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A B S T R A C T

This paper is devoted to a robust ordinal method for learning the preferences of a decision maker between
subsets. The decision model, derived from Fishburn and LaValle (1996) and whose parameters we learn, is
general enough to be compatible with any strict weak order on subsets, thanks to the consideration of possible
interactions between elements. Moreover, we accept not to predict some preferences if the available preference
data are not compatible with a reliable prediction. A predicted preference is considered reliable if all the
simplest models (Occam’s razor) explaining the preference data agree on it. Following the robust ordinal
regression methodology, our predictions are based on an uncertainty set encompassing the possible values of
the model parameters. We define a new ordinal dominance relation between subsets and design a procedure
to determine whether this dominance relation holds. Numerical tests are provided on synthetic and real-world
data to evaluate the richness and reliability of the preference predictions made.
1. Introduction

Preference elicitation (or preference learning) is an important step
in setting up a recommender system for decision making. In this prefer-
ence elicitation setting, our focus is on determining the parameters of
a decision model that accurately captures the pairwise preferences of a
Decision Maker (DM) over subsets, by comparing subsets of elements.
The preferences are depicted using a highly adaptable model whose
versatility stems from its ability to incorporate positive or negative
synergies between elements (Grabisch, Kojadinovic, & Meyer, 2008).
Moreover, we provide an ordinally robust approach, in the sense that
the preferences we infer do not rely on arbitrarily specified parameter
values, but on the set of all parameter values that are compatible with
the observed preferences. Importantly, another distinctive feature of
our approach is its ability to learn the parameter set itself (not only
the values of parameters).

The preference model we consider can be used in different contexts,
depending on the nature of the subsets we are comparing. The subsets
are represented by binary vectors, showing the presence or absence of
an element in the subset. The elements of a subset can be for example:

• individuals (in the comparison of coalitions, teams, etc.),

✩ This paper is a revised and extended version of a workshop paper at MPREF 2022, and an extended abstract at AAMAS 2023: H. Gilbert, M. Ouaguenouni,
M. Öztürk, O. Spanjaard, Cautious Learning of Multiattribute Preferences, 13th Workshop MPREF, Jul 2022, Vienna, Austria. H. Gilbert, M. Ouaguenouni, M. Öztürk,
O. Spanjaard, Robust Ordinal Regression for Collaborative Preference Learning with Opinion Synergies, AAMAS 2023, pp. 2439-2441.
∗ Corresponding author.

E-mail addresses: hugo.gilbert@lamsade.dauphine.fr (H. Gilbert), mohamed.ouaguenouni@lip6.fr (M. Ouaguenouni), meltem.ozturk@lamsade.dauphine.fr
(M. Öztürk), olivier.spanjaard@lip6.fr (O. Spanjaard).

1 A significant part of the work presented here has been carried out while Meltem Öztürk was on delegation at LIP6.

• binary attributes (in the comparison of multiattribute alterna-
tives),

• objects (in the comparison of subsets in a subset choice problem),
etc.

For illustration, a toy example of such an elicitation context could be
a coffee shop trying to determine its customers’ favorite frozen yogurt
flavor combination by offering them to test a small number of flavor
combinations rather than having them taste each combination.

Objective of the paper. Our objective is to design a preference elicitation
procedure that complies with the two following principles.

First, the sophistication of the learned preference model should
be able to fit any level of complexity of the stated preferences. For
this purpose, we use a utility function 𝑓 general enough to represent
any order ≻ of preference, i.e., for any strict weak order ≻ on a
set  of alternatives (i.e., subsets) there exists 𝑓 such that, for any
pair {𝐴,𝐵} ⊆ , 𝑓 (𝐴) > 𝑓 (𝐵) iff 𝐴 ≻ 𝐵. Note that we also aim to
make the model as simple as possible, in the sense that the parameter
set remains as concise as possible (sparse model). Second, the pre-
dicted pairwise preferences should not depend on the partly arbitrary
choice of precise numerical values for the parameters of the model
https://doi.org/10.1016/j.ejor.2024.07.021
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but solely on the stated preferences. Hence, we design an ordinally
obust elicitation procedure that maintains an isomorphism between
he collected preferential data and the learned model (in the same
pirit as ordinal measurement for problem solving (Bartee, 1971) and
obust ordinal regression (Greco, Mousseau, & Słowiński, 2008)) by
sing a polyhedron of possible values for the parameters, reflecting
he uncertainty about them. As a consequence, when predicting an
nknown pairwise preference between two alternatives 𝐴 and 𝐵, apart
rom the predictions ‘‘𝐴 is preferred to 𝐵’’ and ‘‘𝐵 is preferred to 𝐴’’, it
s possible that the model does not make a prediction due to a lack of
ufficiently rich preferential data (the absence of prediction is preferred
o a wrong prediction, although a compromise must obviously be made
etween the reliability of the prediction and the predictive power of the
earned model).

licitation setting. The input of our elicitation procedure is a learning
et consisting of pairwise comparisons of various alternatives. More
recisely, we consider an offline elicitation setting (passive learning)
here we assume that a dataset of comparison examples is available,

rom which the parameters of the preference model are (partially)
pecified. This is a separate framework from the online elicitation
etting (active learning) where we would incrementally select pairwise
reference queries to enrich the learning set. The output of the elicita-
ion procedure consists of pairwise comparisons that were not present
n the learning set, which we call (preference) predictions hereafter.
ote that, in some cases, the model may choose not to provide a
rediction. The elicitation procedure thus results in a strict partial order
n the alternatives.

rganization of the paper. After an overview of the related work (Sec-
ion 2), we present the 𝜃-additive utility model (Section 3), as well as
he ordinal dominance relation inferred from it, based on the knowl-
dge of a collection of preference examples. We then show how to
etermine whether a subset dominates another subset given the known
airwise preferences of the DM (Section 4), which enables to make pref-
rence predictions. The paper ends with numerical tests on synthetic
nd real-world preference data, and comparison with other preference
earning methods (Section 5).

. Related work

Preference elicitation (see e.g. Dias, Morton, & Quigley, 2018) and
reference learning (see e.g. Fürnkranz & Hüllermeier, 2003, Corrente,
reco, Kadziński, & Słowiński, 2013) have been studied for a long time

n operations research and artificial intelligence. This is a prerequisite
n many applications across a wide range of fields, such as recom-
ender systems, banking, financial management, chemistry, energy

esources, health, investments, and industrial location (Andreopoulou,
oliouska, & Zopounidis, 2017). Several issues can be tackled in pref-
rence elicitation, and we detail three of them in the remainder of this
ection.

.1. Incremental preference elicitation

To alleviate the cognitive burden on the DM, an incremental elici-
ation method can be adopted, in which comparison examples are in-
eractively generated with the DM, to determine a necessary ‘‘optimal’’
lternative.

