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Abstract: In recent work, the multiplicity-induced-dominancy (MID) property for single delay
time-delay systems has been fully characterized in the over-order case, that is when the
multiplicity of the spectral abscissa exceeds the system’s order. In this note, despite the fact
that this assumption is not met, we provide an analytical proof for the MID. The coexistence
of real spectral values is the main ingredient. The obtained result is illustrated through the
stabilization of an unstable second-order plant by a delayed PD controller.
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1. INTRODUCTION

Systems with delays are often used in modeling transport,
propagation, and communication. Such dynamical systems
belong to the class of infinite-dimensional systems and
a distinctive feature of such systems is that their rate
of evolution can be described by differential equations
including information about the past history of the system,
see for instance Bellman and Cooke (1963); Kolmanovskii
and Nosov (1986); Stépán (1989); Gu et al. (2003); Hale
and Verduyn Lunel (1993); Michiels and Niculescu (2014);
Breda (2022) and references therein. While pole place-
ment for finite-dimensional systems is a well-established
method, for infinite dimensional systems it is more com-
plex and deserves more attention. A series of recent work
have highlighted the interest of multiplicity varieties in the
characterization of the exponential decay rate for the so-
lution of linear dynamical systems represented by delayed
differential equations, see for instance Schmoderer et al.
(2024); Boussaada et al. (2024) and references therein.

By exploiting the Pólya-Szegő bound (see, e.g., Pólya
and Szegő (1998)) pertaining to the number of roots of
exponential polynomials in horizontal strips, Boussaada
and Niculescu (2016) showed that the maximal admissible
multiplicity of a characteristic root is given by the degree
of the corresponding quasipolynomial.

A recent pole placement analytical paradigm, called
partial-pole-placement (PPP), has been introduced in
Mazanti et al. (2021); Ramı́rez et al. (2016). It derives from

two properties called respectively multiplicity-induced-
dominancy (MID) and coexistent-real-roots -inducing-
dominancy (CRRID), see for instance Bedouhene et al.
(2020); Schmoderer et al. (2023). These works follow from
an observation on the effect of multiple spectral values
on the stability of Delay Differential Equations (DDE).
Indeed, a recent work (see, for instance, Mazanti et al.
(2021), Boussaada et al. (2022)) has shown that, for
some classes of delay systems, a real root of maximal
multiplicity is necessarily the rightmost root, a property
we call generic multiplicity-induced-dominancy, or GMID
for short. This link between maximal multiplicity and
dominance has been suggested in Pinney (1958) after the
study of some simple, low-order cases (scalar and second-
order both retarded and neutral), but without any attempt
to address the general case.

The objective of the present note is to investigate the
MID property when the multiplicity of a given spectral
value is not greater than the order of the DDE and, in
particular, to explicitly determine conditions when such
a root defines the spectral abscissa of the corresponding
dynamical system, i.e. the real part of the rightmost
(characteristic) root. This latter property is called lower-
multiplicity-induced-dominancy (LMID), and, to the best
of the authors’ knowledge, such a problem is still open.

The remaining paper is organized as follows. Section
2 presents some prerequisites on interpolation problem
in quasipolynomial settings. section 3, is dedicated to
enunciating and proving the main results of this note.



2. PRELIMINARIES AND PREREQUISITES

Consider a controlled dynamical system represented by a
general second-order linear differential equation

y′′(t) + a1y
′(t) + a0y(t) = u(t) (1)

with a closed-loop control in the form of a proportional-
derivative-delay term given by

u(t) = −α1y
′(t− τ)− α0y(t− τ). (2)

The corresponding closed-loop system is described by

y′′(t) + a1y
′(t) + a0y(t)

+ α1y
′(t− τ) + α0y(t− τ) = 0, (3)

under appropriate initial conditions belonging to the Ba-
nach space of continuous functions C([−τ, 0],R).

