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NEURIPS2021 BEETL COMPETITION

Abstract

Transfer learning and meta-learning offer some of the most promising avenues to unlock
the scalability of healthcare and consumer technologies driven by biosignal data. This is
because regular machine learning methods cannot generalise well across human subjects and
handle learning from different, heterogeneously collected data sets, thus limiting the scale of
training data available. On the other hand, the many developments in transfer- and meta-
learning fields would benefit significantly from a real-world benchmark with immediate
practical application. Therefore, we pick electroencephalography (EEG) as an exemplar
for all the things that make biosignal data analysis a hard problem. We design two transfer
learning challenges around a. clinical diagnostics and b. neurotechnology. These two
challenges are designed to probe algorithmic performance with all the challenges of biosignal
data, such as low signal-to-noise ratios, major variability among subjects, differences in the
data recording sessions and techniques, and even between the specific BCI tasks recorded in
the dataset. Task 1 is centred on the field of medical diagnostics, addressing automatic sleep
stage annotation across subjects. Task 2 is centred on Brain-Computer Interfacing (BCI),
addressing motor imagery decoding across both subjects and data sets. The successful 2021
BEETL competition with its over 30 competing teams and its 3 winning entries brought
attention to the potential of deep transfer learning and combinations of set theory and
conventional machine learning techniques to overcome the challenges. The results set a
new state-of-the-art for the real-world BEETL benchmarks.

Keywords: machine learning, transfer learning, meta learning, domain adaptation, sleep
diagnostics, Brain-Computer-Interfaces (BCI), EEG, neuroscience, NeurIPS2021, neurotech-
nology, neural interfacing, electroencephalography

1. Introduction

The maturing of machine learning methods and their progressive deployments into the real
world brought to the forefront the need for combining similar data sets. Transfer learning has
become a promising strategy to align different distributions (Pan and Yang, 2009). Transfer
learning encompasses algorithms to transfer the representations and knowledge from source
domains to a target domain. In the machine learning field, fine-tuning is often used to
transfer model representations between tasks or data sets (Yosinski et al., 2014). Another
strategy is model splitting (Huang et al., 2013), which uses multiple sets of parameters
for different data sets. Deep domain adaptation (Long et al., 2015) is a technique which
directly projects features of data sets into a common space with neural networks.

We pick electroencephalography (EEG), which has been considered for almost 90 years
(Berger, 1929) one of the most promising ways to non-invasively ”readout” of the human
brain for diagnostic and human interfacing purposes. EEG reflects all the features that make
biosignal understanding a hard problem, as it consists of multi-dimensional time-series data
that suffers from signal non-stationarities and poor signal-to-noise ratio, variability between
users and sessions, even the same experimental questions are pursued with different chan-
nel numbers and recording locations, as well as many subtle differences in task definitions
between data sets. While EEG sensor and amplifier hardware, has steadily evolved, trust-
worthy and data-efficient decoding methods are still missing. The main challenge is that
these substantial differences prevent efficient combination of data points, unlike e.g. the
combination of myriads of different images (Deng et al., 2009) resulted already in very sub-
stantial improvements in image recognition capabilities, by simply pooling the data (Huh
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et al., 2016). Thus, to combine data sets in the challenging domains of EEG data analysis
we need to consider transfer learning (and meta-learning) approaches (Zhuang et al., 2020).
Currently, it is still relatively easy to get a good overview of the research literature on EEG
transfer learning algorithms, with a number of recent reviews (Wan et al., 2021; Wu et al.,
2020; Jayaram et al., 2016). Some recent inter-subject studies are based on deep transfer and
deep meta learning approaches for Brain-Computer Interfaces (BCI), e.g. Wei et al. (2021);
Li et al. (2021a) and in sleep diagnostics studies, e.g. Chambon et al. (2018); Andreotti
et al. (2018). However, the field still lacks a systematic benchmark since these algorithms
are tested on different data sets or with different pre-processing and setups in their studies.
More importantly, very limited work focuses on cross-dataset transfer learning, which limits
the use of big data in EEG decoding.