A pioneering work in this matter is the ISMAUT method (Imprecisely
Specified MultiAttribute Utility Theory) (White, Sage, & Dozono, 1984).
The utility 𝑢(𝑥) of a multiattribute alternative 𝑥 = (𝑥1,… , 𝑥𝑛) is defined
as 𝑢(𝑥) =

∑𝑛
𝑖=1 𝑤𝑖𝑣𝑖(𝑥𝑖), where the parameters are a weight vector 𝑤 =

(𝑤1,… , 𝑤𝑛) and a vector 𝑣 = (𝑣1,… , 𝑣𝑛) of local value functions. When
he parameter values are unknown, the (weak) preference statements
ade by a DM makes it possible to circumvent the set of her possible

tility functions to 𝑈 = {𝑢 ∶ 𝑢(𝑥)≥ 𝑢(𝑦)}. An alternative 𝑥 is then said
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to dominate an alternative 𝑦 if 𝑢(𝑥)≥ 𝑢(𝑦) for all 𝑢∈𝑈 , and there exists
𝑢 for which 𝑢(𝑥)>𝑢(𝑦).

The idea of defining a polyhedron of uncertainty (corresponding to
𝑈 in the ISMAUT method) on the parameters of a multiattribute utility
function goes back at least to the work of Charnetski and Soland (1978),
which states that 𝐴≻𝐵 if the proportion of parameters that give a better
value for 𝐴 than for 𝐵 among those that are compatible with the stated
preferences is greater than the proportion of parameters that give a
better value for 𝐵 than for 𝐴. Another way to infer preferences from the
polyhedron of uncertainty is to consider that the preferred alternative
is within the set of nondominated alternatives and to obtain enough
preferential information for the nondominated set to be reduced to a
singleton.

In an active learning setting, i.e., when the pairwise comparisons
are chosen by the analyst by directly querying the DM, and beyond
the specific case of additive multiattribute utility, it is possible to
choose the preference queries so as to reduce the nondominated set
to a singleton as quickly as possible. In this way, the cognitive burden
is limited for the DM. Popular approaches in this concern are to ask
queries that yield to approximately halve the size of 𝑈 (Ghosh &
Kalagnanam, 2003; Iyengar, Lee, & Campbell, 2001), to use the current
solution strategy (e.g., Benabbou, Leroy, Lust, & Perny, 2021; Boutilier,
Patrascu, Poupart, & Schuurmans, 2006; Wang & Boutilier, 2003), i.e., a
strategy based on the minmax regret criterion for choosing the next
query, or to use a heuristic strategy for prioritizing the queries (Ciomek,
Kadziński, & Tervonen, 2017).

A large body of literature in operations research deals with the same
idea of taking advantage of a dominance relation between alternatives
when the utility function is imprecisely specified. Notably, in multicri-
teria decision making (where 𝑥 is a vector of criterion values instead of
attribute values), Stochastic Multiobjective Acceptability Analysis (often
abbreviated by SMAA (Lahdelma, Hokkanen, & Salminen, 1998) and
SMAA-2 (Lahdelma & Salminen, 2001)) take into consideration the
whole set of parameter values compatible with the known pairwise
preference comparisons, in order to provide an index measuring the ac-
ceptability of an alternative in function of its rank among the available
alternatives according to the different parameter value scenarios.

Besides, a whole stream of research has emerged under the name of
Robust Ordinal Regression (often abbreviated by ROR). The pioneering
work of Greco et al. (2008) aimed to introduce robustness in the
UTA method, proposed by Jacquet-Lagrèze and Siskos in a seminal
paper (Jacquet-Lagrèze & Siskos, 1982). The UTA method is an ordinal
regression method using linear programming to estimate the parame-
ters of an additive utility function, by minimizing the amount of total
deviation from the inequalities between utility values induced by the
known pairwise comparisons. Among other extensions of the methods,
Greco et al. proposed to take into account all additive utility functions
compatible with the pairwise comparisons, to enforce the robustness of
conclusions.

Generally speaking, the name ordinal regression encompasses meth-
ods that aim at learning the parameters of a decision model from known
pairwise comparisons between alternatives. The qualifying adjective
robust is added to indicate that all parameter values compatible with
the available preferential information are taken into account for prefer-
ential inference. Some restrictions on possible preferences are generally
enforced, such as the monotony of the criteria in multicriteria decision-
making, but extensions not making that assumption have also been
considered (Corrente & Tasiou, 2023; Ghaderi, Ruiz, & Agell, 2017).
Additionally, note that the terminology of the ROR framework slightly
differs from the one used by White et al. (1984). The dominance rela-
tion is indeed called necessary weak preference relation. Furthermore, a
possible weak preference relation between alternatives is also introduced,
which holds as soon as there exists a utility function 𝑢 ∈ 𝑈 such that
𝑢(𝑥)≥𝑢(𝑦) (𝑥 is possibly weakly preferred to 𝑦). The ROR approach aims

to provide a robust recommendation in terms of necessary and possible
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preference relations, and the method we present in the remainder of the
paper is in line with this concern.

As mentioned earlier, our method extends the idea to take into
account not only all the possible parameter values compatible with the
preferential data, but also all the possible parameter sets. For more
details on ROR, the interested reader may refer to the two surveys
by Corrente et al. (2013), Corrente, Greco, Kadziński, and Słowiński
(2014), or to the recent survey by Kadziński (2022).

2.2. Incorrect preference statements and inconsistencies

The cognitive load placed on the decision makers can lead them to
‘‘incorrect’’ preference statements, or statements that, taken together,
are not compatible with the utility model under consideration. This
requires the development of elicitation methods capable of taking
account of these potential errors and inconsistencies.

Bayesian approaches have been considered in this matter (Bour-
dache, Perny, & Spanjaard, 2019; Guo & Sanner, 2010), as well as
possibilistic approaches (Adam & Destercke, 2021; Mousseau, Figueira,
Dias, da Silva, & Clımaco, 2003). The idea in these works is, based
on known pairwise comparisons, to specify an uncertainty measure
over the parameter space, instead of a polyhedron of parameter values
compatible with the available preferential information. In the context
of incremental elicitation of a multiattribute utility function, an inter-
mediate approach has been advocated by Sauré and Vielma (2019),
namely to update an ellipsoidal credibility region computed from a
multivariate normal distribution over the space of parameters. They
showed how to use mixed integer programming to determine queries
that are likely to reduce the volume of the credibility region, to gain
more insights on the preferences of the DM.

2.3. Beyond the additive utility model

An important topic in decision making and preference elicitation
is the ability to cope with preferences that cannot be represented
by using an additive utility function. We focus on this topic in this
paper, in the specific setting of subset comparisons. More precisely, we
study the elicitation of a set function taking into account positive and
negative interactions between elements, intending to predict pairwise
preferences between subsets.