To determine the asymptotic behavior of the solutions of
equation (3), we investigate the characteristic quasipoly-
nomial function ∆ : C× R+∗ → C defined by:

∆(s, τ) = s2 + a1s+ a0 + e−τs (α1s+ α0) , (4)

where (a1, a0, α1, α0) ∈ R4. The degree of ∆, defined
by the sum of the degrees of the involved polynomials
plus the number of delays, is four. Pólya–Szegő result
asserts that the maximal number of real roots counted
with multiplicity is four. A rightmost root, also called a
dominant root, s∗ of ∆(·, τ) satisfies the condition:

∀ z ∈ C\{s∗}, ∆(z, τ) = 0 for some τ > 0 ⇒ ℜ(z) ≤ ℜ(s∗).
Namely, s∗ is a root with the largest real part, i.e. it is
the spectral abscissa, and, when negative, it determines
the exponential decay rate of the solutions of (3). Several
configurations of ∆ admitting four real roots have been
investigated: a single root of multiplicity four (MID)
Mazanti et al. (2021), four equidistributed roots (CRRID)
Schmoderer et al. (2024), and a root of multiplicity three
along with another real root (over-order MID) Boussaada
et al. (2024). The definitions of these properties are given
hereafter.

Definition 1. (CRRID and MID Properties). We say that
a general quasipolynomial ∆ of degree N satisfies the
Coexistence-Real-Root-Induced-Dominancy (CRRID) prop-
erty if it admits N distinct real roots s1 > s2 > . . . > sN ,
with s1 being a dominant root of ∆. If, instead, s1 = s2 =
. . . = sN = s0 (hence s0 is a root of ∆ with maximal mul-
tiplicity) and is dominant, then this property is referred to
as the Multiplicity-Induced-Dominancy (MID) property.

In all cases, the dominancy of the largest real root have
been established. In this work, we explore a new configu-
ration described by the following property:

Definition 2. We say that the quasipolynomial ∆, given by
(4), satisfies the Lower Multiplicity-Induced Dominancy
(LMID) property if ∆ has a double root at s0 that is
dominant.

In fact, in single-delay case, the over-order MID property
has been fully characterized in Boussaada et al. (2024)
thanks to an integral representation introduced in Bous-
saada et al. (2016). It appears that such a representation
is not valid in lower multiplicities and consequently, there
are no results in the literature certifying LMID. To explore
the LMID property for the quasipolynomial described in

equation (4), we focus on the scenario where the number
of real roots of the quasipolynomial is the maximal 1 . This
maximization is achieved by assuming that the polynomial
has two additional distinct real roots. This corresponds to
the concomitance of the two properties MID and CRRID.
This combination leverages both properties, particularly
demonstrating that the MID property can be preserved
even with a minimal multiplicity, i.e., two. It is worth not-
ing that the novelty of this paper lies in the identification of
s0 as a double root of multiplicity 2, inducing dominance.

To state our results, we will use some tools that have been
investigated in the CRRID context by Schmoderer et al.
(2024); some of their properties are revisited here.

Denote R+∗ the positive real half line, i.e. R+∗ = (0,+∞).
For any distinct real numbers sn+1 < · · · < s1, let

sn+1
∆
= (s1, · · · , sn+1). Let Tn = (tk)

n
k=1 and, for τ > 0

and n ≥ 0, we define the function Fτ,n : Rn+1 → R+∗ as:

Fτ,n(sn+1) =

1∫
0

· · ·
1∫

0︸ ︷︷ ︸
n times

l (Tn) .e−τh(sn+1,Tn)dtn · · · dt1,

where l (Tn) =
n−1∏
k=1

(1− tk)
n−k

,

h (sn+1, Tn) =
[
s1,

[
s2, · · · [sn, sn+1]tn · · ·

]
t2

]
t1
,

and [x, y]t = tx + (1− t) y for t ∈ [0, 1]. The properties
of the multivariate functions Fτ,n have been studied in
Bedouhene et al. (2020). Let Gn be the multivariate
function introduced in Schmoderer et al. (2024), namely,

Gn(sn+1, τ)
∆
= (−τ)nFτ,n (sn+1) . (5)

Notice that G0(sk, τ) = e−τsk . The multivariate functions
Gn(·, τ) exhibit similar properties to those of Fτ,n, partic-
ularly with respect to shifting:

(s1 − sn+1)Gn(sn+1, τ) =

Gn−1(s2, . . . , sn+1, τ)−Gn−1(sn, τ). (6)

We can extend the definition of Fτ,n when all the si

are equal (or partially equal), namely when [s0]n+1
∆
=

(s0, s0, · · · , s0︸ ︷︷ ︸
n+1 times

). Indeed, it suffices to identify the convex

combination h
(
[s0]n+1 , Tn

)
to the point s0. The expres-

sion of Fτ,n+1

(
[s0]n+1

)
, undergoes simplification, resulting

in the identity:

Fτ,n

(
[s0]n+1

)
=

e−τs0

n!
.