Two challenging tasks are designed to stimulate such algorithmic innovation. Task 1 is
centred on transfer learning in the field of medical diagnostics, addressing automatic sleep
stage annotation. The challenge lies in transferring from a large control population data set
to clinically relevant cohorts with very little training data (transfer across subjects). Task 2
is centred on transfer learning for BCI, addressing motor imagery decoding. The challenge
lies in transferring from multiple data sets, which use different EEG setups comprising hun-
dreds of users, to a set of new users that need to be up and running with only minutes worth
of calibration data (transfer across subjects and data sets). Currently, most studies focus
on transfer learning within a single data set. The Benchmarks for EEG Transfer Learning
(BEETL) competition provides a referencing platform for transfer learning strategies to two
of the most common EEG applications and a guide on combining and utilising data sets
from different sources, which could promote the EEG field toward the use of big data.

BEETL uses a persistent online platform https://beetl.ai to establish it as a bench-
mark, while its competition rankings were handled on CodeLab https://competitions.
codalab.org/competitions/33427. The competition ran from 9th July to 31st Oct 2021
during which we recorded over 130 registrations. Over 40 research groups submitted to the
competition and 3 winners were awarded 5000 USS$ in cash prizes. We focus the following on
the competition, its setup and the 3 winning strategies and the general insights we drew.

2. Task Description

Task 1 is in the field of medical diagnostics and specifically has the goal of automatic sleep
stage annotation from sleep EEG data. We provide a data set with adult users (40 users, age
22-65) with 6 label categories for model training, based on which sleep stage annotation has
to be transferred to two different age groups (65-80 and 80+) for each of which 5 subjects
worth of data are provided. Task 1 is an essential use case for the development of ready-
to-use medical diagnostics developed on a standard, large user base that has to be then
transferred to many different clinically relevant subpopulations, for which respectively only
a few subjects are worth of data can be collected. Beyond requiring subject-independence,
the transfer has to work on different user groups (elderly and very elderly subjects) with well
documented systematic EEG differences during sleep (Landolt et al., 1996; Boselli et al.,
1998; Landolt and Borbély, 2001; Purdon et al., 2015).

Task 2 is a 3-way motor imagery classification challenge (left-hand, right-hand motor
imagery and ’reject’) that gets at the heart of the problem of current BCI systems: motor
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imagery data is exhausting for subjects to record, and historically has been difficult to use in
a cross-subject and cross-dataset manner. Currently, there is limited work on cross-dataset
transfer learning, and existing methods lack a systematic experimental comparison in the
literature. This task provides a platform to compare the performance of current transfer
learning algorithms across both subjects and data sets. In the past we organized several
motor imagery data sets for BCI challenges in the MOABB (Mother of All BCI Benchmarks,
https://github.com/NeuroTechX/moabb) database to test the performance of algorithms
in terms of their generalisation performance on new data sets. Three source data sets are
provided as training data. The algorithms are evaluated on new data sets with different
setups, including differences in electrode channels, task definitions, and subjects. The test
set contains an unpublished data set that is collected for this purpose and will be added to
the MOABB database post-competition. Demonstration figures and more details of tasks
can be found on the BEETL website (https://beetl.ai/challenge).

3. Data

Sleep Task data set. For Task 1, the sleep stage decoding task, the Physionet sleep
data set (Kemp et al., 2000; Goldberger et al., 2000) is one of the ideal data sets. The
Sleep-EDF is a public database ( https://physionet.org/content/sleep-edfx/1.0.0/)
that contains 197 whole-night sleep recordings with event markers annotated by experts.
Sleep patterns consist of sleep stages W, R, 1, 2, 3, 4, M (Movement time) and ’?’ (not
scored). This data set has a clustered distribution of participants of different ages. The
number of subjects is large enough for transfer learning algorithms to learn the diversity
of distributions. We selected and randomized the subjects and trials in the competition to
avoid cheating. Processed data could be found in the competition start kits.

