Linking Edge Flows to the Magnetic Geometry Asymmetry in Tokamaks

S. Rienäcker¹, L. Vermare¹, P. Hennequin¹, C. Honoré¹, S. Coda², B. Labit², M. Agostini⁴, M. La Matina⁴, M. Ugoletti⁴, A. Balestri², P. Manas⁵, O. Panico^{1,5}, the TCV⁶, WEST⁷ and EUROfusion Tokamak Exploitation⁸ teams

¹ Laboratoire de Physique des Plasmas (LPP), Ecole Polytechnique, France ² Swiss Plasma Center (SPC), EPFL, Switzerland ³ Division of Fusion Plasma Physics, KTH, Sweden ⁴ Consorzio RFX, Italy ⁵CEA, IRFM, France

⁶ See author list H. Reimerdes et al 2022 Nucl. Fusion 62 042018 ⁷ See author list J. Bucalossi et al 2022 Nucl. Fusion <u>62 042007</u>, and the WEST team: https://irfm.cea.fr/en/west/WESTteam/

⁸ See author list E. Joffrin Nucl. Fusion 2024 <u>10.1088/1741</u>

Background & motivations

Geometric asymmetry in tokamak H-mode access

Power threshold for L-H transition reduced / increased if ion magnetic $(B \times \nabla B)$ drift toward / away from active X-point.

 \rightarrow "Favorable" vs. "Unfavorable" magnetic geometry (or topology)

Also edge flows are sensitive to topology

- > Sheared flows: key role in turbulence regulation and confinement transitions
- > At plasma boundary, formation of $E_r \times B$ shear layer, associated with E_r "well" $\succ E_r$ well <u>deeper</u> in Fav. than in Unfav. ^[1-3]
- \geq Possible mechanism: Reynolds stress through tilted eddies^[4-6]

$E_r \times B$ flow asymmetry along I_n scan

	device	topology	I _p [kA]	q_{95}	\bar{n}_l/n_G	$\bar{n}_{l}^{19} [\mathrm{m}^{-3}]$	$B_0[T]$	$\nu_e^*(\rho_\psi=0.9)$
Motivated by WEST ^[1,10] .								
TS ^[11] results we confront	WEST	LSN Fav. USN Unfav.	400 → 700	$\begin{array}{c} 5.8 \rightarrow 3.3 \\ 4.7 \rightarrow 2.8 \end{array}$	0.55 → 0.37	3.2-4.4	-3.7	~ similar to TCV (no edge T_e data)
them to a similar Ohmic I_p scan on TCV	TCV	LSN Fav. LSN Unfav.	150 → 250	5.0 → 3.0	0.44 → 0.26	3.6-4.2	∓1.4	$10 \rightarrow 1$ (plateau)

WEST

Clear deepening of E_r with I_p in Unfav. (not only Ohmic) discharges

The present multi-device experimental study

> Seeks to clarify the origin^(*) of the modified E_r structure & link with L-H transition > Now includes also E_r data from TCV, examined here and compared with WEST

Experimental method: E_r measurements on WEST & TCV

Access to E_r profiles from **Doppler backscattering (DBS):**

- Detects microwave scattered off density fluctuations (\tilde{n}) around radial cutoff
- $\succ \widetilde{n}$ are advected by $E_r \times B$ velocity
- Doppler shift $\rightarrow \mathbf{v}_{\perp} \approx E_r/B$

TCV tokamak

- Smaller, flexible geometry
- Carbon wall
- High power density heating

WEST tokamak

- Strong ripple ($\delta \leq 2$ %)
- High aspect ratio (A=5)

> Linear gyrokinetic analysis with GKW^[12] at $\rho_{\psi} = 0.9 \rightarrow$ TEM dominated ^(a)

- > Nonlinear gyrokinetic simulations of ITG turbulence in circular geometry^[13]:
 - E_r decreases with $I_p \propto q^{-1}$ (but less pronounced than in experiment)
 - E_r mainly driven by turbulent R.S. ($\propto q^{-0.5}$), while competition with neoclassical flow damping ($\propto q^{1-2}$) invoked to explain trend with q
- > Why this sensitivity stronger in Unfav. not clear

^(a) Courtesy of P. Manas. For a representative USN WEST discharge (#55622). Missing T_i profiles, and n_e profiles should be refined.