The Choquet integral is the most studied decision model for taking
into account positive and negative interactions between criteria in
multicriteria decision making (Grabisch, 1996). It turns out that a
Choquet integral defined on binary vectors representing subsets can be
viewed as a set function. Note that a Choquet integral is parameterized
by a capacity 𝑣 on the criteria set 𝑁 , i.e., a set function on 𝑁 that is
monotone (𝐴 ⊆ 𝐵 ⇒ 𝑣(𝐴) ≤ 𝑣(𝐵)) and normalized (𝑣(𝑁) = 1). As will
become clear in the remainder of the paper, we do not impose such
constraints in the model we consider.

Angilella, Corrente, and Greco (2015) developed a SMAA method-
ology to make robust recommendations based on the Choquet integral,
by exploring the space of capacities and common utility scales com-
patible with the DM’s preference information (the criteria values must
be mapped to a common scale to be aggregated by a Choquet in-
tegral). This work has been extended to the hierarchical Choquet
integral preference model (Angilella, Corrente, Greco, & Słowiński,
2016), with a methodology combining SMAA and ROR. Let us mention
some other recent works dealing with the elicitation of the parameters
of a Choquet-related aggregation function: Bresson, Cohen, Hüller-
meier, Labreuche, and Sebag (2020) use a perceptron approach to
learn the parameters of a 2-additive hierarchical Choquet integral,
while Herin, Perny, and Sokolovska (2023) propose an algorithm to
learn sparse Möbius representations from preference examples, without
a prior 𝑘-additivity assumption.

In the rest of the paper, given a ‘‘static’’ training set of examples
of pairwise DM’s preferences, we propose a ROR method that circum-

vents the possible parameter sets and the possible parameter values,
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which yields a dominance relation between subsets (corresponding to
a necessary strict preference relation in the ROR terminology). This
dominance relation is induced by the simplest parameter sets (to be
formalized later). We predict pairwise comparisons between alterna-
tives from this dominance relation. Note that predicting a comparison
between alternatives can be framed as a binary classification problem
by considering, as a training set, a set of triples (𝐴,𝐵, 𝑐), where 𝐴 and
𝐵 are two alternatives and 𝑐 = 1 if 𝐴 ≻ 𝐵, and 𝑐 = 0 otherwise. In
this setting, many approaches have been proposed by the preference
learning community in AI, going from perceptrons (Dragone, Teso, &
Passerini, 2017) to Gaussian processes (Chu & Ghahramani, 2005) or
Support Vector Machines (SVM) (Domshlak & Joachims, 2005).

An important feature of our elicitation procedure is that it may
lead to not making predictions for some pairwise comparisons if the
available preferential information is not conclusive enough. Other clas-
sification models may not predict a class for some examples, either
because of an ambiguity in the class to predict (ambiguity rejection)
or because the example is too far from the examples that are in the
learning set (novelty rejection). These approaches have been grouped
under the umbrella of learning with rejection, and are generally used
in safety-sensitive domains, e.g. to predict a disease in medical ap-
plications (Kompa, Snoek, & Beam, 2021). For a complete review of
learning with reject option, we refer the reader to the survey made
by Hendrickx, Perini, Van der Plas, Meert, and Davis (2024).

To our knowledge, the works closest to our own are those of Domsh-
lak and Joachims (2005) and Bigot, Fargier, Mengin, and Zanuttini
(2012). Similarly to the preference model we consider, Domshlak and
Joachims study a function that could represent any weak order on
the alternatives. More precisely, they consider a multiattribute utility
function that is a sum of 4𝑛 subutilities over subsets of attribute values,
where 𝑛 is the number of attributes. The subutility values are then
learned using an efficient SVM approach based on the kernel trick (see
e.g., Schölkopf & Smola, 2002). Bigot et al. study the use of generalized
additively independent decompositions of utility functions (Fishburn,
1970; Gonzales & Perny, 2005). They give a PAC-learner2 that is
polynomial time if a constant bound is known on the degree of the
function, where the degree is the size of the greatest subset of attributes
in the decomposition. Yet, both works do not fit the robust ordinal
learning framework we consider in this work.

3. From the 𝜽-additive model to ⊑-ordinal dominance

Given a set  = {𝑎1, 𝑎2,… , 𝑎𝑛} of elements, we aim to reason on the
references of the DM on a set  of subsets 𝐴⊆ , representing alter-

natives. The characteristic vector ⃖⃖⃗𝐴 of a subset 𝐴 is the 𝑛-dimensional
binary vector whose 𝑖th component is 1 if 𝑎𝑖 ∈𝐴, and 0 otherwise. For
instance, the characteristic vector of 𝐴 = {𝑎1, 𝑎2, 𝑎4} is ⃖⃖⃗𝐴 = (1, 1, 0, 1)
f  = {𝑎1, 𝑎2, 𝑎3, 𝑎4}. In the following, we may use one or the other
otation for describing a subset. Here are some examples of alternatives
epresented by subsets:

• If  is a set of reference users expressing opinions on cultural
products (e.g., movies), a cultural product may be represented by
the subset 𝐴 of reference users in  that have a positive opinion
on it, i.e., 𝑎𝑖 ∈𝐴 if reference user 𝑎𝑖 has a positive opinion on it,
otherwise 𝑎𝑖∉𝐴.

• If  is the set of players in a squad, a team lineup may be
represented by the subset 𝐴 of players that compound it.

• If  is a set of binary features of technological products
(e.g., smartphones), a technological product may be represented
by a subset 𝐴 of features, i.e., 𝑎𝑖∈𝐴 if the product has feature 𝑎𝑖,
otherwise 𝑎𝑖∉𝐴.

2 PAC stands for Probably Approximately Correct.
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We assume for simplicity that there are no two distinct alternatives
corresponding to the same subset 𝐴⊆ , which implies in particular that
2| | ≥ ||. We infer strict pairwise preferences from strict preferences
given by a DM on some subset of alternatives in , and we use this
training set of pairwise preferences on alternatives (each viewed as a
subset) to elicit the parameters of a utility function 𝑓 defined on .
The role of the utility function 𝑓 is to represent the (unknown) strict
weak order on  corresponding to the DM’s preferences, with 𝐴 ≻ 𝐵
iff 𝑓 (𝐴) > 𝑓 (𝐵) and 𝐴 ∼ 𝐵 iff 𝑓 (𝐴) = 𝑓 (𝐵). The relationship 𝐴 ∼ 𝐵,
which occurs if neither 𝐴≻𝐵 nor 𝐵≻𝐴, should be interpreted here as
incomparability and not as indifference.

We do not perform a full elicitation of the parameters of 𝑓 , but
we consider an uncertainty set of parameters values consistent with
the known preferences of the DM, as in robust ordinal regression. If
𝑓 (𝐴)>𝑓 (𝐵) for all parameters values in this uncertainty set, then 𝐴 is
predicted to be strictly preferred to 𝐵. Actually, we do not only learn
the parameters values, but also the components of the parameter set
themselves, as we explain below.

