missing data 236

due to cloud cover. Since oligotrophic waters of the Mediterranean are greener and 237

less blue than other ocean basins, the algorithm parameterized at a regional level 238

(an updated version of MedOC4) provides a more accurate estimate compared to 239

the overestimated chlorophyll by the global algorithm. Furthermore, algorithm 240

assessment and validation concluded that the product is in good agreement with 241

historical in situ chlorophyll data.242

243

3 Results244

Discrete sampling and remote-sensing approaches showed well-defined seasonal 245

patterns in temperature and salinity. The in situ surface (5 m) temperatures246

ranged from 13 to 24°C (n=20), while satellite-derived sea surface temperatures247



(SST) ranged between 13 to 25°C (n=1096) with rapid increases from ~15°C in 248

May to >18°C in June 2019 and 2021 compared to ~15°C in April to >18°C in June249

in 2020. The in situ surface salinity ranged from 37.7 to 38.2 PSU (n=20), while 250

satellite-derived sea surface salinity (SSS) ranged between 37.5 and 38.4 PSU 251

(n=1057), both suggesting the occurrence of LSW (PSU < 37.9, >3 days) events but 252

with inter-annual variability between 2019 to 2021. LSWs likely ranged from 17 253

June to 29 July 2019, 09 June to 21 July 2020, and 28 May to 28 June 2021 (Fig. 254

1c). At 500 m, temperatures remained ~14°C and salinity ~39 PSU (n=5) year-255

round, but data are only available for 2021.256

The remote-sensing approach confirmed that spring bloom in the NWMED 257

occurred between February and May. Satellite-derived sea surface chl-a ranged 258

from 0.05 to 0.60 µg L-1 (n=1096), which was slightly lower than the in situ surface259

chl-a that ranged from 0.07 to 1.0 µg L-1 (n=21; Fig. 1c). Both satellite-derived and 260

in situ chl-a show inter-annual variability in bloom dynamics between 2019 to 261

2021. Discrete measurements of chl-a increased by 85% from February to March 262

before declining 37% from March to April until the beginning of the new productive 263

season in November (Fig. 1c). Phytoplankton taxonomy estimated from pigment 264

biomarkers suggests that the spring bloom was dominated by cryptophytes, 265

haptophytes, and prasinophytes at the beginning of March and diatoms in early266

February as well as the end of April (Fig. 2a). Accordingly, chl-a showed significant 267

positive correlations with cryptophytes (r=0.83, p<0.001), haptophytes (r=0.84, 268

p<0.001), prasinophytes (r=0.88, p<0.001), dinoflagellates (r=0.86, p<0.001), and 269

diatoms (r=0.63, p=0.01, Supplementary Fig. 1). Chlorophytes were only observed 270



in spring 2021, while Synechococcus appeared to grow in spring, summer, and fall 271

(Fig. 2a and 3).272

Maximal inorganic nutrient concentrations were observed in winter, which273

gradually decreased during the productive season until late fall. At 5 m, nitrate 274

(NO3-) ranged from below the detection limit to 2.3 µmol L-1 (n=21), nitrite (NO2-) 275

ranged from 0.010 to 0.25 µmol L-1 (n=21), and silicate (SiO4) ranged from 0.25 to 276

2.0 µmol L-1 (n=21). Ammonium (NH4+) ranged from below the detection limit to 277

0.068 µmol L-1 (n=21), and phosphate (PO43-) ranged from 0.010 to 0.80 µmol L-1278

(n=21). At 500 m, NO3- ranged from 7.7 to 9.1 µmol L-1 (n=18), NO2- ranged from 279

0.010 to 0.31 µmol L-1 (n=18), PO43- ranged from 0.31 to 0.41 µmol L-1 (n=18), and 280

SiO4 ranged from 5.1 to 7.6 µmol L-1 (n=18).281

Maximal POC concentrations and minimum DON concentrations were 282

observed in winter, while DOC and DOP concentrations decreased to a minimum 283

spring and accumulated during the productive season. At 5 m, concentrations of 284