Motor Imagery Task data set. For Task 2, the motor imagery decoding task, we se-
lected three public data sets: Cho2017 (Cho et al., 2017), BNCI2014 (Tangermann et al.,
2012), PhysionetMI (Goldberger et al., 2000; Schalk et al., 2004) from the MOABB as
sources (http://moabb.neurotechx.com/docs/datasets.html). MOABB is a framework
for evaluating BCI classification algorithms on publicly available data sets. We have col-
lected a data set in an online racing game format in CybathlonIC (Wei et al., 2021) for
testing purposes. Some offline subjects from the Weibo2014 data set (Yi et al., 2014) and
several online collected subjects from the CybathlonIC data set are used as test samples.
Data set information can be found in the table 1. Detailed descriptions of the data could
be found on the MOABB or BEETL website.

Table 1: MI data sets in BEETL
MI Data set  Subjects Channels Tasks

Cho2017 52 64 Left /Right hand

BNCI2014 9 22 Left /Right hand/Feet/Tongue
PhysionetMI 109 64 Left /Right hand/Feet/Both hands/Rest
Weibo2014 10 60 Left/Right hand/Feet/Rest
CybathlonIC 5 63 Left /Right hand/Feet/Rest

207


https://github.com/NeuroTechX/moabb
https://beetl.ai/challenge
https://physionet.org/content/sleep-edfx/1.0.0/
http://moabb.neurotechx.com/docs/datasets.html

WEI ET AL.

Training, validation and test set. For the Physionet sleep data set, we provide 80
sessions from 40 subjects (aged from 25-64) with full labels as source data and 5 subjects
aged from 65 to 79 as examples of this age group; the performance of the algorithm is tested
on more subjects aged from 65 to 79. Similarly, we provide 5 subjects aged from 80 to 95
with labels, while accuracies are reported on other subjects aged from 80 to 95. For the
Physionet MI, Cho2017 and BNCI data sets, we provide full data sets with labels as sources.
In both the Weibo2014 and CybathlonlC data sets, we provide some data with labels per
test subject. During the competition, 32 channels around the motor cortex are selected
from the Weibo2014 data set. The data set name was not provided during competition to
avoid cheating. For the validation data (phase 1, leaderboard phase in the competition),
two subjects from the CybathlonlC data set and subjects 3, 4, and 5 of the Weibo2014
data set are used. For the test data (phase 2, final ranking phase in the competition), three
subjects from the CybathlonIC and subjects 7 and 9 from Weibo2014 are used as testing
samples. CybathlonIC will be added to MOABB post-competition.

Metrics. As both tasks in the BEETL challenge are classification problems, classification
accuracy on the test data is the standard for ranking different solutions. To account for
class imbalances in the data, balanced accuracy is computed by giving higher weight to
classes with less samples (Brodersen et al., 2010). The final competition score is the sum
of the respective scores on both tasks.

4. Competition Results and Solutions

In task 1, winning teams used a single neural network for all subjects during training and
testing based on DeepSleep (Chambon et al., 2018) or EEGInception (Santamaria-Vazquez
et al., 2020). In task 2, the variability across different data sets, tasks, channel locations,
and sampling rates make transfer more challenging (table 1). All three teams selected
the common channels and aligned the sampling rate of different data sets. Team Cogi-
tat used the Deep Sets (Zaheer et al., 2017) framework (see Section 4.1). Team Wduong
used Label Alignment (He and Wu, 2020) and Euclidean Alignment (He and Wu, 2019)
(see Section 4.2). Team MS01 performed deep transfer learning with an architecture based
on Riemannian geometry approaches (Huang and Gool, 2017) (see Section 4.3). Winning
scores on the two tasks can be found in their respective sections and all details available at
https://beetl.ai/prizes.