3.1. The 𝜃-additive model

Before coming to the proposed 𝜃-additive model, we first recall the
standard additive utility model, and its extension, the 𝑘-additive utility
model.

The additive and 𝑘-additive utility models. As the DM’s preferences over
 are modeled as a strict weak order, there exists a real-valued func-
tion 𝑓 such that ∀𝐴,𝐵 ∈ , 𝑓 (𝐴) > 𝑓 (𝐵) ⇔ 𝐴 ≻ 𝐵. Many models
assume that 𝑓 can be represented in a compact way using some sort
of additivity property. The simplest and most used one is the additive
model (Fishburn, 1970). This model makes the strong assumption that
we can find a parameter value 𝑣(𝑎) ∈ R for each element 𝑎 ∈  such
that for all 𝐴∈, the utility of 𝐴 is 𝑓 (𝐴) =

∑

𝑎∈𝐴 𝑣(𝑎). This assumption
is strong because it implies that there is no interaction between the
elements. A weaker assumption is that of 𝑘-additivity where we suppose
the existence of a parameter 𝑣(𝑆) ∈ R for each 𝑆 ∈ [ ]𝑘, where
[ ]𝑘 = {𝑆 ⊆  ∶ 1 ≤ |𝑆| ≤ 𝑘}. Hence, in the 𝑘-additive model,
for all 𝐴 ∈ , 𝑓 (𝐴) =

∑

𝑆∈[ ]𝑘 𝐼𝐴(𝑆)𝑣𝑆 , where 𝐼𝐴(𝑆) = 1 if 𝑆 ⊆ 𝐴
and 0 otherwise, and 𝑣𝑆 is an abbreviation for 𝑣(𝑆). Obviously, the
1-additive model amounts to the additive model. Taking 𝑘 strictly
greater than 1 makes it possible to account for (positive or negative)
synergies between subsets of 𝑘 or less elements. For example, the 2-
additive model makes it possible to account for binary synergies. The
utility of the alternative 𝐴 = (1, 1, 0, 1) with the 2-additive model is
𝑓 (𝐴) = 𝑣({𝑎1}) + 𝑣({𝑎2}) + 𝑣({𝑎4}) + 𝑣({𝑎1, 𝑎2}) + 𝑣({𝑎1, 𝑎4}) + 𝑣({𝑎2, 𝑎4}).
If there is a positive synergy between 𝑎1 and 𝑎2 then 𝑓 ({𝑎1, 𝑎2}) >
𝑣({𝑎1})+𝑣({𝑎2}) holds because 𝑓 ({𝑎1, 𝑎2}) = 𝑣({𝑎1})+𝑣({𝑎2})+𝑣({𝑎1, 𝑎2}).
Note incidentally that 𝑓 ({𝑎1, 𝑎2}) ≠ 𝑣({𝑎1, 𝑎2}). The 𝑛-additive model is
general enough to represent any strict weak order on  because it can
represent any real-valued set function 𝑓 ∶2 →R (Grabisch, Marichal, &
Roubens, 2000), provided that 𝑓 (∅) = 0. However, it requires to specify
2𝑛−1 parameters. We therefore restrict our attention to additive models
requiring fewer parameters.

The 𝜃-additive model. Given a set 𝜃 ⊆ 2 , and a set function 𝑣 ∶ 𝜃→R,
we assume that 𝑓 is of the form 𝑓 (𝐴) =

∑

𝑆∈𝜃 𝐼𝐴(𝑆)𝑣𝑆 , where 𝑣𝑆 stands
again for 𝑣(𝑆). We call this the 𝜃-additive model. For this model, we
may also use the notation 𝑓𝜃,𝑣(𝐴) instead of 𝑓 (𝐴). The 1-additive (resp.
𝑘-additive) model is the special case in which 𝜃 = [ ]1 (resp. 𝜃 = [ ]𝑘).

Example 1. Let  = {𝑎1, 𝑎2, 𝑎3, 𝑎4} be a set of 4 elements,  = {0, 1}4

and the DM’s preferences be the strict weak order ≿ given by :

{𝑎2, 𝑎3, 𝑎4} ≻ {𝑎1, 𝑎3, 𝑎4} ≻ {𝑎1, 𝑎2, 𝑎4} ≻ {𝑎3, 𝑎4} ≻ {𝑎2, 𝑎4}

≻ {𝑎2, 𝑎3} ≻ {𝑎1, 𝑎4} ≻ {𝑎1, 𝑎3} ≻ {𝑎1, 𝑎2} ≻ {𝑎4} ≻ {𝑎3} ≻ {𝑎2}

≻ {𝑎1} ≻ 𝐴={𝑎1, 𝑎2, 𝑎3, 𝑎4} ∼ ∅ ≻ 𝐵 = {𝑎1, 𝑎2, 𝑎3}.
 y

149 
Table 1
For each (𝑛, 𝑘), the table shows the proportion of linear extensions of the inclusion
order on the power set of 𝑛 elements that are compatible with a 𝑘-additive model.

Degree 𝑘 = 1 𝑘 = 2 𝑘 = 3

𝑛 = 3 25% 100% 100%
𝑛 = 4 0.02% 64.19% 100%

These preferences can be explained by a clear negative synergy
when 𝑎1, 𝑎2, and 𝑎3 are chosen together (in 𝐴 and 𝐵). Interestingly,
instead of using a complete 3-additive model, which would require the
definition of 14 parameters, this strict weak order can be obtained by
using a 𝜃-additive model with 𝜃 = {{𝑎1}, {𝑎2}, {𝑎3}, {𝑎4}, {𝑎1, 𝑎2, 𝑎3}}
and 𝑣{𝑎1} = 1, 𝑣{𝑎2} = 2, 𝑣{𝑎3} = 3, 𝑣{𝑎4} = 4, 𝑣{𝑎1 ,𝑎2 ,𝑎3} = −10. This
allows us to benefit from the expressiveness offered by 3-additivity
while restricting the number of parameters.

Remark 1. Fishburn and Lavalle (1996) have pointed out that the
2-additive model offers a powerful corrective to the 1-additive model
for comparing subsets, even if there are higher-order synergies. It
seems to us, however, that this statement needs to be tempered. Many
linear orderings of a power set can indeed not be represented by a
2-additive model. Even if we only consider the linear extensions of
the inclusion order on the power set of {1, 2, 3, 4} (the compatibility of
preferences between sets with the inclusion relation seems a reasonable
assumption), about one-third of the linear extensions require ternary
interactions to be taken into account to obtain a compatible model. Put
another way, only two-thirds of the linear extensions are compatible
with a model of degree 3 for 𝑛 = 4 elements. Furthermore, very few
linear extensions (0.02%) can be represented using a purely additive
model (without synergies). Table 1 synthesizes the results obtained for
𝑛 = 3 and 𝑛 = 4 (we did not go beyond 𝑛 = 4 in our numerical tests
ecause there already are about 1.5× 1019 linear extensions to consider

for 𝑛 = 5). Note that relaxing compatibility with the inclusion relation
would further increase the necessary degree of interactions to represent
the permutations of the power set of {1,… , 𝑛}.

