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ABSTRACT

Electroencephalography (EEG) decoding is a challenging task due to the limited availability of
labelled data. While transfer learning is a promising technique to address this challenge, it assumes
that transferable data domains and task are known, which is not the case in this setting. This study
investigates the transferability of deep learning representations between different EEG decoding tasks.
We conduct extensive experiments using state-of-the-art decoding models on two recently released
EEG datasets, ERP CORE and M3CV, containing over 140 subjects and 11 distinct cognitive tasks.
We measure the transferability of learned representations by pre-training deep neural networks on
one task and assessing their ability to decode subsequent tasks. Our experiments demonstrate that,
even with linear probing transfer, significant improvements in decoding performance can be obtained,
with gains of up to 28% compare with the pure supervised approach. Additionally, we discover
evidence that certain decoding paradigms elicit specific and narrow brain activities, while others
benefit from pre-training on a broad range of representations. By revealing which tasks transfer well
and demonstrating the benefits of transfer learning for EEG decoding, our findings have practical
implications for mitigating data scarcity in this setting. The transfer maps generated also provide
insights into the hierarchical relations between cognitive tasks, hence enhancing our understanding of
how these tasks are connected from a neuroscientific standpoint.

Keywords Transfer Learning · Deep Learning · Electroencephalography · Event-Related Potential · Brain-Computer
Interfaces

1 Introduction

While brain encoding consists in predicting brain activations given a certain stimulus, brain decoding tackles the inverse
problem: translating recorded neural activity into its originating stimulus or behavior [1]. This stimulus or behavior
can be a visual or auditory element presented, the subject internal mental state (e.g. sleep stage), or the cognitive or
motor task being performed during the experiment. Brain decoding has several important applications, such as the
diagnosis of neurological disorders [2–4], the detection of seizures [5, 6], automatic processing of polysomnographic
recordings [7] and brain-computer interfaces [8–10], among others. Electroencephalography (EEG) is a common and
affordable way to record the neural activity in this context [11]. It has the benefit of being non-invasive, having very
high time resolution compared to functional magnetic resonance imaging (fMRI) and not requiring a complex and
costly infrastructure such as magnetoencephalography (MEG). In recent years, there has been an increasing interest in
using deep learning (DL) models for EEG decoding [12]. As an example, DL has been shown to be the gold standard
when it comes to automatic sleep stage classification [13–15] and has also demonstrated impressive performances in
brain-computer interfaces [16–19].

Unfortunately, DL models are notorious for being data-hungry to extract generalizable discriminative representations.
This characteristic can be a problem when it comes to EEG decoding since the acquisition of labelled EEG data remains

ar
X

iv
:2

30
8.

02
40

8v
1 

 [
ee

ss
.S

P]
  2

8 
Ju

l 2
02

3



Evaluating the structure of cognitive tasks with transfer learning

ERN

LRP

MMN

N170

N2pc

N400

P3

(a) ShallowNet

ERN

LRP

MMN

N170

N2pc

N400

P3

(b) EEGNet

ERN

LRP

MMN

N170

N2pc

N400

P3

(c) EEGInception

Figure 1: Revealing cognitive connections through transfer learning. This graph depicts the transferability of
representations used for EEG decoding, capturing the intricate interplay between cognitive tasks. Each node corresponds
to a distinct paradigm within the ERP CORE dataset. Arrow width represents the average transfer performance when
using the representations learned from a source task to decode a target task. MMN is a great target task for transfer
learning, benefiting from representations learned from all source tasks. On the contrary, LRP is mostly a source task: its
representations are useful for a wide range of other paradigms.

a constraint, resulting in datasets of limited size. Indeed, EEG annotation often requires a specialist to run experiments
or visually inspect recorded signals for specific patterns. In addition, EEG signals have a very low signal-to-noise ratio,
especially when we compare to other fields of application which were DL thrived, such as image, speech, and text. This
characteristic makes EEG decoding even more challenging for DL methods in the context of small datasets.

A common technique in DL for dealing with scarce data scenarios is transfer learning (TL), which consists in applying
what you have learned in one context to another [20]. In other words, it can be used to leverage a large dataset to improve
the performance in a related smaller dataset, making it a promising technique to alleviate the lack of EEG decoding
data. However, TL assumes the knowledge of transferable data domains and tasks, which is not fully understood when
it comes to brain data. Indeed, even beyond EEG decoding, understanding hierarchical relations between cognitive
tasks remains a core question in neuroscience.

Inspired by the Taskonomy study [21] from the computer vision field, this work investigates the relations between
cognitive tasks in an EEG decoding setting. Specifically, we measure the transferability of representations learned
by DL models between cognitive tasks. This transferability is measured by pre-training DL models to decode the
EEG signals of subjects carrying certain tasks and assessing how well a classifier can reuse the learned representations
to decode a subsequent task. We carry extensive experiments with three state-of-the-art decoding models [16–18]
trained and evaluated on two recently released EEG datasets, ERP CORE [22] and M3CV [23], containing in total over
140 subjects with 11 distinct decoding modalities. This enables us to create transfer maps capturing the relationships
between pairs of cognitive tasks, as presented in Figure 1. From an EEG processing perspective, our maps can be used
to leverage related datasets for alleviating EEG data scarcity with transfer learning. We show that even with a linear
probing transfer method, we are able to boost by up to 28% the performance of some tasks. From a neuroscientific
standpoint, our results broaden our understanding of the connections between cognitive tasks. We discover evidence
that some decoding paradigms elicit very specific and narrow brain activities, since no other paradigm transfer well into
them. On the other hand, the decoding of some cognitive tasks benefits from pre-training on all other paradigms, thus
demonstrating that they rely on a broad range of representations.