Baseline and Start kits A naive baseline without transfer learning was evaluated with the
Shallow ConvNet from Schirrmeister et al. (2017). In task 1, training data of the baseline
method contains the source subjects and the example subjects from the test population.
In task 2, evaluation was done on each subject with their own example data to avoid the
negative transfer problem reported in Wei et al. (2021). 17 common channels of all data
sets are used in the baseline of task 2. The baseline score in task 1 and task 2 is 57.6% and
49.9% respectively. Start kits for loading data, training models and generating labels are
provided in Python (https://beetl.ai/code).
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Figure 1: Solution by team Cogitat (Bakas et al., 2022) using (a) statistical alignment to
standardize latent distributions of subjects and (b) Deep Set Alignment to obtain
embeddings.

4.1. 1st Place: Latent Subject Alignment

Team Cogitat (Task 1: 65.55, Task 2: 76.33, Overall: 141.88; Members: Stylianos Bakas,
Siegfried Ludwig, Konstantinos Barmpas, Mehdi Bahri, Yannis Panagakis, Nikolaos Laskaris,
Dimitrios A. Adamos, Stefanos Zafeiriou) uses Deep learning models based on the EEGIn-
ception architecture for both tasks (Santamaria-Vazquez et al., 2020). The architecture
applies some modifications to the widely used EEGNet architecture (Lawhern et al., 2018),
including temporal filterbanks with different kernel sizes, as well as additional deeper pro-
cessing layers. The convolutional layers are followed by a linear classifier. All models are
trained with the Adam gradient descent optimizer (Kingma and Ba, 2014), using default
hyperparameters.

As the sleep classification task consists of subject-independent classification on a single
data set, a straight-forward approach of training a model on the combined source and
calibration data is performed. Latent alignment between subjects is used as described in
later paragraphs.

Beyond aligning different subjects, the motor imagery task requires the transfer of
trained models from one or more source data sets to perform classification on two tar-
get data sets. To make data set transfer simple, only the Physionet MI source data set was
used and the 30 common electrodes between the source and the two target data sets were
selected. The models are trained on the source and calibration data simultaneously, using
a shared feature extractor and separate linear classifier heads per data set (Huang et al.,
2013; Wei et al., 2021).

The approach for improving subject-independence is to align the latent feature distri-
butions of the deep learning models between different subjects and sessions (Bakas et al.,
2022). This is similar to the Euclidean Alignment method, which performs spatial whitening
with the average covariance matrix per subject (He and Wu, 2019), although the methods
are not constrained to be applied on the model input. Performing distribution alignment in
the classifier latent space is related to Riemannian manifold methods (Zanini et al., 2017),
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which have gained traction in recent years, but integration with deep learning models has
not yet matured.

For the first implementation of latent alignment, team Cogitat developed a novel sta-
tistical alignment method, which standardizes latent feature distributions per subject and
can be seen as a subject-wise batch normalization (Li et al., 2021b), although a separate
module per subject is not used (figure 1a). This method is very computationally efficient,
straightforward to implement and can be used in the place of the batch normalization layers
in a deep learning model. During training, multiple trials need to be present for each sub-
ject in the batch, in order to estimate feature distributions. During inference, a statistical
estimation obtained on unlabelled trials of the target subject can be used (Xu et al., 2021).
This worked well on the sleep classification task, where no subject-wise labelled calibration
data is available.

ch02017

BCLIV 0
train_data
test_data

Figure 2: Data set before (left) and (right) after alignment with Euclidean Alignment pro-
posed by team Wduong.

Taking the perspective of classification on a set of EEG trials from a given subject,
the application of Deep Set architectures follows naturally as a second implementation of
latent alignment (Zaheer et al., 2017). Team Cogitat developed a deep learning layer that
uses the statistical mean to obtain a distribution embedding of the given subject to update
trial-wise features (figure 1b). This worked particularly well on the MI task, which provides
subject-wise calibration data.