3.2. The 𝜃-ordinal dominance relation

In our elicitation setting, we assume that we have only access to
a partial set 𝑅 of strict pairwise preferences provided by the DM.3
This set may contain only a few comparisons. Our aim is to use these
observed preferences to infer other strict pairwise preferences on the
set of alternatives. We formalize 𝑅 as a set of pairs (𝐴,𝐵) ∈ 2 such
that (𝐴,𝐵)∈𝑅 ⇔ 𝐴 ≻𝐵.

Moreover, given 𝜃, the set of value functions on 𝜃 that are compat-
ible with the preferences observed in 𝑅 is denoted by 𝑉 𝑅

𝜃 :

𝑉 𝑅
𝜃 = {𝑣 ∶ 𝜃 → R ∣ ∀(𝐴,𝐵)∈𝑅, 𝑓𝜃,𝑣(𝐴) > 𝑓𝜃,𝑣(𝐵)}.

Note that, for a given 𝜃, this set 𝑉 𝑅
𝜃 can be either empty or composed of

an infinity of possible value functions on 𝜃. Notably, if this set is empty
then the preferences of the user cannot be represented by a 𝜃-additive
function. We denote by 𝛩𝑅 the set {𝜃 ∣ 𝑉 𝑅

𝜃 ≠ ∅}, i.e., the 𝜃’s such that
the preferences in 𝑅 are consistent with a 𝜃-additive function.

Unfortunately, given 𝜃∈𝛩𝑅 such that 𝑉 𝑅
𝜃 ≠∅, a pair {𝑣, 𝑣′} of value

functions in 𝑉 𝑅
𝜃 may lead to infer opposite preferences, as illustrated

below.

3 While we restrict our analysis to a set 𝑅 compounded of strict pairwise
references, our setting could accommodate negative preferences of the type

¬(𝐴 ≻ 𝐵) with few modifications. The preference statement ¬(𝐴 ≻ 𝐵) would
ield the constraint 𝑓 (𝐵)≥𝑓 (𝐴).
𝜃,𝑣 𝜃,𝑣
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Example 2. Let  = {𝑎1, 𝑎2, 𝑎3, 𝑎4}. Let us assume that, contrary
to Example 1, we now only observe preferences on the singletons
{𝑎1}, {𝑎2}, {𝑎3}, {𝑎4}:

{𝑎4} ≻ {𝑎3} ≻ {𝑎2} ≻ {𝑎1}, or equivalently:
= {({𝑎4}, {𝑎3}), ({𝑎4}, {𝑎2}), ({𝑎4}, {𝑎1}),

({𝑎3}, {𝑎2}), ({𝑎3}, {𝑎1}), ({𝑎2}, {𝑎1})}.

The two additive functions 𝑣 and 𝑣′ defined by:

𝑣({𝑎1}) = 1, 𝑣({𝑎2}) = 2, 𝑣({𝑎3}) = 3, 𝑣({𝑎4}) = 5

and 𝑣′({𝑎1}) = 1, 𝑣′({𝑎2}) = 3, 𝑣′({𝑎3}) = 4, 𝑣′({𝑎4}) = 5

are both in 𝑉 𝑅
𝜃 , but we infer {𝑎1, 𝑎4} ≻ {𝑎2, 𝑎3} from 𝑣 while we infer

{𝑎2, 𝑎3} ≻ {𝑎1, 𝑎4} from 𝑣′.

This example shows that, given 𝑅, choosing a specific function 𝑣∈
𝑉 𝑅
𝜃 can lead to infer preferences that are only related to this arbitrary

choice (Bartee, 1971). Our aim is to infer preferences for pairs outside 𝑅
in a reliable way by eliminating such arbitrary choices. In this purpose,
we turn to a robust ordinal regression approach based on the observed
preferences in 𝑅.

Fishburn and Lavalle (1996) showed how one can obtain an ordi-
nal dominance relation from a partially specified 2-additive numerical
model. We now explain how their idea can be extended to a 𝜃-additive
model.

Definition 1. Let  be a set of elements,  ⊆ 2 a set of subsets and 𝑅
a set of pairs (𝐴,𝐵)∈2 where (𝐴,𝐵) ∈ 𝑅 ⇔ 𝐴 ≻ 𝐵. Given 𝜃∈𝛩𝑅, the
𝜃-ordinal dominance relation, denoted by ≻𝑅

𝜃 , is defined for 𝐴,𝐵 ∈ 
by:

𝐴 ≻𝑅
𝜃 𝐵 ⇔ ∀𝑣 ∈ 𝑉 𝑅

𝜃 , 𝑓𝜃,𝑣(𝐴) > 𝑓𝜃,𝑣(𝐵).

The 𝜃-ordinal dominance relation is independent from the choice
of a specific 𝑣 ∈ 𝑉 𝑅

𝜃 . Naturally, (𝐴,𝐵) ∈ 𝑅 ⇒ 𝐴 ≻𝑅
𝜃 𝐵. Nevertheless,

note that the binary relation ≻𝑅
𝜃 is obviously partial, and we define the

incomparability relation ∼𝑅
𝜃 as:

𝐴 ∼𝑅
𝜃 𝐵 ⇔ ∃𝑣, 𝑣′ ∈ 𝑉 𝑅

𝜃 , 𝑓𝜃,𝑣(𝐴) ≥ 𝑓𝜃,𝑣(𝐵) and 𝑓𝜃,𝑣′ (𝐵) ≥ 𝑓𝜃,𝑣′ (𝐴).

If 𝐴≻𝑅
𝛩𝐵 then we can predict, based on 𝑅 and for a 𝜃-additive model,

that 𝐴 is strictly preferred to 𝐵. If 𝐴∼𝑅
𝜃 𝐵 then no prediction is made

We conclude this section by mentioning some properties of ≻𝑅
𝜃 :

• Unlike ≻, the relation ≻𝑅
𝜃 is not a strict weak order: it is asym-

metric but it may not be complete nor negatively transitive. The
absence of preference prediction may occur in two not equivalent
situations: either 𝐴 and 𝐵 belong to the same incomparability
class of the (unknown) strict weak order ≻ on , i.e., 𝐴 ∼𝐵, or
there is not enough preferential information in 𝑅 to conclude that
𝐴 ≻𝐵 or 𝐵 ≻𝐴.