We organize the paper as follows. First, section 2 introduces the relevant related work in transfer learning, EEG
decoding and cognitive tasks structure investigation. In section 3, we formalize transfer learning for EEG decoding.
Then, section 4 outlines our experimental setting, including a description of the two EEG datasets and their respective
decoding modalities, as well as our training and data processing protocols. Subsequently, we present the main results of
our experiments in section 5, highlighting the significant improvements in decoding performance achieved through
transfer learning. Finally, in section 6, we discuss the broader implications of our findings and offer insights into the
hierarchical and asymmetric relations between cognitive tasks.
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2 Related Works

2.1 Transfer Learning and Taskonomy

Transfer learning refers to the technique of leveraging knowledge acquired from one source domain and task to
enhance the performance in another target domain and task [24, 25]. Domain adaptation, domain generalization and
self-supervised learning are hence considered sub-fields of TL under this broad definition [25–27]. The most common
TL approach consists in fine-tuning on a target dataset a model that was pre-trained on a source dataset. In this context,
the main factor determining the success of TL is the relationship between source and target domains and tasks. TL
might indeed hinder learning performance in some situations, such as when the source and target are unrelated, which
is known as negative transfer [28, 29].

Numerous studies have examined the relationship between tasks for TL purposes [21, 30–34]. One of the most
influential works in this area is Taskonomy [21], which investigates these relationships in the context of computer
vision tasks. Although we take great inspiration from it, our works differ primarily in the definition of what a "task" is.
While Taskonomy tries to uncover the relation between visual learning tasks (i.e. given an image, what is the visual
label?), we focus in relating cognitive tasks (i.e. given the measured brain activity, what is the subject doing?). In
this sense, while Taskonomy works with the same input images, analyzing transfer to different output distributions
PS(Y ) → PT (Y ), our setting is more challenging as we need to transfer between joint distributions of input EEG
signals and output decoded stimuli PS(X,Y ) → PT (X,Y ). This distinction is made clearer in section 3.

2.2 Transfer learning with brain data

Most EEG decoding works involving transfer learning focus on cross-subject evaluation within the same decoding task
[20, 35–46]. Given the extremely high inter-subject variability of EEG signals, this is a crucial question in the design of
real-world systems able to generalize from one subject to another. While we study the transfer between different tasks,
previous studies consider the same fixed task in different data domains corresponding to each subject or session. They
enter in the more specific sub-category of domain adaptation and generalization.

Most related to our work, [34, 47–49] measure the transferability between cognitive tasks, drawing inspiration from the
Taskonomy framework [21]. However, these works are all based on fMRI data and most use encoding models for very
specific types of visual or language stimuli. In contrast, our work uses EEG decoding models to compare a broader
range of stimuli in different modalities. By working with decoding instead of encoding models, our results are not
only useful to understand the relation between cognitive tasks, but also to improve the performance of automatic EEG
processing systems in real-world scenarios where data is scarce.

Similar to our work, Qu et al. [49] also uses decoding models to create a transferability map between a large set of
cognitive tasks with fMRI data. By working with EEG data rather than fMRI, our analysis can better detect signal-level
patterns at the expense of a smaller spatial precision, making it complementary to this previous study. Moreover, while
all experiments in [49] were conducted on a single dataset with a small fully connected network architecture, our
experimental analysis encompasses consistent results on two very distinct datasets using three different state-of-the-art
deep neural network architectures.

2.3 Uncovering cognitive tasks relations with EEG

Beyond the framework of transfer learning, researchers in the EEG decoding community have been interested in
identifying the latent structure between cognitive tasks by other means. For example, Rommel et al. [50] analyzed
what data augmentations work best for decoding different cognitive tasks. They showed that some augmentations work
well for many different tasks, demonstrating that they share some common invariances, while others only improve the
decoding performance in some specific cases. Although some structure arises as a by-product of this study, it focuses
on task invariances. Our work differs substantially from [50] since our analysis directly connects one cognitive task to
another based on transferred predictive performance instead of invariances.

As another example, studies conducted by Banville et al. [51, 52] have demonstrated that self-supervised representations
can encode clinically-relevant structures from EEG data, such as the sleep stages, pathology, age, apnea and gender
information, without any access to such labels. A similar outcome was observed in [53, 54]. While these methods are
capable of learning representations useful for different downstream tasks, these works do not study transfer to different
domains and datasets in practice. Our work focuses not only on discovering the structure between predefined supervised
tasks but also quantitatively assesses the transferred performances into new data domains and tasks.
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Figure 2: A. Data splitting and alignment. Source and target tasks correspond to different ERP and BCI paradigms;
B. EEG decoding models as a representer network and a classification head; C. Standard EEG decoding training and
evaluation; D. Transfer with linear probing. Only the classification head hψ is re-trained, while the representer network
rwS

trained on the source task is kept intact.