POC ranged from 4.1 to 19 µmol L-1 (n=21) and generally decreased from winter 285

and throughout the productive season until fall (Supplementary Fig. 2). DOC286

ranged from 58 to 102 µmol L-1 (n=21), DON concentrations ranged from 4.5 to 7.6 287

µmol L-1 (n=19), and DOP concentrations ranged from 0.038 to 0.13 µmol L-1 (n=19; 288

Supplementary Fig. 2). DOC:DON:DOP ratios increased from 13:92:1 in spring, 289

14:96:1 in summer, 15:68:1 in fall, and decreased to 15:77:1 in winter. DOC290

significantly negatively correlated with chl-a (r=-0.59, p<0.001). At 500 m, POC 291

concentrations ranged from 1.8 to 16 µmol L-1 (n=20) or 1529 to 4733 mmol m-2292

and peaked in winter and late summer (n=20; Supplementary Fig. 3). DOC 293

concentrations ranged from 45 to 94 µmol L-1 (n=18), DON ranged from 2.8 to 5.9 294



µmol L-1 (n=18), and DOP ranged from below the detection limit to 0.13 µmol L-1295

(n=18; Supplementary Fig. 3). 296

DHAA concentrations showed seasonal variability with an accumulation of 297

L-DHAA in March and July compared to a gradual accumulation of D-DHAA until 298

late summer. At 5 m, DHAA ranged from 0.65 to 1.17 µmol L-1 (n=13) that299

negatively correlated with salinity (r=-0.62, p<0.05) and diatoms (r=-0.82, p<0.01). 300

Calculating degradation indices (DI) showed positive DIs (less degraded) in spring 301

and during the LSW events in June compared to negative DIs (more degraded) in 302

winter (Fig. 2b). Further investigating the enantiomer composition showed that303

L-DHAA ranged from 0.38 to 0.67 µmol L-1 (n=13; Fig. 2c) and significantly304

negatively correlated to diatoms (r=-0.77, p<0.01; Supplementary Fig. 1). In 305

contrast, D-DHAA ranged from 40 to 68 nmol L-1 (n=15; Fig. 2c) and significantly306

increased with the Julian Day (JD) (r=0.72, p=0.0025), while significantly307

negatively correlating with chl-a (r=-0.69, p<0.01) and phytoplankton groups that 308

bloomed in March (Supplementary Fig. 1). Specifically, individual monomers 309

showed that all L-DHAA increased more than two-fold from February to March 310

(Fig. 2d), while several L-DHAA (Histidine, Lysine, Serine, Tyrosine, and Valine)311

decreased more than 1.3-fold in April (Fig. 2e). Similar to their L-DHAA 312

counterparts, B-Alanine, D-Alanine, and D-Glx also increased in April, whereas 313

D-Serine and D-Valine decreased in April (Fig. 2f). Generally, B-Alanine and D-314

DHAA increased throughout the year (Fig. 2f). At 500, DHAA ranged from 0.42 to 315

4.6 µmol L-1 with L-DHAA ranging from 0.17 to 1.7 µmol L-1 (n=15) peaking in 316

spring and D-DHAA ranging from 27 to 142 nmol L-1 (n=15) increasing towards 317

fall (Supplementary Fig. 3). 318



Seasonal changes were observed in the bacterioplankton abundance and 319

community composition at 5 m. Bacterioplankton abundances ranged from 3.8 to 320

13 x105 cells mL-1 (n=20) with a notable shift in high (HNA) and low nucleic acid 321

(LNA) subgroups. HNA cells ranged from 1.8 to 5.2 x105 cells mL-1 (n=20) and 322

peaked in late February to May and July to September. LNA cells ranged from 1.6323

to 8.9 x105 cells mL-1 (n=20) and peaked in late February to early March and July 324

to August (Supplementary Fig. 2). Assessing the amplicon data showed that the 325

sequencing depth sufficiently covered the bacterioplankton diversity free-living 326