• Since the 𝜃-ordinal dominance relation depends on the preference
set 𝑅 and on the model 𝜃, the relation ≻𝑅

𝜃 evolves when 𝜃 or 𝑅 are
restricted or extended. In particular, if 𝜃′⊆𝜃 then any prediction
that is yielded using 𝜃-ordinal dominance is also yielded using
𝜃′-ordinal dominance; thus, if 𝑉 𝑅

𝜃 ≠ ∅ and 𝑉 𝑅
𝜃′ ≠ ∅, then 𝜃′

appears as more appealing from a preference learning standpoint
since it allows more predictions to be made. Furthermore, one
could prefer 𝜃′ over 𝜃 because of the philosophical principle
of parsimony (e.g. Blumer, Ehrenfeucht, Haussler, & Warmuth,
1987).

A more formal and detailed description of the properties of ≻𝑅
𝜃 can
be found in the supplementary material (see Appendix).
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3.3. The ⊑-ordinal dominance relation

The 𝜃-ordinal dominance relation depends on the choice of a specific
set 𝜃∈𝛩𝑅 but, as shown in the following example, several 𝜃’s may be
in 𝛩𝑅.

Example 3. Assume that 𝑅 consists of all pairwise preferences resulting
from ≻ in Example 1. Setting 𝜃 = {{𝑎1}, {𝑎2}, {𝑎3}, {𝑎4}} yields then
𝑉 𝑅
𝜃 = ∅. In contrast, setting 𝜃1 = {{𝑎1}, {𝑎2}, {𝑎3}, {𝑎4}, {𝑎1, 𝑎2, 𝑎3}}

yields 𝑉 𝑅
𝜃1

≠ ∅. Actually, there are many other sets 𝜃 compatible with
the preferences in 𝑅: it can be shown4 that 𝛩𝑅 = {𝜃 ∶ 𝜃1 ⊆ 𝜃} for this
example.

The question that naturally arises is whether we could find two
different models 𝜃1, 𝜃2 ∈ 𝛩𝑅 that are both compatible with the observed
preferences in 𝑅 and such that 𝐴 ≻𝑅

𝜃1
𝐵 and 𝐵 ≻𝑅

𝜃2
𝐴 for a pair

of alternatives (𝐴,𝐵) ∈ 2. Unfortunately, this situation may indeed
happen:

Example 4. Let 𝑅 = {({𝑎1}, {𝑎2})}, 𝜃1 = {{𝑎1}} and 𝜃2 = {{𝑎2}}. Note
that both 𝜃1 and 𝜃2 belong to 𝛩𝑅. If we consider 𝜃1 = {{𝑎1}}, the set 𝑉 𝑅

𝜃1
is compounded of value functions 𝑣 defined on 𝜃1 such that 𝑣({𝑎1})>0.
Hence, for all 𝑣∈𝑉 𝑅

𝜃1
we have 𝑓𝜃1 ,𝑣({𝑎1, 𝑎2}) = 𝑣({𝑎1})>0 = 𝑓𝜃1 ,𝑣(∅) and

thus {𝑎1, 𝑎2}≻𝑅
𝜃1
∅. Conversely, if we consider 𝜃2 = {𝑎2}, the set 𝑉 𝑅

𝜃2
is

compounded of value functions 𝑣 defined on 𝜃2 such that 𝑣({𝑎2}) < 0.
This yields 𝑓𝜃2 ,𝑣({𝑎1, 𝑎2}) = 𝑣({𝑎2}) < 0 for each 𝑣 ∈ 𝑉 𝑅

𝜃2
and thus

∅≻𝑅
𝜃2
{𝑎1, 𝑎2}.

In what follows, we define a new dominance relation taking into
account the plurality of models compatible with the observed prefer-
ences.

Note that there always exists a 𝜃 able to represent 𝑅 (at worst,
𝜃 = 2 ) and that if a 𝜃-additive model is compatible with 𝑅, then any
𝜃′-additive model with 𝜃 ⊆ 𝜃′ is also compatible with 𝑅. For this reason,
the number of sets 𝜃 compatible with the observed preferences may be
very large.

For this reason, we start by restricting the set of models to take into
account. In this purpose, we need a binary relation ⊑ on 𝛩𝑅, such that
𝜃 ⊑ 𝜃′ if 𝜃 is considered simpler than 𝜃′. Our idea is to only consider
sets 𝜃 that are minimal according to such a binary relation, i.e., 𝜃 such
that ∄𝜃′ ∈𝛩𝑅 for which 𝜃′ ⊑ 𝜃. This is motivated by the philosophical
principle of parsimony that the simpler of two explanations is to be
preferred (Occam’s razor (Blumer et al., 1987)). Different possible
definitions for ⊑ will be discussed upon in the following subsection.

We call ⊑-simplest 𝜃 of 𝛩𝑅 the parameter sets 𝜃 ∈ 𝛩𝑅 which are
minimal w.r.t. ⊑, and we denote by 𝛩𝑅

⊑ their set. Based on 𝛩𝑅
⊑ , we

define the ⊑-ordinal dominance relation:

Definition 2. Let  be a set of elements,  ⊆ 2𝐹 a set of subsets and
𝑅 a set of pairs (𝐴,𝐵) ∈2 where (𝐴,𝐵) ∈ 𝑅 ⇔ 𝐴 ≻ 𝐵. The ⊑-ordinal
dominance relation, denoted by ≻𝑅

⊑ , is defined, for 𝐴,𝐵 ∈ , as follows:

𝐴≻𝑅
⊑𝐵 ⟺ ∀𝜃 ∈ 𝛩𝑅

⊑ , 𝐴 ≻𝑅
𝜃 𝐵,

⟺ ∀𝜃 ∈ 𝛩𝑅
⊑ , ∀𝑣 ∈ 𝑉 𝑅

𝜃 , 𝑓𝜃,𝑣(𝐴) > 𝑓𝜃,𝑣(𝐵).

In other words, 𝐴 ⊑-ordinally dominates 𝐵 if 𝐴 𝜃-ordinally domi-
nates 𝐵 according to all 𝜃 in 𝛩𝑅

⊑ , i.e., all the ⊑-simplest 𝜃’s of 𝛩𝑅.

3.4. Different definitions for ⊑

We say that a relation ⊑ is based on a function 𝜉 when 𝜃 ⊑ 𝜃′ if and
only if 𝜉(𝜃) ≤ 𝜉(𝜃′). Several aspects can be taken into account to define
𝜉:

4 It has been computer tested by brute force enumeration.
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∙ A first idea is to favor parameter sets 𝜃 that minimize the complex-
ity of synergies between the attributes. To measure this complexity, we
use the degree of 𝜃, namely 𝚍𝚎𝚐(𝜃) = max{|𝑆| ∶ 𝑆∈𝜃} (i.e., the greatest
cardinality of a subset of interacting attributes). This leads to the binary
relation ⊑𝚍𝚎𝚐 based on 𝚍𝚎𝚐, i.e., 𝜃 ⊑𝚍𝚎𝚐 𝜃′ ⇔ 𝚍𝚎𝚐(𝜃) ≤ 𝚍𝚎𝚐(𝜃′).