3.1 EEG Decoding

From a machine learning perspective, EEG decoding is defined as a classification problem using a dataset of N pairs of
trial recordings and decoding labels E = {(xi, yi)}Ni=1. Each trial recording x ∈ X = Rm×c is modelled as a matrix
with m rows and c columns, where m is the number of time-steps and c is the number of electrodes. The decoding
labels y ∈ Y correspond to the class of stimulus to predict, where Y is a discrete set containing 2 or 3 classes in the
decoding scenarios studied in this paper. We assume the dataset is randomly split into a training set Etrain of size Ntrain
and test set Etest of size Ntest. The decoding problem amounts to using the training set Etrain to learn a model fθ : X → Y
with parameters θ mapping each trial x to the associated label y. This is achieved by optimizing the model parameters
to minimize an average loss function ℓ across the training dataset:

min
θ

1

Ntrain

∑
Etrain

ℓ(fθ(xi), yi) . (1)

In all our experiments, the loss function ℓ used is the balanced cross-entropy. The generalization performance of the
trained model is assessed on the test set Etest (c.f. Figure 2 A, B, C).
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3.2 Transfer learning

More generally, we assume that our dataset corresponds to observations of a joint random variable (X,Y ) valued on a
space X × Y , where some decision function f exists such that Y = f(X). Hence, problem (1) amounts to trying to
approximate the decision function f by optimizing the model fθ to fit the training data sampled from P (X,Y ).

Following [25], a domain is defined by a feature space and inputs distribution D = {X , P (X)}. Likewise, a task
consists of an output space and a decision function T = {Y, f}. Transfer learning aims to use the knowledge extracted
from a source domain DS and task TS to improve the performance of a model fθ on another target domain DT and task
TT . Both domains and tasks are materialized by source and target datasets ES = {(xi, yi) ∼ PS(X,Y );Y = fS(X)}
and ET = {(xi, yi) ∼ PT (X,Y );Y = fT (X)}.

In our context of EEG decoding, the source and target datasets correspond to different ERP and BCI cognitive tasks
performed by the same cohort of subjects in comparable experimental settings (c.f. section 4). Hence, while source and
target domains share the same feature space X = Rm×c, they differ in terms of marginal distributions of input trial
recordings PS(X) ̸= PT (X). Regarding learning tasks, source and target datasets differ in terms of decision functions
fS ̸= fT and output spaces YS ̸= YT . As opposed to our setting, Taskonomy [21] works with a common source and
target domains (XS , PS(X)) = (XT , PT (X)).

3.3 Transferability through linear probing

We evaluate the transferability between source and target datasets through linear probing [55, 56], as described below.
We assume that fθ is a neural network made of two parts: a representer model rω : X → R, with parameters ω, and a
classifier head hψ : R → Y , with parameters ψ

fθ(x) = hψ (rω(x)) . (2)

The parameters θ of the model are hence the concatenation of ω and ψ. While the representer rω is responsible for
learning useful representations for the learning task, the classifier head hω is just the last linear layer of the network
used to deliver the classification decision. When assessing the transferability between a source and target datasets (c.f.
Figure 2):

1. We first train the whole model fθS = hψS
◦ rωS

on the training split of the source dataset ES,train by solving
equation (1) ;

2. Then we freeze the representer parameters ωS and retrain the classifier head hψT
from scratch on the training

split of the target dataset ET,train:

ψT ∈ argmin
ψ

1

Ntrain

∑
ET,train

ℓ(hψ (rωS
(xi)) , yi) ; (3)

3. Finally, we evaluate the network obtained hψT
◦ rωS

on the test split of the target dataset ET,test and use this
metric to assess the transferability between S and T .

We evaluate the transferability through linear probing since it assesses whether the representations learned from the
source dataset allow us to classify the target data. In contrast, fine-tuning (i.e. pushing the training of the whole model
h and r further with target data) would modify the learned source representations, which would complicate the analysis
[57].

4 Experiments

4.1 ERP CORE and M3CVdatasets

During EEG decoding experiments, subjects perform cognitive tasks with stimuli that evoke specific brain signatures.
When the nature of the stimuli is similar, they can be categorized into the same paradigm. EEG decoding studies have
been interested in a very large and diverse number of paradigms, which can be categorized as exogenous (where an
external stimulus is used e.g. event related potential) or endogenous (where stimuli are induced by a predetermined
mental task or behavior, e.g. motor imagery) [8, 58]. Only a small number of EEG datasets contain recordings in a
diverse set of paradigms with the same subjects and configurations. Most existing datasets include a limited number of
subjects [59, 60] or a limited number of cognitive tasks [61–63].