(FL) fraction and particle-attached (PA) ~99.7% (Supplementary Fig. 4). At 5 m, 327

the FL community significantly changed with the JD (PERMANOVA, p<0.01)328

along with the PA community that also significantly changed with the JD329

(PERMANOVA, p<0.05; Supplementary Table 3). Furthermore, alpha-diversity 330

indices of the FL showed a significant increase in richness (r=0.69, p=0.0041) and 331

Shannon diversity (r=0.52, p=0.045) with the JD (Supplementary Fig. 5, outlier332

JD 27). At the class level, FL and PA were represented by Alphaproteobacteria, 333

Gammaproteobacteria, Bacteroidetes, and Cyanobacteria up to 80%. At the family 334

level, FL community was dominated by SAR11 clade I ~18.8%, SAR11 clade II 335

~6.2%, and Flavobacteriaceae ~12.8% year-round, while Cyanobiaceae showed 336

monthly fluctuations. The PA community was dominated by Cyanobiaceae ~21.7% 337

and families in Bacteroidetes ~19.8% but also reoccurring Pirellulaceae ~2.8%, 338

Puniceicoccaceae 2.6%, and Vibrionaceae ~3.5% (Fig. 3). Testing the seasonal 339

enrichment showed significant changes in SAR11 clades, SAR86 clade, and 340

AEGEAN-169 marine group during spring, summer, or winter in FL (log2FC 341



q<0.001) compared to Planctomycetes in winter in PA (log2FC q<0.001, 342

Supplementary Fig. 6).343

Seasonal changes were less pronounced in the bacterioplankton abundance 344

and community composition at 500 m. Bacterial abundances ranged from 0.97 to 345

9.6 x105 cells mL-1 (n=19) with HNA ranging from 0.48 to 5.1 x105 cells mL-1 (n=19) 346

and LNA ranged from 0.47 to 4.5 x105 cells mL-1 (n=19). Assessing the amplicon 347

data showed that the sequencing depth sufficiently covered the bacterioplankton 348

diversity FL fraction and PA ~99.3% (Supplementary Fig. 4). The alpha-diversity 349

indices gradually decreased by JD in the FL, while alpha-diversity peaked in 350

summer within the PA (Supplementary Fig. 5). At the class level, the FL was 351

dominated by Nitrososphaeria, whereas the PA community had representatives of 352

Alphaproteobacteria, Gammaproteobacteria, Bacteroidetes up to 50% (Fig. 3). At 353

family level, FL community was dominated by Nitrosopumilaceae ~32.3% along 354

with SAR11 clades I ~8.5% and clade II ~4.7%. PA community was almost year-355

round, represented by Nitrosopumilaceae, Pirellulaceae, Crocinitomicaceae, and 356

Phycisphaeraceae ~4%.357

Combining environmental parameters with the FL bacterioplankton 358

community suggests DOM-microbe interactions. A distance-based redundancy359

analysis (dbRDA) was used to assess the influence of environmental explanatory 360

variables (arrows) on the ASV abundance data. At 5m, the dbRDA showed that361

salinity, dinoflagellates, and pelagophytes significantly constrained the ordination 362

space of the response variables (points) corresponding to the winter and spring 363

samples (p<0.05, Fig 4a). In contrast, temperature, D-Asx, and DON significantly 364

constrained the ordination space corresponding to summer and fall (p<0.05, Fig. 365