TCV

Shallower well at high current, while no difference between low and intermediate I_p .

No clear distinction between Fav. and Unfav. trends

Different beam properties, plasma region differs slightly

Confirmation of flow shear sensitivity to topology on TCV

Example of matched LSN Ohmic discharges in Fav. vs. Unfav. $B \times \nabla B$

CXRS^[18]

0.5

 ho_{ψ}

0.75 0.75 0.50

ں 0.25 ل

 $0.00 \ 0.0$

- > NB: additional helicity scan shows no impact on E_r
- Edge density increases with I_p (at fixed \bar{n}_l) \rightarrow difficult to isolate effect of I_p
- > Linear gyrokinetic analysis with GENE^[14] at $\rho_{\psi} = 0.9$: TEM dominated ^(b)

^(b) Courtesy of A. Balestri.

Experimental trends are not consistent:

Well becomes shallower with I_p at TCV, not deeper as on WEST (for Unfav.).

Evolution approaching the L-H transition

Ohmic

1.0

0.8

Matched fav./unfav. LSN, $I_p = 150$ kA

Co-current injected NBI ramp

160kW

(III) 430-570 kW

0.9

- \succ E_r deepens & inner shear increases in favorable configuration
 - Compatible with H-mode turbulence suppression localized in inner $E \times B$

Outlook

0.9

1.0

0.8

- > **Deeper** E_r well in Fav., for similar kinetic (edge) profiles
- \succ Consistent with WEST^[1] and AUG^[2,3] results
- > But difference in v_{\perp} not always very pronounced
- \succ Edge/SOL fluctuation levels from THB^[9] insensitive to $B \times \nabla B$

References

[1] L. Vermare et al. Nuclear Fusion (2021) [2] J. Schirmer et al. Nuclear Fusion (2006) [3] U. Plank et al. Physics of Plasmas (2023) [4] N. Fedorczak et al. Plasma Physics and Controlled Fusion (2013) [5] M. Peret et al. Physics of Plasmas (2022) [6] O. Grover et al Nucl. Fusion (2024) [7] P. Molina Cabrera et al. Rev. Sci. Instrum. (2018) [8] P. Hennequin et al. Nuclear Fusion (2006) [9] M. Ugoletti et al. Review of Scientific Instruments. Submitted (2024) [10] S. Rienäcker et al TTF23 Nancy, poster (2023) [11] P. Hennequin et al. 37th EPS Conference on Plasma Phys. (2010) [12] A.G. Peeters et al Computer Phyiscs Communications (2009) [13] R Varennes et al Plasma Phys. Control. Fusion (2024) [14] F. Jenko et al Physics of Plasmas (2000) [15] M. Cavedon et al. Plasma Phys. Control. Fusion (2024) [16] S. Coda et al. 49th EPS Conference Plasma Phys., poster (2023) [17] P. Blanchard et al Journal of Instrumentation (2019) [18] C. Marini. PhD Thesis EPFL (2017)

Similar trend at 210 kA

shear layer ^[15]

Summary

- > TCV L-mode plasmas display flow sensitivity to fav./unfav. geometry as for WEST, AUG \rightarrow robust feature
- Ohmic I_p scan replicated on TCV, showing discrepancies w.r.t. WEST
- Heating ramps on TCV support the idea of facilitated H-mode access in fav. due to increased $E_r \times B$ shear
- \succ TCV & WEST: Clarify E_r sensitivity to density/ collisionnality in Fav. vs. Unfav.
- \succ Extend I_p scan to AUG
- Fluid edge simulations desirable
- > Apply O. Grover^[6] model to WEST & TCV
- Investigate link between topology and shaping effects ^[16]

This work has been carried out within the framework of the EUROfusion Consortium, partially funded by the European Union via the Euratom Research and Training Programme (Grant Agreement No 101052200 — EUROfusion). The Swiss contribution to this work has been funded by the Swiss State Secretariat for Education, Research and Innovation (SERI). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union, the European Commission or SERI. Neither the European Union nor the European Commission nor SERI can be held responsible for them

P.162

50th Conference on Plasma Physics, Salamancy, 8-12 July 2024

(C)

1.0

sascha.rienacker@lpp.polytechnique.fr

* * *