The following proposition encapsulate several fundamental
properties validated by Fτ,n, and consequently by Gn(., τ),
in addition to those delineated in Bedouhene et al. (2020).

1 The maximal number of real roots of a given quasipolynomial
corresponds to the degree of the quasipolynomial.



Proposition 3. The following properties hold:

(i) If s1 ∈ C, we have:

|Fτ,n(sn+1)| ≤ Fτ,n(ℜ(s1), s2, · · · , sn+1) (7)

(ii) Let sn ∈ Rn be fixed. Fτ,n enjoys the decreasing
property in the following sense: for any a > b,

Fτ,n(a, sn) < Fτ,n(b, sn). (8)

(iii) The mapping Gn(., τ) is continuous on Rn+1, in
particular

lim
s→z

G1(s, z, τ) = G1([z]2, τ) = −τG0(z, τ). (9)

(iv) For every i = 0 · · ·n, the mapping τ 7→ Gi(si+1, τ)
satisfies a first-order linear ordinary differential equa-
tion,

Y ′ + si+1Y +Gi−1(si, τ) = 0, (10)

with the initial condition Y (0) = 1 if i = 0 and
Y (0) = 0 if i ≥ 1, where the prime denotes the
derivative with respect to τ .

Proof. We proceed only with the proof of (10), as the
other points essentially follow immediately from the def-
inition of Fτ,n, and the continuity and differentiability of
the exponential function. To simplify calculations, we will
limit ourselves to the case where n = 3, namely

G′
3(s4, τ) = −s4G3(s4, τ)−G2(s1, s2, s3, τ)

However, the proof remains valid for any n. Indeed, if
i = 0, then G0(0, τ) = e0 = 1. For i ∈ {1, · · · , 4}, the
expression (5) of the multivariate function Gi implies that
Gi(0, τ) = 0. To demonstrate (10), we use the following
decomposition:

G3(s4, τ) =

4∑
i=1

e−siτ
4∏

j=1
j ̸=i

d−1
ij ,

where dij = (si − sj), and differentiating with respect to
τ , we get

G′
3(s4, τ) = −

4∑
i=1

siG0(si, τ)

4∏
j=1
j ̸=i

d−1
ij .

Using the property
4∑

i=1

si
4∏

j=1
j ̸=i

d−1
ij = 0 and (6), one obtains

G′
3(s4, τ) = − s1

d12d13
G1(s1, s4, τ)

− s2
d21d23

G1(s2, s4, τ)−
s3

d31d32
G2(s3, s4, τ)

= − s1
d12

G2(s1, s3, s4, τ)−
s2
d21

G2(s2, s3, s4, τ)

= −
(
1 +

s2
d12

)
G2(s1, s3, s4, τ)

− s2
d12

G2(s2, s3, s4, τ)

= −s2G2(s4, τ)−G2(s1, s3, s4, τ).

Thus, G3 satisfies the differential equation (10). Similarly,
it can be demonstrated that G1 and G2 also satisfy a
corresponding differential equation. The calculations for
these cases are more straightforward and are thus omitted.
This concludes the proof of the proposition.

■

Remark 4. Using the shifting property, the following
equivalent variants of (10) hold:

G′
3(s4, τ) =−s3G3(s4, τ)−G2(s1, s2, s4, τ),

=−s2G3(s4, τ)−G2(s1, s3, s4, τ),

=−s1G3(s4, τ)−G2(s2, s3, s4, τ).

Also, from (9), by denoting s = ([s0]2, s1, s2) with s0 >
s1 > s2, we have

G′
3(s, τ) = −s2G3(s, τ)−G2([s0]2, s1, τ). (11)

The following lemma pertains to the invertibility of a
structured functional Vandermonde-type matrix.