4a). Attempting direct links between environmental parameters and the FL 366

bacterioplankton community showed that Candidatus Nitrosopumilus and 367

common bloom-associated genera within the Roseobacter lineage and 368

Flavobacteriaeae positively correlated with phytoplankton groups, while369

negatively correlating with temperature (p-adj<0.05; Fig. 4b). In contrast, genera370

such as Candidatus Aquiluna, DS001, and other Roseobacter group members 371

positively correlated to several L-DHAA (p-adj<0.05, Fig. 4b). At 500 m, data were 372

insufficient to derive the significant environmental variables, but L-DHAA 373

constrained the ordination space corresponding to winter samples, while DON, 374

DOP, and D-DHAA constrained the ordination space of summer and fall samples375

(Supplementary Fig. 7). Direct links were limited in the mesopelagic depth with376

few genera showing significant links to L-DHAA, B-Alanine, and D-Serine 377

(Supplementary Fig. 7).378

379

4 Discussion380

4.1 The spring bloom in the NWMED381

The haptophyte- and diatom-dominated blooms caused L-DHAAs and the 382

degradation index to peak at 5 m during spring (Fig. 2). The phytoplankton spring 383

bloom composition at MOLA was similar to nearby coastal time series Service 384

Observation Laboratory Arago (SOLA), Blanes Bay near Barcelona, Spain, and385

DYFAMED near Villefranche-sur-Mer, France (Marty et al., 2002; Latasa et al., 386

2010; Gutiérrez-Rodríguez et al., 2011; Nunes et al., 2018). However, relative 387

abundances of Synechococcus were higher at MOLA compared to the Adriatic Sea 388

(Trano et al., 2022). The increase of phytoplankton-derived L-DHAA could be 389



similar across the NWMED with a release of hydroxyl-amino acids (L-Serine and 390

L-Threonine) and glycine from diatom cell walls post-bloom in March (Hecky et 391

al., 1973; Dauwe and Middelburg, 1998). In June, the peak of aromatic-DHAA (L-392

Phenylalanine and L-Tyrosine) and L-Asx might have been released by cell 393

exudation or lysis of diatoms (Hecky et al., 1973). Furthermore, the different 394

pattern of L-Glx, which was low during the first diatom bloom but increased to 135 395

nmol L-1 during the second diatom bloom in April, might suggest a succession of 396

diatom populations. Chaetoceros sp. and Rhizosolenia sp. tend to bloom in early 397

spring, while Pseudo-nitzschia sp. has been observed to bloom at SOLA between 398

March and May (Charles et al., 2005; Quiroga, 2006). Overall, chl-a and L-DHAA 399

concentrations were over 2-fold higher in surface waters at MOLA compared to 400

more oligotrophic sites during spring and summer, such as Bermuda Ocean Time 401

Series Station (BATS) and Hawaii Ocean Time Series (HOT) (Lomas et al., 2013; 402

Wirtz and Smith, 2020; Ianiri et al., 2022). Studying phytoplankton bloom 403

dynamics is essential to understand biogeochemical and microbial interactions. 404

We strongly encourage time series to analyze larger phytoplankton via microscopy 405

or automated imaging systems, e.g., imaging flow cytobot (IFCB) (Olson and Sosik, 406

2007; Sosik and Olson, 2007), and additional sampling efforts for smaller 407

phytoplankton, e.g., flow cytometry, to better understand the mechanisms of 408

bloom formation and links to biochemistry at offshore time series.409

DOM bioavailability positively correlated with bacterial abundances and 410

coincided with copiotroph ecological strategies. Heterotrophs can be generally 411

distinguished as either HNA or LNA, where HNA are considered to be a more 412

substrate-driven and metabolically active subpopulation than LNA (Robertson 413



and Button, 1989; Sherr et al., 2006; Bouvier et al., 2007). Furthermore, 414

heterotrophs can be distinguished as either copiotrophs that compete under high415

DOM concentrations or oligotrophs adapted to low concentrations (Koch, 2001; 416

Giovannoni et al., 2014). In terms of composition, Bacteriodetes (Flavobacteriacae) 417

and members of the Roseobacter group are non-seasonal and known copiotroph 418

bacteria since they are more competitive under bioavailable DOM levels in the 419