In our study, we use two of the few EEG datasets that explore a large diversity of paradigms with a single large cohort
of subjects in comparable experimental settings. The first dataset, ERP CORE [22], comprises 40 subjects (25 females
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and 15 males between 18 and 30 years old). It focuses on exogenous paradigms, featuring seven isolated tasks eliciting
specific event-related potential components (ERP), namely Active Visual Oddball (P3b), Word Pair Judgement (N400),
Face Perception (N170), Passive Auditory Oddball (MMN), Flankers (LRP and ERN) and Simple Visual Search (N2pc).

The second dataset, M3CV [23], is a large multi-task, multi-session, multi-subject investigation of EEG commonality
and variability. It includes 106 subjects who performed specific tasks in six different paradigms. In this work, we only
focus on trials for which the subject and task labels were available, namely: Motor Execution (ME), Transient-State
Sensory (TSS), Resting-State (RS) and Steady-State Sensory (SSS). This reduces our dataset to 95 subjects (22 females
and 73 males between 19 and 24 years old) corresponding to the enrolment and calibration subsets of the original
dataset. The different paradigms for both datasets are presented in Figure 3. Other details about these datasets are also
listed in Table 1.

Table 1: Dataset, Cognitive task, time-locking event, time window and number of classes for all the sub-datasets in ERP
CORE and M3CV.

Dataset Cognitive Task (E) Time-Locking Event Window size (ms) (m) # classes (Y)
ERP CORE N170 Stimulus-locked -200 to 800 2
ERP CORE MMN Stimulus-locked -200 to 800 2
ERP CORE N2pc Stimulus-locked -200 to 800 2
ERP CORE N400 Stimulus-locked -200 to 800 2
ERP CORE P3 Stimulus-locked -200 to 800 2
ERP CORE LRP Response-locked -800 to 200 2
ERP CORE ERN Response-locked -600 to 400 2

M3CV ME Stimulus-locked 0 to 1000 3
M3CV RS Stimulus-locked 0 to 1000 2
M3CV SSS Stimulus-locked 0 to 1000 3
M3CV TSS Stimulus-locked 0 to 1000 2

4.2 Defining the decoding labels

The two EEG datasets under investigation offer many options to define the decoding labels y. For instance, one could
consider the subject’s response accuracy to the stimulus or whether the answer was in the appropriate time frame.
Another possible label definition involves predicting the stimulus presented based on the recorded signal or the presence
or absence of the task component [22, 64]. We describe hereafter how we defined the decoding labels in our experiments,
starting with the ERP CORE dataset.

The Flankers task aims to elicit two possible ERP components: ERN and LRN. ERN characterizes situations in which
the subject makes an error, even when they are not consciously aware of them [65]. It is elicited here by asking subjects
to indicate whether they saw a left or right trigger. We assigned one label to trials where the subject’s response matched
the target stimulus, and another label when it did not. If the trigger and response were both left or right, the trial was
labelled as correct; otherwise, it was incorrect [22, 66, 67].

The same Flankers task is used to elicit the LRN component, which is related to the side of the response hand. Unlike
ERN, this component is associated with preparing the response rather than its execution, as reported in previous studies
[66, 67]. Hence, we relied solely on the subject’s response to determine the label for each trial in this case. Specifically,
if the subject answered with the left hand, we assigned one label; if they responded with the right hand, we assigned a
different label.

The Word Pair Judgment task is used to elicit the N400 component. It consists in presenting participants with a prime
word, followed by a target word and asking them to judge whether they are semantically related or not [68]. To define
the label for each trial, we use the stimulus definition. Specifically, if the presented words were semantically related, we
assigned one label; if they were unrelated, we assigned a different label.

The N2pc component is elicited through a Simple Visual Search task [69]. In this task, participants had to visually
identify a specific target item (in blue or pink) among multiple distractors (in black). Notably, each item is an outlined
square with a gap on top or bottom, and subjects had to indicate the position of the gap on the target item (c.f. Figure 3).
Despite the task assigned to the subjects, what is decoded in this experiment is the position of the target within the
screen, i.e. whether it appeared on the left or right side, since this is what the N2pc component really captures. As
usually done for this experiment [64], we excluded trials with incorrect responses to ensure that the subjects were
paying attention to the target.
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Figure 3: Illustration of experiments recorded in ERP CORE (A to F) and M3CVdatasets (G to J). Labels under the
stimuli correspond to what subjects are supposed to answer during the trials. They do not necessarily correspond to
decoding labels. A. In the active visual oddball task P3b, participants viewed random letters and responded to whether
each stimulus was matched to the target (T) or not. One of the letters was designated as the target for each block of
trials, with a probability of 0.2. B. The word pair judgment task N400, involved participants viewing a red prime word
followed by a green target word and indicating whether the target word was semantically related or unrelated to the
prime word. C. During the face perception task N170, participants viewed images of faces, cars, scrambled faces,
or scrambled cars and indicated whether the stimulus was an "object" (face or car) or a "texture" (scrambled face or
scrambled car). D. The passive auditory oddball task MMN involved participants watching a silent video while speakers
played standard and deviant tones. Deviant tones had a probability of 0.2. E. In the flanker’s task, participants indicated
the direction of the central arrowhead, which was surrounded by arrowheads pointing in the same (congruent trials) or
opposite (incongruent trials) directions. This task elicited the lateralized readiness potential (LRP) and the error-related
negativity (ERN). F. In the simple visual search task N2pc, either pink or blue was designated the target colour at the
beginning of each trial block. Participants had to indicate whether the gap was on the top or bottom of the coloured
square. G. During the Motor Execution task (ME), participants responded to a visual cue by executing movements with
their left hand (LH), right hand (RH), or right foot (FT). H. Transient-State Sensory (TSS) potentials were elicited by
visual, auditory, and somatosensory stimuli. All three categories of stimuli were arranged in random order and lasted 50
milliseconds each. I. In the Resting-State task (RS), participants completed two runs with eyes closed (EC) and two
with eyes open (EO), each lasting one minute. J. The Steady-State Sensory (SSS) task involved separate trains of visual,
auditory, and somatosensory stimuli, with different stimulation frequencies and recording times for each run.