Lemma 5. Let s = (s0, s1, s2) be distinct real numbers,
then the matrix

V (s, τ) =


1 s0 e−τs0 s0e

−τs0

0 1 −τe−τs0 e−τs0 − s0τe
−τs0

1 s1 e−τs1 s1e
−τs1

1 s2 e−τs2 s2e
−τs2


is invertible for any τ > 0.

Proof. The proof is based on the rewriting of V in terms
of the multivariate functions Gi, as follows:

V (s, τ) =

1 s0 G0(s0, τ) −G′
0(s0, τ)

0 1 G1([s0]2, τ) −G′
1([s0]2, τ)

1 s1 G0(s1, τ) −G′
0(s1, τ)

1 s2 G0(s2, τ) −G′
0(s2, τ)

 .

Using the same procedure as in Schmoderer et al. (2024),
we obtain the following factorization of the determinant of
V :

v(s, τ)
∆
=detV (s, τ) = −d210d

2
20Q(s, τ), where

Q(s, τ) =

(
G2 ([s0]2, s2, τ)

G2 ([s0]2, s1, τ)

)′

G2
2 ([s0]2, s1, τ) . (12)

The conclusion regarding the invertibility of V is deduced
using the same arguments as those in (Schmoderer et al.,
2024, Lemma 1). The details are omitted.

■

3. MAIN RESULT

In this section, we give our main contributions. First,
we show that a quasipolynomial function given by (4)
admitting three distinct real roots s0, s1, s2, where s0 is
a double root, is uniquely determined. Second, we show
that such a quasipolynomial admits a factorisation by its
real roots. Finally, we prove that it satisfies the LMID
property, i.e. the largest real root is dominant.

3.1 Assigning real roots of the characteristic function

Proposition 6. (Coexisting real roots). Given a delay τ >
0, the quasipolynomial (4) admits 3 distinct real spectral
values s0, s1, and s3, with s0 being a double root if and
only if the real coefficients a1, a0, α1, and α0 are expressed



as functions of τ and s = ([s0]2 , s1, s2) according to the
following relationships:

a1(s, τ) = −2s0 − α0(s, τ)G1([s0]2 , τ)

+ α1(s, τ)G
′
1([s0]2 , τ),

a0(s, τ) = −s20 − a1(s, τ)s0 − α0(s, τ)G0(s0, τ)

+ α1(s, τ)G
′
0(s0, τ),

and 
α0(s, τ) = −d21

G′
3 (s, τ)

Q(s, τ)
,

α1(s, τ) = −d21
G3 (s, τ)

Q(s, τ)

(13)

where Q(s, τ) is given by (12).

Proof. Assume that ∆ admits 3 distinct real spectral
values s0, s1, and s3, with s0 being a double root. This
means that the coefficients a0, a1, α0 and α1 satisfy the
linear system:{

∆(si, τ) = 0, i ∈ {0, 1, 2} ,
2s0 + a1 + e−τs0 ((1− s0τ)α1 − τα0) = 0.

Thanks to the invertibility of structured functional Van-
dermonde type matrix V (s, τ) as asserted previously, one
deals with a Cramer system with respect to the coefficients
a0, a1, α0 and α1. So that, one easily computes these
coefficients using the property satisfied by the multivariate
Gi allowing to get (13).

■
Corollary 7. Under the conditions of Proposition 6, and in
a specific context where d01 = d12 = d > 0, the coefficients
of the quasipolynomial take the following form, under the
notation y = eτd:

α0 (y, τ) = −
dB(y)s0 − 2d2 (y − 1)2

(y − 1) (2y ln y − y2 + 1)
eτs0

α1 (y, τ) =
dB(y)eτs0

(y − 1) (2y ln y − y2 + 1)

a1 (y, τ) = −2s0 −
dA(y)

(y − 1) (2y ln y − y2 + 1)

a0 (y, τ) = s20 +
dA(y)s0 − 2d2 (y − 1)2

(y − 1) (2y ln y − y2 + 1)