4.2. 2nd Place: Multi-Source EEGNet with Domain & Label Adaptation

Team wduong (Task 1: 68.66, Task 2: 71.33; Overall: 139.99; Members: William C.
Duong, Stephen M. Gordon and Vernon J. Lawhern) used a modified version of Deep-
Sleep in Task 1 (Chambon et al., 2018) with some minor changes, including adjusting
the convolution kernel size, adding batch normalization after each layer, and setting up
a pre-training scheme. For the motor imagery decoding (Task 2), team Wduong used a
combination of data alignment, multi-task EEGNet model, and maximum classifier dis-
crepancy domain adaptation to train a robust model. The code is available at https:
//github.com/mcd4874/NeurIPS_competition.

Due to limited available labeled trials, the motor imagery decoding task needs transfer
learning strategies to train a robust model with good performance. To create a general-
ized framework to handle multi-source data set transfer learning, all three provided data
sets, included Cho2017, Physionet, and BNCI2014, are used in the training procedure. 17
common channels among three source data sets and two target data sets are utilised. To
demonstrate the generalization of the approach, the tongue category in the BNCI2014 data
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sets is kept, which is not available in two target data sets. Two main problems exist among
source data sets and target data sets. First, there is a category gap problem due to different
label categories between source and target data sets. Label Alignment is applied to solve
this problem (He and Wu, 2020). For example, the tongue motor imagery category can
be projected to the rest category to align corresponding distributions; therefore, the train-
ing phase can use source data with different labels compared to target data. In addition
to the label gap problem, other data sets with different experimental recording setups led
to a domain gap between subjects from source data sets and target data sets. Euclidean
Alignment is used to close the gap between subjects in source domains and target domain
(He and Wu, 2019). All trials of each subject are aligned such that the mean covariance
matrices of all subjects are equal to the identity matrix after alignment. After alignment,
data set distribution in both source domains and target domain are more similar as seen in
figure 2.

Finally, a multi-task EEGNet combined with Maximum Classifier Discrepancy (MCD)
(Saito et al., 2018) is developed to solve the motor-imagery decoding problem. A multi-
task learning (MTL) setup can learn a common EEGNet backbone to increase feature
representation generalization among data sets, where MTL treats each data set from source
domains and target domain as an individual task (Ruder, 2017). Combining losses with
a weighted sum can optimize the shared EEGNet backbone and all the classifiers jointly
(Lawhern et al., 2018). An adversarial training procedure in the MCD method is conducted
between the target classifier and EEGNet backbone to both increase the discriminative
ability of target classifiers and enhance the feature extraction of the backbone (Saito et al.,
2018). The model architecture is in Figure 3.

N
BNCI201401 BNCI2014001
Classifier
dataset EEGNet
Physionet 1
dataset m \
Cho2017
dataset m 157
Labeled train
data
Unlabeled
test data

Figure 3: Multi-task EEGNet solution architecture proposed by team Wduong.

Physionet
Classifier

Cho2017
Classifier

Target
Classifiers

W

Each targeted subject is treated as a separate target domain for the training strategy
due to the highly subject-specific nature of motor imagery EEG signals. Therefore, five
model groups known as Ag, A1, Ao, By, and B; were created. Five-fold block-wise cross-
validation is applied for each model group, such that 80% of the target domain data is used
to train a model and 20% is used for validation to pick the best model. An ensemble learning
strategy combines five-fold models via majority vote to learn the final prediction. During
the training phase, the target data set samples a batch size of 16, while each source data
set samples a batch size of 64 for each mini-batch to train the model. An Adam optimizer
with the learning of 0.001 is used to train the model for 20 epochs.
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4.3. 3rd place: Classification of covariance matrices with SPDNet

Team MSO01 (Task 1: 65.57, Task 2: 59.87, Overall: 125.44; Members: Maciej Sliwowski,
Vincent Rouanne, Piotr Tempczyk) performed different methods for task 1 and task 2
because of the difference in the available number of EEG channels. In the sleep decoding
task (task 1), a DeepSleep model (Chambon et al., 2018) was trained and evaluated without
major modifications. For the motor imagery decoding task (task 2), methods analyzing
spatial covariance matrices of the signal was studied with a focus on Riemannian geometry
approaches. Covariance matrix