The N170 component [70] was elicited by presenting stimuli in the form of cars, faces, and deformed versions of these
objects, in what is called the Face Perception task. Participants had to identify whether the presented stimulus was
intact or scrambled. To simplify the analysis, we excluded scrambled stimuli as recommended by the original authors
of ERP CORE [64], and labelled the remaining ones according to whether they represented a car or a face.

Concerning the Active Visual Oddball task, participants were asked to watch a sequence of random letters among A,
B, C, D or E. The first letter in a trial had the role of target, and subjects had to answer whether the following letters
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matched the target or not, which should elicit the P3b component [71]. To assign trial labels for this task, we considered
two factors. First, we checked whether the letter on the screen matched the target letter. Second, we verified whether
the participant provided the correct answer or not. If both conditions were satisfied, we assigned one label to the trial. If
not, we assigned another label.

Finally, the Passive Auditory Oddball task aims to elicit the MMN component [72]. In our study, the stimuli were used
to define the trials labels. Specifically, we assigned one label if the individual heard a standard tone at 80 dB and another
label if they heard a deviant tone at 70 dB.

In the M3CVdataset, the definition of labels was more straightforward. For instance, decoding labels for the RS task
simply corresponded to whether the subjects had their eyes open or closed. For the TSS and SSS tasks, labels were
directly defined based on the stimulus presented to the subjects, i.e. whether it was a visual, auditory or somatosensory
stimulation (3-class classification problem). Likewise, decoding labels of the ME task corresponded to the movement
being executed by the subjects, i.e. either the right foot, the right hand or the left hand (3-class classification problem).

4.3 EEG pre-processing and epoching

Both datasets were pre-processed following the authors’ recommendations in all our experiments. Namely, ERP CORE
recordings were filtered between [0.5− 40]Hz with overlap-add FIR filtering. Electric potentials were referenced on
the average of electrodes P9 and P10 for all tasks except N170, for which we used the average of all 33 electrodes
as commonly done in the literature [22]. Stimuli events were shifted 26ms forward in time to account for the LCD
monitor delay in the MMN task. We downsampled the data from 1000Hz to 250Hz and used ICA [73] to correct
artefacts and discard particularly bad trials. Finally, trials were cropped into 1000ms windows based on the stimulus or
response depending on the task, following values reported by [22]. This dataset was entirely pre-processed using the
MNE-PYTHON library [74].

For the M3CVdataset, we used the dataset pre-processed by the authors as described below. Signals were band-pass
filtered between [0.01− 200] Hz using a 4th order Butterworth filter and notch filtered between [49− 51] Hz. Potentials
were referenced on the average of electrodes TP9 and TP10. Visual inspection and ICA were used to remove artefacts,
and bad channels were replaced by the average of the three neighbouring channels. Finally, 1000ms signals were
cropped from each trial. More pre-processing details can be found in [23].

4.4 Data splitting

The datasets were randomly split into a training, a validation, and a test set with respective proportions of 56%, 24%
and 20%. Each split contains data from different subjects since we want to assess the cross-subject generalization of
our models. Trainings and evaluations were repeated with different splits following a 5-fold cross-validation scheme.

In the standard decoding experiments (subsection 5.1), models were trained and evaluated using data from the same
cognitive task (c.f. Figure 2 C). In the transfer learning experiments (subsection 5.2), models were pre-trained on training
subjects of some task A, then fine-tuned through linear probing on data from the same subjects performing a different
task B and finally evaluated on unseen test subjects carrying out this same task B, as described in subsection 3.3 and
illustrated in Figure 2 D. Thanks to this data splitting alignment across cognitive tasks, we ensure that the test subjects
remain the same after transfer, avoiding any leakage between test and training sets.

4.5 Decoding models

We evaluated the transferability of learned tasks using three state-of-the-art deep learning models: ShallowNet [18],
EEGNet [16], and EEGInception [17]. ShallowNet is an efficient network inspired by the Filter Bank Common Spatial
Pattern method [75]. It contains 36k trainable parameters. EEGNet model has a convolutional layer for channel-based
EEG data filtering, a depth-wise convolutional layer acting as a spatial filter across channels, a separable convolutional
layer for categorical feature extraction, and a fully connected layer as classification head. Finally, EEGInception
has 15k parameters and extracts low- and high-frequency features in parallel at different scales. These architectures
delivered state-of-the-art results in several EEG decoding tasks and datasets [76–81]. In all our experiments, we used
the implementations of these models available in the BRAINDECODE library [18] with default hyperparameter values.