(14)

where A(y) = 3 − y (4− 4 ln y) + y2 (1− 2 ln y), and
B(y) = y2 − 4y + 3 + 2 ln (y). Furthermore, the spectral
value s0 is negative if, and only if, there exists τ∗ > 0 such
that

a1 (y
∗, τ∗) + s0 = 0 (15)

with y∗ = eτ
∗d. The value of s0 is given by the following

expression:

s0 = d
y∗2(2y∗ − 1) + 4y∗(1− ln(y∗))− 3

(y∗ − 1)(2y∗ ln(y∗)− y∗2 + 1)
. (16)

Proof. Assume that s0 < 0, thanks to the behavior at 0
and ∞ of the function τ 7→ a1(s0, τ) + s0:

a1 (s0, τ) + s0 ∼

{
− 4

τd
+O (1) if τ ∼ 0

−s0 if τ ∼ ∞
we deduce that

lim
τ→∞

(a1 (s0, τ) + s0) =−s0 > 0

lim
τ→0

(a1 (s0, τ) + s0) =−∞.

The existence of a number τ∗ > 0 satisfying equation (15)
is guaranteed by the continuity of a1 with respect to τ and
the Intermediate Value Theorem.

Conversely, if equation (15) is satisfied, then the value
of s0 is given by (16). It remains to examine the sign
of s0, which depends on the respective signs of the two

factors f(y∗)
∆
= 2y∗2 ln y∗ − 4y∗ ln y∗ − y∗2 + 4y∗ − 3 and

g(y∗)
∆
= 2y∗ ln y∗ + y∗2 − 1, for y∗ > 1. To do this, we

observe that

f(y) = 4

∫ y

1

(x− 1) ln(x) dx

g(y) = −2y

∫ y

1

(x− 1)2

2x2
dx

for all y > 1. Hence, we have f(y) > 0 and g(y) < 0 and
we conclude that s0 < 0. Note that s0 given by (16) is
negative regardless of τ , not just at τ∗.

■

3.2 Factorization of the Quasipolynomial ∆

In this subsection, we explore a novel configuration for the
factorization of the quasipolynomial ∆, which admits three
distinct real roots: s0, a double root, and two simple roots,
s1 and s2. This factorization involves the multivariate
function G3, its derivative, and the coefficients given in
(13).

Proposition 8. If the quasipolynomial ∆ admits three dis-
tinct real roots: s0, a double root, and two simple roots,
s1 and s2, then it can be expressed as:

∆ (s, τ) = (s− s0)
2 (s− s1)R(s, s, τ) (17)

with

R(s, s, τ) = α0(s, τ)G3(s, [s0]2, s1, τ)

− α1(s, τ)G
′
3(s, [s0]2, s1, τ).

Proof. Let δ
∆
= ∆(s,τ)

(s−s20)(s−s1)
, p0(s)

∆
= s2 + a1s + a0

and p1(s)
∆
= (α1s+ α0). By using the partial fraction

decomposition of p0(s)
(s−s20)(s−s1)

and p1(s)
(s−s20)(s−s1)

and the

equations ∆ (s0, τ) = ∆ (s1, τ) =
d
ds∆(s, τ)

∣∣
s=s0

= 0 (and

thus implicitly the values of a1, a0 and α0 as functions of
α1 and τ), we have

δ =
− (α0 + α1s0) e−s0τ

(s− s0)
2 (s0 − s1)

−
(α0 + α1s1) e−s1τ

(s0 − s1)
2 (s− s1)

+
(α0 + α1s0) e−s0τ

(s0 − s1)
2 (s− s0)

+
(τ (α0 + s0α1)− α1) e−s0τ

(s0 − s1) (s− s0)

+
(α0 + α1s0) e−sτ

(s− s0)
2 (s0 − s1)

+
(α0 + α1s1) e−sτ

(s0 − s1)
2 (s− s1)

−
(α1s0 + α0)e−sτ

(s0 − s1)
2 (s− s0)

+
α1e−sτ

(s0 − s1) (s− s0)
.