∙ A second idea is to favor parameter sets 𝜃 having the sparsest
possible representation (Zhang, Xu, Yang, Li, & Zhang, 2015), i.e., those
which minimize 𝚌𝚊𝚛𝚍(𝜃) = |𝜃|. This choice yields the binary relation
⊑𝚌𝚊𝚛𝚍, which is the relation based on the function 𝚌𝚊𝚛𝚍, i.e., 𝜃 ⊑𝚌𝚊𝚛𝚍

𝜃′ ⇔ 𝚌𝚊𝚛𝚍(𝜃) ≤ 𝚌𝚊𝚛𝚍(𝜃′).
∙ Alternatively, we define a binary relation combining the ideas of

⊑𝚍𝚎𝚐 and ⊑𝚌𝚊𝚛𝚍 by considering both the number and the size of elements
in a parameter set 𝜃. In this purpose, we define ⊑𝚠𝚜, the relation based
on the function 𝚠𝚜(𝜃) =

∑

𝑆∈𝜃 |𝑆|, i.e., 𝜃 ⊑𝚠𝚜 𝜃′ ⇔ 𝚠𝚜(𝜃) ≤ 𝚠𝚜(𝜃′).
∙ Lastly, we define the binary relation ⊑𝚕𝚎𝚡, defined by using lex-

icographically the binary relations ⊑𝚍𝚎𝚐, ⊑𝚌𝚊𝚛𝚍, and ⊑𝚠𝚜, in this order.
This relation could be seen as based on the function 𝚕𝚎𝚡 where 𝚕𝚎𝚡(𝜃) =
𝑛4𝑛𝚍𝚎𝚐(𝜃) + 𝑛2𝑛𝚌𝚊𝚛𝚍(𝜃) + 𝚠𝚜(𝜃).

All those relations provide different refinements of the partial order
induced by inclusion, i.e., 𝜃⊆𝜃′⇒𝜃⊑𝜃′ for ⊑∈{⊑𝚍𝚎𝚐, ⊑𝚌𝚊𝚛𝚍, ⊑𝚠𝚜, ⊑𝚕𝚎𝚡}.

Example 5. Let 𝑅 = {({𝑎1, 𝑎2}, {𝑎3, 𝑎4}), ({𝑎1, 𝑎2}, {𝑎1, 𝑎3})}. It is easy
to see that 𝑉 𝑅

𝜃 ≠ ∅ for 𝜃 = {{𝑎1, 𝑎2}}, which corresponds to a model
of degree 2. However, we may prefer being consistent with a model
of degree 1, even if there are more elements in it: 𝜃′ = {{𝑎1}, {𝑎2}}
or 𝜃′′ = {{𝑎1}, {𝑎3}} or 𝜃′′′ = {{𝑎2}}. In this example, the minimal
parameter set 𝜃 among 𝜃′, 𝜃′′, 𝜃′′′ w.r.t. relation ⊑𝚍𝚎𝚐 (resp. ⊑𝚌𝚊𝚛𝚍, ⊑𝚠𝚜,
⊑𝚕𝚎𝚡) is {𝜃′, 𝜃′′, 𝜃′′′} (resp. {𝜃′′′} in the three cases).

4. Preference prediction by using ⊑-ordinal dominance

Given a set 𝑅 of pairwise preferences and a binary relation ⊑ on 𝛩𝑅,
the preference learning method we propose consists in predicting that
a subset 𝐴 is preferred to 𝐵 if 𝐴≻𝑅

⊑𝐵, i.e., 𝐴 is preferred to 𝐵 for all
simplest models 𝜃∈𝛩𝑅 and value functions 𝑣∈𝑉 𝑅

𝜃 . The purpose of this
section is to detail the procedure for determining whether 𝐴≻𝑅

⊑𝚕𝚎𝚡
𝐵. It

is organized as follows:
∙ We show that determining if 𝐴≻𝑅

𝜃 𝐵 is polytime in |𝑅| and |𝜃|,
while determining if 𝐴≻𝑅

⊑𝐵 amounts to testing whether 𝛩𝑅
⊑ ∩𝛩𝑅

𝐵≿𝐴 = ∅,
where 𝛩𝑅

𝐵≿𝐴 = {𝜃 ∈ 𝛩𝑅 ∶ 𝐵≻𝑅
𝜃 𝐴 or 𝐵∼𝑅

𝜃 𝐴} (Section 4.1).
∙ As determining an explicit representation of 𝛩𝑅

⊑ is likely to be
cumbersome (as the size of 𝛩𝑅

⊑ can be very large), we turn to an implicit
representation based on the values 𝚍𝚎𝚐(𝜃), 𝚌𝚊𝚛𝚍(𝜃), 𝚠𝚜(𝜃) for 𝜃∈𝛩𝑅

⊑ . We
thus study the computational complexity of determining 𝚍𝚎𝚐(𝜃) (resp.
𝚌𝚊𝚛𝚍(𝜃), 𝚠𝚜(𝜃), 𝚕𝚎𝚡(𝜃)) for 𝜃 ∈𝛩𝑅

⊑ and ⊑=⊑𝚍𝚎𝚐 (resp. ⊑=⊑𝚌𝚊𝚛𝚍, ⊑=⊑𝚠𝚜,
⊑=⊑𝚕𝚎𝚡), showing that the former problem can be solved in polynomial
time, while the others are NP-hard (Section 4.2).

∙ The implicit representation of 𝛩𝑅
⊑𝚕𝚎𝚡

is based on the following idea:
if we know that 𝜃0 ∈𝛩𝑅

⊑𝚕𝚎𝚡
, then 𝜃 ∈𝛩𝑅

⊑𝚕𝚎𝚡
⇔ (𝚍𝚎𝚐(𝜃), 𝚌𝚊𝚛𝚍(𝜃), 𝚠𝚜(𝜃)) =

(𝚍𝚎𝚐(𝜃0), 𝚌𝚊𝚛𝚍(𝜃0), 𝚠𝚜(𝜃0)). It is thus enough to determine a single model
𝜃0 ∈𝛩𝑅

⊑𝚕𝚎𝚡
to be able to determine whether a model belongs to 𝛩𝑅

⊑𝚕𝚎𝚡
.

This is why we propose a Mixed Integer Program (MIP) to compute a
model 𝜃∈𝛩𝑅

⊑𝚕𝚎𝚡
, derived from a linear program for determining whether

a model 𝜃 belongs to 𝛩𝑅 (Section 4.3).
∙ We derive from it another MIP to compute a model in 𝛩𝑅

⊑𝚕𝚎𝚡
∩𝛩𝑅

𝐵≿𝐴,
concluding 𝐴⊁𝑅

⊑𝚕𝚎𝚡
𝐵 if it exists, 𝐴≻𝑅

⊑𝚕𝚎𝚡
𝐵 otherwise (Section 4.4).