As baselines, we also tested Riemannian methods, which are known as the best machine learning techniques for
BCI and ERP, together with DL models. To this end, we evaluated both Minimum Distance to Riemannian Mean
(MDM) [82, 83] and Tangent Space methods with either logistic regression or support vector machine classifiers. We
also evaluated these methods with a varied set of covariance matrices, such as ERPCovariances [84] and Xdawn [85].
These methods were implemented and trained using the MOABB and PYRIEMANN library [86, 87].
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4.6 Training setting

All DL models were initialized with the Xavier sampling [88] and trained with the AdamW optimiser [89] using default
parameters β1 = 0.9 and β2 = 0.999 and a weight decay of 5 × 10−4. The initial learning rate was set to 10−4 for
ShallowNet and EEGInception, and to 6.25 × 10−4 for EEGNet. Trainings lasted at most 200 epochs and an early
stopping [90] procedure with a patience of 50 epochs was used. The training of all deep learning models was carried
out using PYTORCH and BRAINDECODE libraries [18, 91] on an Nvidia DGX with 4 A100 boards.

5 Results and Findings

5.1 Decoding perfomance

We first analyse the decoding performance of studied models on ERP CORE and M3CVdatasets in a standard decoding
setting, without any transfer. Overall, DL methods deliver superior balanced accuracies than baseline methods, as
shown in Figure 4.

Their scores also exhibit lower standard deviations than machine learning methods, demonstrating the stability of
learned representations across subject splits. Notably, EEGNet consistently led to the best performance on ERP CORE
for all paradigms, whereas ShallowNet outperformed others on three out of four paradigms of the M3CVdataset. Also,
note that our results on ERP CORE are consistent with those reported in [92, 93].

To support this analysis, we performed a permutation signed-rank test for each model pair within each paradigm to
determine whether observed performance gaps are significant (Figure 5). The resulting p-values were combined using
Stouffer’s method, with a weighting given by the square root of the number of subjects, and a Bonferroni correction
was applied to account for multiple comparisons, as done in [86]. The standardized mean difference was calculated
within each dataset to determine the effect size. Examining Figure 4(b), we observe that EEGNet slightly outperforms
ShallowNet, although the difference is not statistically significant, as highlighted in Figure 5(b).

From a paradigms perspective, the most challenging task within the ERP CORE dataset is the MMN paradigm, which
is unique in that the subject does not have an active response moment. Conversely, the least difficult tasks correspond to
the ERN and LRP.

Overall, the best DL architectures (EEGNet for ERP CORE and ShallowNet for M3CV) lead to similar performances
across paradigms, even in scenarios with different numbers of classes (e.g. two classes in RS vs. three classes in
ME, SSS and TSS). This suggests that the results are robust and confirms that the selected decoding architectures are
well-suited to the different experimental paradigms studied in this work.

5.2 Transfer learning performance

5.2.1 ERP CORE

We now analyse the transfer performance between paradigms to quantify how transferable each cognitive task is in
relation to one another. Figure 6 shows the obtained balanced accuracy for each pair of source and target cognitive
tasks in the ERP CORE dataset. A first intriguing observation is the asymmetry of the transfer matrices obtained,
regardless of the model used, indicating that the transferability between tasks is highly directional. We can see that
some tasks do not transfer well, leading to accuracies close to chance (50% in this dataset, as all classification problems
are binary). Notably, no source task is correctly transferring to either to LRP or N400 paradigms. This means that these
cognitive tasks rely on very specific representations that are not elicited by the other tasks and are hence erased by
models pre-trained on other paradigms.

Conversely, representations learned on some source tasks seem useful for decoding others, at least to a level of accuracy
comparable to a model fully trained and evaluated in a standard fashion (diagonal values in the figures). For example,
LRP proves to be a good source task when transferring to ERN and MMN. This suggests that LRP elicits some brain
activations common to ERN and MMN, which are learned by the decoding networks into its hidden representations.

More strikingly, pre-training on some source tasks, such as ERN, improves performance on some other target tasks, like
N170, even exceeding the reference performance of a model fully trained on this target task. The best example of this is
the MMN task, whose performance is boosted beyond the reference accuracy when transferring from all possible source
tasks. With ShallowNet, for example, we observe improvements of 28.3%, 6.1%, 4.6%, 3.7%, 2.7%, and 2.2% for the
LRP, N2pc, ERN, N400, P3, and ERN source tasks, respectively. This is also observed for EEGNet and EEGInception,
although more discretely.
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Figure 4: Cross-subject balanced accuracy across paradigms. Error bars correspond to the standard-deviation across
5-fold cross-validation. DL methods outperform machine learning baselines on most paradigms. EEGNet is consistently
better than other architectures in ERP CORE . ShallowNet leads to the best scores across M3CVparadigms, except for
TSS.