NWMED (Lambert et al., 2019; Auladell et al., 2022). The positive correlations 420

with phytoplankton groups are indicative of labile DOM and diatom-derived DOM 421

consumption (Sarmento et al., 2013; Landa et al., 2018). Alongside the 422

copiotrophs, we find oligotrophs such as SAR11 (Fig. 3). Within SAR11, the 423

ecotype-like clades exhibit pronounced seasonal cycles and confirm previous 424

observations that SAR11 clade Ib is associated with replete nutrient 425

concentrations and phytoplankton biomass, while clade Ia are adapted to thrive 426

under basal DOM levels (Salter et al., 2015). SAR11 ecotypes appear to be 427

differentially involved in the labile and humic substrate processing during the 428

spring bloom and can not be classified into these over-simplified ecological 429

strategies (Malmstrom et al., 2004; Alonso-Sáez and Gasol, 2007; Laghdass et al., 430

2012). Still, a bacterioplankton community with fairly balanced proportions of 431

copiotrophs and oligotrophs can simultaneously process the phytoplankton-432

derived protein-like substances that contribute to the labile DOC pool and humic-433

like fluorescent organic matter that contribute to the recalcitrant DOC pool 434

released during the spring bloom (Yamashita and Tanoue, 2003; Romera-Castillo 435

et al., 2010; Sánchez-Pérez et al., 2020). Furthermore, experiments have shown436

that picocyanobacteria and bacterioplankton produce humic-like fluorescent 437



organic matter under phosphorus-replete conditions during the spring bloom 438

(Romano et al., 2014; Zhao et al., 2017; Bouchachi et al., 2023). The humic-like439

fluorescent organic matter would be less bioavailable than phytoplankton-derived 440

compounds and possibly serve oligotrophs. Overall, the copiotrophs appear to be441

processing labile DOM, like Roseobacter, while oligotrophs might be processing442

relatively refractory DOM, like SAR11 clade Ia, and supports the notion that 443

trophic strategies follow a gradient from copiotrophy to oligotrophy at the end of 444

spring (Lemonnier et al., 2020).445

446

4.2 Microbial loop dynamics from summer until winter447

LSWs are diluted mesoscale structures that detach from the Rhône River plume448

to the open Mediterranean Sea and impact biogeochemical processes around June 449

to July each year (Diaz et al., 2008). Our study confirms that LSWs are low in chl-450

a and dissolved inorganic nitrogen (DIN) but contain bioavailable DOM that 451

sustains bacterial activity (Laghdass et al., 2010; Gonzalez et al., 2019). In 2020, 452

we observed a strong increase in several L-DHAA and DI, therefore453

bioavailability, during the LSW (JD 175) compared to after the LSW (JD 203; Fig. 454

2). Enrichments of phenylalanine and valine could have been released from455

Chaetoceros sp. (Poulet and Martin-Jézéquel, 1983; Sarmento et al., 2013).456

Isoleucine and leucine are known to contribute to the highly labile fraction of DOM 457

(Carlson and Ducklow, 1995; Cherrier et al., 1996), promoting bacterioplankton 458

growth in summer.459

Bacterioplankton were increasingly exposed to D-DHAA towards fall (Fig. 460

2). DHAA accumulated on the surface waters during summer, which appeared as461



relatively short-term fluctuations in individual L-DHAA but a steady increase of 462

D-DHAA concentrations until fall (Fig. 2). Since D-DHAA amino acids are proxies 463

of bacterial-derived DOM, their presence indicates more degraded DOM at the end 464

of the accumulation period. To further understand the accumulation in the D-465

DHAA pool, “canonical” DHAA (D-Alanine, D-Asx, D-Glx) showed relatively 466

higher concentrations and greater seasonal variability than “non-canonical” 467

DHAA (D-Leucine and D-Valine; Fig. 2), which is similar to previous observations468