Now, leveraging the relations:

(2s0 + a1) = τ (α0 + s0α1) e
−s0τ − α1e

−s0τ

= − (α0 + s0α1)G (s0, s0, τ)− α1G0 (s0, τ)

= −α0G1

(
[s0]2 , τ

)
+ α1G

′
1

(
[s0]2 , τ

)



and the shifting property, we derive:

δ =
(α0 + α1s0)G1(s, s0, τ)

(s− s0) (s0 − s1)

+
(α0 + α1s1)G1(s, s1, τ)

(s0 − s1)
2

−
(α1s0 + α0)G1(s, s0, τ)

(s0 − s1)
2

−
(α0 + s0α1)G1([s0]2 , τ)

(s0 − s1) (s− s0)
+

α1G1(s, s0, τ)

(s0 − s1)
.

To handle the term
α1G1(s, s0, τ)

(s0 − s1)
, we employ the relation

(α0 + α1s1)

(s0 − s1)
= −α1 +

(α0 + s0α1)

(s0 − s1)

which leads to the following conclusive calculations:

δ =
(α0 + α1s0)G1(s, s0, τ)

(s− s0) (s0 − s1)
+

(α0 + α1s1)G1(s, s1, τ)

(s0 − s1)
2

−
(α1s0 + α0)G1(s, s0, τ)

(s0 − s1)
2

−
(α0 + s0α1)G1(s0, s0, τ)

(s0 − s1) (s− s0)

+
(α0 + s0α1)G1(s, s0, τ)

(s0 − s1)
2

−
(α0 + s1α1)G1(s, s0, τ)

(s0 − s1)
2

=
(α0 + α1s0)G1(s, s0, τ)

(s− s0) (s0 − s1)
−

(α0 + s0α1)G1(s0, s0, τ)

(s0 − s1) (s− s0)

+
(α0 + α1s1)G1(s, s1, τ)

(s0 − s1)
2

−
(α0 + s1α1)G1(s, s0, τ)

(s0 − s1)
2

.

By combining pairwise the compatible terms, we obtain
the following expression:

δ =
(α0 + α1s1) [G1(s, s1, τ)−G1(s, s0, τ)]

(s0 − s1)
2

+
(α0 + s0α1) [G1(s, s0, τ)−G1([s0]2, τ)]

(s0 − s1) (s− s0)
.

By applying the shifting property again, we deduce

δ =
− (α0 + α1s1)G2(s, s0, s1, τ)

(s0 − s1)

+
(α0 + s0α1)G2(s, [s0]2, τ)

(s0 − s1)
.

By exploiting the relationship between α0 + α1s1 and
α0 + s0α1, along with the shifting property, we obtain the
following expression:

δ =

(
α1 −

(α0 + s0α1)

(s0 − s1)

)
G2(s, s0, s1, τ)

+
(α0 + s0α1)G2(s, [s0]2, τ)

(s0 − s1)

= α1 [G2(s, s0, s1, τ) + s0G3(s, [s0]2, s1, τ)]

+ α0G3(s, [s0]2, s1, τ).

Finally, in view of (10) and (11), the following expression
is derived

∆(s, τ) = (s− s0)
2 (s− s1)R(s, s, τ)

with

R(s, s, τ) = α0(s, τ)G3(s, [s0]2, s1, τ)− α1(s, τ)G
′
3(s, [s0]2, s1, τ).

Thus, the proposition is proven.

■

3.3 LMID property

Theorem 9. If the quasipolynomial ∆ given by (4) has real
roots s0, s1, and s2, with s0 being a double root and
s2 < s1 < s0, then s0 is necessarily the corresponding
spectral abscissa.

The proof is based on the factorization of ∆, giving (17),
where the expressions of the coefficients α1 and α0 are
derived from (13), and (10) and (11).

Proof. Suppose there exists z∗ = η+ iζ ∈ C, with η > s0,
such that ∆ (z∗, τ) = 0, for any τ > 0. This implies:

α0(s, τ)G3 ([s0]2 , s1, z
∗, τ)

− α1(s, τ)G
′
3 ([s0]2 , s1, z

∗, τ) = 0, ∀τ > 0.

Using the expression of α0(s, τ) and α1(s, τ) leads to

det

[
G′

3([s0]2 , s1, s2, τ) G′
3 ([s0]2 , s1, z

∗, τ)
G3([s0]2 , s1, s2, τ) G3 ([s0]2 , s1, z

∗, τ)

]
= 0,

for all τ > 0. Using the fact that Fτ,3([s0]2 , s1, s2) > 0,
after dividing on F 2

τ,3([s0]2 , s1, s2) > 0, we deduce that

d

dτ

(
Fτ,3([s0]2 , s1, z

∗)

Fτ,3([s0]2 , s1, s2)

)
= 0, ∀τ > 0.