In order to better visualize these complex connections between tasks, we processed the matrices from Figure 6 into
transferability maps, shown in Figure 1. Arrows’ widths are proportional to corresponding transfer accuracies, where
performances close to chance level were omitted. More precisely, they correspond to transferability scores sS,T for
each source and target tasks, obtained by linearly rescaling the corresponding accuracies aS,T so that 0 corresponds to
the chance level cT and 1 corresponds to the reference accuracy without transfer (i.e. matrix diagonal aT,T ):

sS,T =
max(aS,T − cT , 0)

aT,T − cT
. (4)

The Scalable Force-Directed Placement (SFD) layout algorithm [94] was used to create the graphs. This figure clearly
shows that LRP is a very good source task and that MMN is a great target task. Note that all three different architectures
lead to consistent maps overall, evidencing the stability of our findings.

As another way to compare tasks, we also clustered them as done in [21] by representing each task by its row vector in
the transferability matrix rescaled through (4). This led to the dendrograms depicted in Figure 7(a). By comparing
tasks through their row vectors, we are trying to see whether they transfer in a similar fashion to other tasks. Most tasks
cluster together, with N400-N2pc and N170-ERN being the closest pairs. We also see that LRP stands outside of the
cluster, as it is a particularly good source task.
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Figure 5: Significant pairwise standardized mean performance difference between decoding models from Figure 4.
Statistical significance was computed using a corrected permutation test, with a cutoff p-value of 0.05.
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Figure 6: Transfer balanced accuracy for each pair of sources and target cognitive tasks in the ERP CORE dataset.
Cell values correspond to average performance and standard-deviation across 5-fold cross-validation. Diagonal values
correspond to standard decoding balanced accuracies, without transfer (c.f. subsection 5.1).

5.2.2 M3CV

Moving on to M3CV, we see in Figure 8 that we also obtain very asymmetrical transferability matrices for this dataset.
The best example of this asymmetry are the tightly related SSS and TSS tasks, which share the same class labels: visual,
auditory or somatosensory stimuli. Surprisingly, while SSS transfers relatively well to TSS, the opposite is not true,
showing that steady-state representations have something specific which is not captured when pre-training on transient
state data.

Another striking observation is that the EEGInception matrix differs from ShallowNet and EEGNet ones. This is
probably due to the lower pre-training performance of this model seen on Figure 4(b), evidencing that it learned weaker
representations. Interestingly, we see on both ERP CORE and M3CVresults that transfer performances across models
(Figures 6 and 8) rank consistently with pre-training performances (Figure 4).

From a paradigms perspective, we can see that no transfer accuracies exceed the reference diagonal values in this
dataset. Nonetheless, RS appears as a great target task, benefiting from representations learned in all source tasks. To a
smaller extent, TSS also exibits good performances for all source tasks when using the ShallowNet architecture. We
hypothesize that this is only visible for this architecture because it is the only one capable of extracting the information
shared by all 4 paradigms, given its superior decoding performance for this dataset (c.f. 4(b)). On the contrary, it
appears that it is very difficult to transfer onto the SSS paradigm, the extreme case being obtained with EEGInception,
for which the chance accuracy is attained for all sources (33% in this case, since it is a 3-class classification problem).
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[95].
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Figure 8: Average performance of the three deep learning models for the transfer learning setting in the M3CVDataset.

As for ERP CORE , we computed the transferability maps for M3CVin Figure 9. This visualization allows to clearly see
the consistent connections from TSS, ME and SSS towards RS, regardless of the model employed. The same pattern is
visible for TSS with ShallowNet, which receives broad arrows from all neighbouring tasks. We also note a persistent
bidirectional connection between TSS and ME, which is quite surprising given that they are very different tasks.

The similarity between the best target tasks, RS and TSS, becomes even more apparent on the clustering dendogram
from Figure 7(b) Indeed, these paradigms are grouped in their own cluster with EEGNet and appear as the closest
paradigms with ShallowNet and EEGInception. This figure also confirms that SSS is a very particular task, as it is
outside the main cluster for two out of three dendograms.
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Figure 9: Transferability map of the M3CVdataset. Each node corresponds to a distinct paradigm, while arrows width
represent the average transfer performance when using the representations learned from a source task to decode a target
task. All tasks transfer well to RS. While SSS transfers to TSS, the opposite is not true. Surprisingly, ME and TSS
transfer well to each other in both ways.

6 Discussion and impact

Our analyses have yielded a reliable cognitive map through the use of transfer learning and its successful generalization
across various cognitive paradigms. The resulting taxonomy maps, which encapsulate the knowledge of model
parameters, open up diverse possibilities for practical applications and further research. In this discussion, we will delve
into some potential applications of cognitive mapping from the perspective of machine learning models, emphasizing
the benefits and implications they offer.

First and foremost, these cognitive maps can significantly enhance and optimize the training of predictive models. As
exemplified in this study, one compelling approach is to leverage a task that exhibits strong transferability as a template
for decoding challenging cognitive tasks, as shown for MMN or N170 ERPs. This aspect proves especially crucial
in psychophysical experiments, where subject numbers are limited while experimental variables are abundant. These
factors seem to be observed in other areas, such as computer vision [96].