(Broek et al., 2019; Ianiri et al., 2022). Canonical DHAA are more abundant in the 469

HMW material and non-canonical DHAA are more abundant in the LMW material470

(Ianiri et al., 2022), which could suggest a preference of bacterioplankton for 471

canonical D-DHAA. For example, D-Alanine is a key component of autotrophic and 472

heterotrophic bacterial peptidoglycan (Schleifer and Kandler, 1972; Kaiser and 473

Benner, 2008; Cava et al., 2011), which would be relatively rapidly remineralized 474

compared to recalcitrant DHAA that accumulates as part of the LMW DON475

towards fall (Ianiri et al., 2022). Nonetheless, D-DHAA can be used as a nitrogen 476

source for bacterial growth, to modulate cell wall biogenesis or act as a chemotactic477

warning signal, but many of the related functions and metabolic pathways remain 478

unknown (Zhang et al., 2016; Yu et al., 2020; Irazoki et al., 2023). The seasonal 479

changes in the DHAA pool amid few correlations to the bacterioplankton 480

community (Fig. 4) highlight the complex interactions among the abiotic and biotic 481

factors in the microbial loop. More research with longer sampling frequencies of482

time series-based studies and higher resolution of ‘omic approaches (e.g., meta-483

and transcriptomics) are needed to better unravel the interactions between the 484



composition of the amino acid pool and microbial communities in the NW 485

Mediterranean.486

487

4.3 Mesopelagic DOM-Bacterioplankton interactions488

Organic matter seasonal variations in euphotic and mesopelagic zones will affect 489

the deep ocean bacterioplankton community and their metabolism. In MOLA, 490

mesopelagic POC and L-DHAA concentrations peaked during the spring and 491

summer, while D-DHAA concentrations remained fairly constant at depth492

(Supplementary Fig. 3). In comparison, individual and total L-DHAA 493

concentrations were over 2-fold higher at MOLA than previously reported from 494

more oligotrophic sites during spring and summer, such as BATS and HOT (Kaiser 495

and Benner, 2008; Ianiri et al., 2022). The enrichment of L-DHAA at MOLA could 496

be due to a reduced DHAA degradation since bacterial production, which is around497

2-3 times lower at the bottom of the euphotic zone relative to BATS (Gonzalez et 498

al., 2019; Liu et al., 2022). Alternatively, the elevated chl-a at the surface relative 499

to previous observations (section 4.1) could have enhanced organic matter export 500

at MOLA through various pathways (phytoplankton, aggregates zooplankton 501

migration or mixing processes (Siegel et al., 2016; Le Moigne, 2019). Surface 502

productivity combined with strong continental (westerly/northerly) winds that 503

cause dense shelf water cascading events favor POC export in the southwestern 504

Gulf of Lyon, near MOLA (Puig et al., 2008; Sanchez‐Vidal et al., 2008; Many et 505

al., 2021). Furthermore, assuming that sinking or ascending particles contributed 506

to the POC pool at MOLA, these sinking particles release amino acids into the 507

surrounding water (Smith et al., 1992; Grossart and Ploug, 2000; Baumas et al., 508



2023). Finally, our 500m samples are taken near the seafloor, where sediment 509

resuspensions into the nepheloid layer could have also been a source of L-DHAA.510

The diverse pool of available organic substrates shapes the diverse community511

across the different fractions in mesopelagic and relative to the euphotic zone 512

(Ghiglione et al., 2012; Wilson et al., 2017; Baumas et al., 2021; Sebastián et al., 513

2021). We encourage future studies and time series that measure microbial 514

variables to observe organic matter degradation, aggregation, and sinking in the 515

meso- and bathypelagic zones since anthropogenic climate change affects the 516

entire water column (Buttigieg et al., 2018; González-Dávila and Santana-517

Casiano, 2023; Baumas and Bizic, 2024).518

519

5 Conclusion520

Our assessment of the DOM pool and links to the phyto- and bacterioplankton 521

communities revealed a seasonality in the surface waters and mesopelagic zone. 522