Channels

Subject i

Channels

Subject

+ specific part Embedding

BiMap BiM_ap BiMap
. Subject 1 Subject| [Subject| .. | Subjoc
¢ o
- N
20 Subject 5 Subject 3

Shared between
10 subjects part
0 Subject 4
[ LogEig I Subject encoding ]

-10
¢ Left hand

'
) Sublect? Right hand
@ © Fea ;
* Idle
GWEHO®

-30 -20 -10 0 10 20 30 40

Figure 4: Team MS01’s solution: subject covariance matrices (left) and architecture (right).

The approach performs classification of the spatial covariance matrices for different
motor imagery (MI) tasks with Minimum Distance to Riemannian Mean (MDRM) classifiers
(Barachant et al., 2012). Covariance matrices lie on a manifold of positive semi-definite
matrices in which the distance between data points can be computed using Riemannian
geometry. The Riemannian mean of covariance matrices is computed separately for each
motor imagery task. New observations are classified using the minimal distance between the
observation’s covariance matrix and the tasks mean covariance matrices. To visualize the
data distribution and interpret the results obtained with the MDRM classifier, t-Stochastic
Neighbor Embedding (t-SNE) (van der Maaten and Hinton, 2008) with Riemannian distance
are used (Figure 4a).

Based on the MDRM results and the t-SNE visualization (Figure 4a), the solution is
proposed using nonlinear methods designed specifically for the analysis of symmetric positive
definite matrices (SPD). SPD networks, similar to standard deep learning, are able to learn
an efficient representation of the data that is not linearly separable as in our case. Covariance
matrices are classified using SPDNet (Huang and Gool, 2017), a type of Symmetric Positive
Definite manifold networks, together with Riemannian batch normalization (RBN) (Brooks
et al., 2019) (code from Brooks et al. (2019)). All subjects from all sources and leaderboard
labelled data sets are combined to form the training and validation data sets (30% of the
leaderboard labelled data set was used as validation).
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In the proposed SPDNet architecture for transfer learning (Figure 4b), data for each
subject is processed by an individual feature extractor consisting of one bilinear transfor-
mation (BiMap layer). As further steps in the model are shared between subjects, the first
BiMap layer is able to unify the representations and make it subject invariant. The shared
part of the network consists of RBN and rectified eigenvalues activation (ReEig) followed
by another block of BiMap, RBN, and ReEig. Extracted features are transformed from
Riemannian space into Euclidean space (LogEig layer). Two fully connected layers (with a
dropout layer in-between) are added to predict four MI classes. To catch between-subject
variance, an embedding/encoding of patients of size fifteen is created, which is concate-
nated to the first fully connected euclidean layer. The embedding is trained together with
the whole network with backpropagation. A hypothesis is that the subject encoding could
ease features standardization across subjects.

5. Discussion

In this section, we will discuss key observations we draw from the 2021 BEETL competition.
We reflect on the design choices of the algorithms, the commonalities and differences among
solutions, limitations of the winning methods and task design, and future directions.

Architecture design is a challenge for cross-dataset EEG transfer learning. In light of
the relatively large data sets provided, team Cogitat chose the EEGInception architecture
for both tasks, which has enough capacity to learn discriminative features across subjects
and data sets. Both team Wduong and MS01 used a modified DeepSleep model for task 1.
In task 2, team Wduong used a multi-task EEGNet setup. Team MS01 used the SPDNet
architecture that analyzes covariance matrices with nonlinear transformations. Despite the
diversity of algorithms, all teams used deep learning approaches. The choice of using neural
networks might be explained by the need for increased model capacity when attempting
to find classifiers that can generalize across many subjects and data sets. Further, deep
learning architectures allow for end-to-end training of various processing stages, including
representation learning without hand-crafted features and distribution alignment. This
provides flexibility in the design of architectures to test out different transfer learning setups.