Additionally, the cognitive taxonomy maps can play a pivotal role in the design of improved Human Machine Interfaces
(HMIs) for Brain-Computer Interface (BCI) applications. Our focus particularly centers around integrated BCIs [8],
which extend beyond mere control functions and delve into scenarios involving error detection and negative potential. By
incorporating insights gained from cognitive mapping, we can significantly enhance the performance and effectiveness
of HMIs in such contexts. For example, the detection of ERN could help to mitigate situations where the BCI system
selects unwanted commands, resulting in user frustration.

Furthermore, the clinical applications of cognitive mapping hold immense potential, especially in aiding patients with
schizophrenia who encounter difficulties in emotion detection and facial recognition [97]. Leveraging the insights
derived from the N170 task [98], we can devise interventions that boost performance and facilitate improved outcomes
for individuals grappling with these challenges. This is especially useful in the context of remediation of emotion
recognition, where schizophrenic patients have difficulties to recognise faces and to extract relevant cues (like eyebrows
or mouth movements) for interpreting social interaction adequately. Objective information indicating that the patient
has recognised a face during an interaction, instead of focusing on irrelevant details for instance, could help therapists
for rehabilitation purposes.

Moreover, our findings shed light on the functional networks underlying related tasks. Notably, closely related tasks
often engage similar functional networks, suggesting the presence of shared evoked components [66, 67]. This implies
that activations observed in one task can enhance and refine the performance of another task. While these tasks may
exhibit distinct temporal dynamics and spatial orientations, they ultimately serve the same overarching purpose and
engage overlapping cortical networks. Unraveling the sources responsible for generating event-related potentials
(ERPs) becomes more feasible when considering these perspective-dependent variations in activation patterns. This
understanding illuminates the intricate interplay among different components of the cortical network.
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One compelling avenue for applying the insights gained from our study lies in the realm of source localization, a
classic inverse problem in neuroscience [74]. Cognitive mapping can serve as a potent constraint in reconstructing brain
activity, leveraging functional regularization. Source localization methods rely on physical and anatomical constraints
to yield plausible solutions. Information regarding share evoked components could help to define functional constraints
on estimated solution. By leveraging the connections uncovered through cognitive mapping, we can construct robust
source localization models with enhanced accuracy and interpretability.

Finally, we can address the issue of BCI illiteracy, which refers to the challenges faced by individuals to effectively
operate BCIs [99, 100]. Our transfer learning approach, which could be applied at the subject level, holds promise
in mitigating this challenge. BCI illiteracy is mostly observed on few specific tasks for a given user while accuracy
on other tasks are correct [8]. Based on our results, a first possible approach is to apply task transfer, training on an
effective decoding task for a user to transfer the results to an inefficient task. A second and more exploratory approach is
to investigate user transfer, that is transfer the most effective decoding task from one subject and apply it to another with
poor decoding abilities. This area presents an exciting and promising avenue for further exploration and improvement.

7 Conclusion

Our study investigates the transferability of deep learning representations through extensive experiments on two EEG
datasets. To our knowledge, our work is the first to construct representation transfer maps for EEG decoding. These
maps reveal a complex and asymmetric hierarchical relationship between cognitive tasks, enhancing our understanding
of brain decoding and neural representations. Our findings also have very practical implications for mitigating data
scarcity, demonstrating performance improvements in real world data.

One limitation of our work is that we focus on ERP and BCI datasets. Future work could hence extend our analysis to a
broader range of cognitive tasks, or even investigate the transferabily across datasets that do not share the same cohort
of subjects. Other interesting avenues for investigation could be the study of other types of transferability, for example
by carrying out a similar analysis in a self-supervised setting.

Acknowledgments

We would like to thank Dr André Cravo for his valuable feedback on this manuscript. This work was supported by the
ANR BrAIN (ANR-20-CHIA-0016), ANR AI-Cog grants (ANR-20-IADJ-0002), DATA IA (project YARN). The work
of BA was supported in part by the CAPES under Grant 001 and Data IA mobilité internationale. The work of WHLP
was supported by Wellcome Innovations under Grant [WT213038/Z/18/Z].

References
[1] Jean-Rémi King, Laura Gwilliams, Chris Holdgraf, Jona Sassenhagen, Alexandre Barachant, Denis Engemann,

Eric Larson, and Alexandre Gramfort. Encoding and Decoding Framework to Uncover the Algorithms of
Cognition. In The Cognitive Neurosciences. The MIT Press, 05 2020. ISBN 9780262356176.

[2] Subhrajit Roy, Isabell Kiral-Kornek, and Stefan Harrer. Chrononet: A deep recurrent neural network for abnormal
EEG identification. In Proceedings of the Artificial Intelligence in Medicine, pages 47–56, Cham, 2019. Springer
International Publishing.

[3] Giulio Ruffini, David Ibañez, Marta Castellano, Laura Dubreuil-Vall, Aureli Soria-Frisch, Ron Postuma, Jean-
François Gagnon, and Jacques Montplaisir. Deep learning with EEG spectrograms in rapid eye movement
behavior disorder. Frontiers in neurology, 10:806, 2019.

[4] Lukas A.W. Gemein, Robin T. Schirrmeister, Patryk Chrabąszcz, Daniel Wilson, Joschka Boedecker, Andreas
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