In the surface, springtime phytoplankton blooms released L-DHAA, which 523

increased HNA bacteria abundances and lowered alpha-diversity, thereby524

promoting bacterioplankton with copiotroph ecological strategies. A notable input 525

of bioavailable DOC occurred during LSW events during summer. During526

summer, the accumulation of DOC and D-DHAA, the presence of LNA bacteria,527

and declining richness suggest that a broader community of less active 528

bacterioplankton target more refractory substrates into fall. Our study highlights 529

the seasonal variation in L- and D- enantiomers of DHAA and possible 530

associations with the microbial community. We strongly encourage microbial time 531

series observatories to incorporate or expand the range of discrete parameters to 532



incorporate biochemical measurements, such as DHAA, as tracers of bacterial 533

molecules in the DON pool.534
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Figures983

984
Figure 1. Bathymetry and temporal conditions at Microbial Observatory 985
Laboratory Arago (MOLA) in the northwestern Mediterranean Sea 986
between 2019 and 2021. The MOLA time series station (star) is located off (a) 987
northern Catalonia in the (b) drainage basin of the Agly, Aude, Hérault, Orb, 988
Rhône, Tech, Têt, and Vidourle into the Gulf of Lyon. The (c) satellite-derived (line) 989
and subsurface (5 m, circles) of salinity (blue) and chlorophyll-a (green) at MOLA. 990
Remote sensing allowed for a differentiation between coastal and offshore 991
northwestern blooms. Low salinity water (LSW) events are below 37.9 PSU 992
(dashed line) for more than three consecutive days.993
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995
Figure 2. Seasonal dynamics of phytoplankton biomass and dissolved 996
hydrolyzable amino acids (DHAA) at 5 meters of the Microbial 997
Observatory Laboratory Arago. The (a) phytoplankton biomass estimated 998
from pigment biomarkers and bacteriochlorophyll-a for photoheterotrophic 999
bacteria, (b) DHAA degradation index, (c) total concentrations of L- and D-DHAA1000
and non-isomers gamma-aminobutyric acid (GABA) and glycine, (d) L-DHAA that 1001
peak twice during the NWMED bloom, (e) L-DHAA that only peak once during the 1002
NWMED bloom, (f) B- and D-DHAA. The shape corresponds to the year and 1003
abbreviations refer to: Ala, Alanine; Asx, Aspartic acid and Asparagine; Arg, 1004
Arginine; Glx, Glutamic acid and Glutamine; His, Histidine; Ileu, Isoleucine; Leu, 1005
Leucine; Lys, Lysine; Phe, Phenylalanine; Ser, Serine; Thr, Threonine; Tyr, 1006
Tyrosine; Val, Valine.1007
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1009
Figure 3. Seasonal dynamics of the top 20 bacterioplankton families at1010
the Microbial Observatory Laboratory Arago. Dominant orders in the free-1011
living (FL) and particle-attached (PA) community at 5 m and 500 m depth.1012
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1014
Figure 4. Links between DOM and the free-living (FL) bacterioplankton 1015
community at 5 meters of the Microbial Observatory Laboratory Arago.1016
The redundancy analysis shows the significant environmental parameters and 1017
ordination of the samples. A (b) pearson correlation between environmental 1018
parameters and the bacterioplankton community at genus level within the top 20 1019
families and false discovery rate (FDR) adjusted p-values (* p<0.05, ** p<0.01, *** 1020
p<0.001). Abbreviations refer to: Asx, Aspartic acid and Asparagine; Chl-a, 1021
Chlorophyll-a; dissolved hydrolyzable amino acid, DHAA; dissolved organic 1022
carbon, DOC; dissolved organic nitrogen, DON; dissolved organic phosphorus, 1023
DOP.1024