Thus,
Fτ,3([s0]2 , s1, z

∗)

Fτ,3([s0]2 , s1, s2)
= M, ∀τ > 0,

where M is some constant depending only on (si). By
continuity, taking τ → 0 yields that M = 1. Thanks to
the property (7) and (8), the following estimates hold:

Fτ,3([s0]2 , s1, s2) = |Fτ,3([s0]2 , s1, s2)|
= |Fτ,3([s0]2 , s1, z

∗)| ≤ Fτ,3([s0]2 , s1,ℜ(z
∗))

< Fτ,3([s0]2 , s1, s0) < Fτ,3([s0]2 , s1, s2).

This leads to a contradiction, proving the dominance of
the double root s0.

■

4. STABILIZATION OF SECOND-ORDER PLANT

In this section, we consider the application of Theorem
9 in the control of an unstable second-order plant in the
form of (1) controlled via a delayed proportional derivative
action given by (2). For a comprehensive control design,
we exploit the placement of equidistributed real spectral
values, i.e. we assign s0, s1= s0 − d and s2= s0 − 2d, with
d > 0. The parameters a1 and a0 of the plant, as well
as the delay τ , are defined by the model and the control
gains α1 and α0 are to be determined as functions of the
distance d and the double root s0.

As a matter of fact, consider the case of an unstable
second-order plant by taking a1 = −2 and a0 = 5,
moreover the delay is fixed to τ = 2/3. Next, using
∆(s0) = ∆′(s0) = 0, we obtain

α1 = −2

3
e2s0/3

(
s20 + s0 + 2

)
and

α0 =
2

3
e2s0/3

(
2s30 − s20 + 10s0 − 15

)
.

Inserting these values in ∆(s1) = ∆(s2) = 0 we obtain
two equations for s0 and d, which yield s0 ≈ −0.93 and
d ≈ 1.64. Hence, we have the following value for the
controller gains α1 ≈ −0.69 and α0 ≈ −4.8.

Figure 1 shows that the roots of the unstable open-loop
system (given by 1 ± 2i) are located in the right-half of
the complex plane, whereas the infinite number of roots



of the closed loop system are located in the left-half plane
and are dominated by the double root s0 ≈ −0.93, which,
therefore, determines the exponential decay rate of the
solutions of (3). This numerical example illustrates the
partial-pole-placement strategy. Indeed, we observe that
by assigning a few number of real roots (four) we are able
to guarantee that the rest of the spectrum (a countable
infinite set) is located in the left-half plane (actually it is
located left to the real part of the largest real root).

Note that the delay τ needs not be fixed by the model,
it can also be a control parameter. In that case, we can
arbitrarily choose the value of s0 < 0 (namely, we decide
the decay rate of the solutions) and we find d > 0 and
τ > 0 such that (16) is satisfied.

−6 −4 −2 0
−40

−20

0

20

40

s0

−d−d

ℜ(s)

ℑ
(s
)

Closed loop roots
Open loop roots

Fig. 1. Spectrum distribution of the characteristic function
(4) corresponding to the closed-loop system of a sec-
ond order unstable plant with a delayed proportional-
derivative controller.

5. CONCLUSION

Our study provide a novel analytical proof for the
multiplicity-induced-dominancy (MID) property in single-
delay time-delay systems. Contrarily to previous research,
which primarily focused on the over-order case, the orig-
inality of our work is to address scenarios where this
assumption is not met. By leveraging the properties of a
specific multivariate function, we demonstrate the achieve-
ment of MID even in such cases, where real spectral values
coexistance is the main ingredient. Our findings emphasize
the efficiency of analytical techniques in understanding
complex dynamical systems and suggested new prospects
of partial poles placement for system stability and control.

REFERENCES

Bedouhene, F., Boussaada, I., and Niculescu, S.I. (2020).
Real spectral values coexistence and their effect on the
stability of time-delay systems: Vandermonde matrices
and exponential decay. CR. Mathématique, 358(9-10).
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