Another commonality is that all employed a combination of shared network backbones
and individualized processing layers for different data sets or subjects (either in shallow lay-
ers or classification layers). Team Cogitat and Wduong used a shared feature extractor with
different classifiers for different data sets. Team MSO01 had unique layers for each subject at
shallow layers of their architecture. The splitting approach allows model backbones to be
trained on large amounts of data while allowing for adaptation to the existing differences.

EEG decoding suffers from substantial covariate shifts among different subjects and
data sets. All three teams used alignment approaches to reduce differences among data
sets, subjects and sessions. Team Cogitat performed statistical alignment of latent features
at various stages of the model. Team Wduong performed Euclidean alignment on the EEG
trials based on their covariances and an additional label alignment approach. Team MS01
analyzed covariance matrices with individual per-subject layers to unify the representa-
tions. Although the exact implementations vary, the winning solutions indicate the utility
of alignment methods to perform domain adaptation in EEG transfer learning methods.
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How to select and process source data sets is a key question for EEG transfer learning
towards the use of big data. In task 2, team Wduong and team MS01 used all three source
data sets with 17 common channels to utilise more subjects and tasks. Team Cogitat used
one source data set (PhysionetMI) with more electrodes. Here we highlight a trade-off
between keeping more common electrode channels or increasing the number of subjects by
adding more data sets. One limitation of the winning solutions is that they either abandoned
some channels or some subjects. Discriminative information could be lost by this selection
approach. Therefore, aiming to apply some form of upsampling approach or building a
better architecture to use all channels of data sets would be possible future directions. We
observe that the gaps in decoding accuracies between participants are relatively small in
the sleep task. Most teams did not utilise complex domain adaptation strategies. This may
be caused by various reasons: Firstly, sleep EEG could be relatively similar across subjects
by nature compared to motor imagery. Secondly, the sleep task is designed on only a single
data set with two channels, which simplified the scenario for medical diagnostics. Another
human factor could be that sleep data is manually labelled by human experts which unified
the data in terms of classes. More studies on utilising multiple sleep data sets with more
channels and setups are needed in the literature to conclude a precise explanation.

From this year’s competition, we foresee various directions that could bring further im-
provements. In the competition, all solutions used deep learning, which since 2015 has
quickly advanced to become a primary machine learning approach (Walker et al., 2015;
Schirrmeister et al., 2017) to BCI. All winners have backbone deep learning architectures
based on similar ideas of temporal and spatial filters (Lawhern et al., 2018; Santamaria-
Vazquez et al., 2020). There is still a lack of systematic comparison between deep learn-
ing and conventional machine learning in EEG transfer learning in the literature. More
methods in the EEG field should be explored for multi-dataset transfer learning, including
conventional transfer learning algorithms (Jayaram et al., 2016). The winning solutions
used various alignment approaches, whereas a comparison of these alignment approaches
in the same architecture setup is required. In addition, the winning methods either leave
out some channels or source tasks in their approaches, not making full use of the data.
Therefore, algorithms that could use the full potential of sources should be developed in the
future. Furthermore, in light of the fact that all winning solutions used deep learning for
EEG decoding, yet the interpretability (Goebel et al., 2018; Samek et al., 2019) of features
used for deep transfer learning needs to be further investigated. Another concern arises in
data privacy, safety and security aspects with utilising subjects’ data across data sets and
data centres of both clinical diagnostics and brain-machine interfacing (Festor et al., 2021;
Bernal et al., 2021), which needs to be handled by new algorithms.

In conclusion, this initial 2021 BEETL competition brought attention to the challenge
of using large-scale biosignal transfer learning on a large number of human subjects and
only partially comparable data collection protocols. BEETL provides a common platform,
data and forum to evaluate transfer and meta learning algorithms on open challenges in
biomedical research and development. It has already shown valuable innovations in EEG
transfer learning with insights. We believe the BEETL competition could open up the
opportunity to utilise heterogenous open-source data sets and move the transfer learning
and EEG field forward by setting a new real-world benchmark.
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