Remark 2. For ⊑ a refinement of ⊑𝚍𝚎𝚐 and 𝛩𝑅
⊑ ⊆ 2[ ]2 , the ⊑-ordinal

dominance relation is more discriminant (i.e., yields at least as many
pairwise preferences) than the ordinal dominance relation considered
by Fishburn and Lavalle (1996), which corresponds to [ ]2-ordinal
dominance. The ordinal dominance relation indeed defines a parameter
for each subset in [ ]2 while the ⊑-dominance relation considers the
⊑-simplest 𝜃’s of 𝛩𝑅 (i.e., all 𝜃 ∈ 𝛩𝑅

⊑ ). As long as the preferences
may be represented by a 2-additive model, the ⊑-simplest 𝜃’s are all
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Fig. 1. (𝛩𝑅
⊑ ∩ 𝛩𝑅

𝐵≿𝐴 = ∅ ⇔ 𝐴≻𝑅
⊑𝐵) and (𝛩𝑅

⊑ ∩ 𝛩𝑅
𝐴≿𝐵 = ∅ ⇔ 𝐵≻𝑅

⊑𝐴).

included in [ ]2 = {𝑆 ⊆  ∶ 1 ≤ |𝑆| ≤ 2}. We recall that if 𝜃′ ⊆ 𝜃,
any prediction obtained by 𝜃-ordinal dominance is also obtained by
𝜃′-ordinal dominance. Hence, all preferences obtained by [ ]2-ordinal
dominance is also obtained by ⊑-ordinal dominance relation.

4.1. Determining whether 𝐴≻𝑅
𝜃 𝐵 and whether 𝐴≻𝑅

⊑𝐵

We first show that, unsurprisingly, linear programming provides
an operational tool for determining whether 𝐴≻𝑅

𝜃 𝐵. Viewing a value
function on 𝜃 as a vector 𝑣 = (𝑣𝑆 )𝑆∈𝜃 where 𝑣𝑆 = 𝑣(𝑆), the set 𝑉 𝑅

𝜃
corresponds to the polyhedron defined by the following linear con-
straints in the |𝜃|-dimensional parameter space (where each parameter
𝑣𝑆 corresponds to a dimension)5:

∀(𝑋, 𝑌 ) ∈ 𝑅,
∑

𝑆∈𝜃
𝐼𝑋 (𝑆)𝑣𝑆 −

∑

𝑆∈𝜃
𝐼𝑌 (𝑆)𝑣𝑆 ≥ 1.

For a given set 𝑅 of strict pairwise preferences and a model 𝜃∈𝛩𝑅,
checking whether 𝐴≻𝑅

𝜃 𝐵 can be evaluated in polynomial time in |𝑅|
and in |𝜃| by solving the following linear program 𝐴≻𝑅

𝜃 𝐵
, where there

is one variable 𝑣𝑆 ∈R for each pair 𝑆∈𝜃:

(𝐴≻𝑅
𝜃 𝐵

)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

min
∑

𝑆∈𝜃
𝐼𝐴(𝑆)𝑣𝑆 −

∑

𝑆∈𝜃
𝐼𝐵(𝑆)𝑣𝑆

∑

𝑆∈𝜃
(𝐼𝑋 (𝑆) − 𝐼𝑌 (𝑆))𝑣𝑆 ≥ 1 ∀(𝑋, 𝑌 ) ∈ 𝑅 ⧵ {(𝐴,𝐵)},

𝑣𝑆 ∈ R ∀𝑆 ∈ 𝜃.

We have that 𝐴≻𝑅
𝜃 𝐵 if and only if the optimal value of 𝐴≻𝑅

𝜃 𝐵
is strictly

positive, as it implies that ∑𝑆∈𝜃 𝐼𝐴(𝑆)𝑣𝑆 >
∑

𝑆∈𝜃 𝐼𝐵(𝑆) for all 𝑣∈𝑉 𝑅
𝜃 .

In contrast with this positive complexity result for 𝜃-ordinal dom-
inance, determining whether 𝐴≻𝑅

⊑𝐵 by direct use of the definition of
⊑-ordinal dominance would require a high computational burden. We
overcome this difficulty by reducing this problem to testing whether
𝛩𝑅
⊑ ∩ 𝛩𝑅

𝐵≿𝐴 is empty.
To achieve this reduction, let us study the relationships between

𝛩𝑅
𝐴≿𝐵 , 𝛩𝑅

𝐵≿𝐴 and 𝛩𝑅
⊑ . For visual support, the reader may refer to Fig. 1.

We recall that we denote by 𝛩𝑅
𝐵≿𝐴 the set {𝜃 ∈ 𝛩𝑅 ∶ 𝐵≻𝑅

𝜃 𝐴 or 𝐵∼𝑅
𝜃 𝐴}.

As one of the relations 𝐴≻𝜃𝐵 or 𝐵≻𝜃𝐴 or 𝐴∼𝜃𝐵 holds for any 𝜃∈𝛩𝑅,
we have that 𝛩𝑅 = 𝛩𝑅

𝐴≿𝐵 ∪𝛩𝑅
𝐵≿𝐴. Consequently, 𝛩𝑅

⊑ ⊆ 𝛩𝑅
𝐴≿𝐵 ∪𝛩𝑅

𝐵≿𝐴
because 𝛩𝑅

⊑ ⊆𝛩𝑅. Furthermore, 𝛩𝑅
𝐴≿𝐵∩𝛩

𝑅
𝐵≿𝐴 = {𝜃∈𝛩𝑅 ∶ 𝐴∼𝜃 𝐵}≠∅ as

soon as there exists 𝜃∈𝛩𝑅 for which 𝐴 ∼𝜃 𝐵.
To evaluate whether a ⊑-ordinal dominance relation holds between

two subsets 𝐴 and 𝐵, we examine if one of the following conditions
holds: (𝑖) 𝛩𝑅

⊑ ∩ 𝛩𝑅
𝐵≿𝐴 = ∅, (𝑖𝑖) 𝛩𝑅

⊑ ∩ 𝛩𝑅
𝐴≿𝐵 = ∅. We have indeed the

following result:

Proposition 1. For any 𝐴,𝐵⊆  , we have 𝐴 ≻𝑅
⊑ 𝐵 ⇔ 𝛩𝑅

⊑ ∩ 𝛩𝑅
𝐵≿𝐴 = ∅.

5 The right hand side of the constraint is here set to 1, but it could be set
to any strictly positive constant as utilities 𝑣𝑆 are always compatible with 𝑅
to within a positive multiplicative factor.
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Proof. It follows from the following sequence of equivalences:

𝐴≻𝑅
⊑𝐵 ⇔ ∀𝜃 ∈ 𝛩𝑅

⊑ , 𝐴≻
𝑅
𝜃 𝐵 ⇔ ∀𝜃 ∈ 𝛩𝑅

⊑ , 𝐵 ⊁𝑅
𝜃 𝐴 and 𝐴 ≁𝑅

𝜃 𝐵

⇔ 𝛩𝑅
⊑ ∩ 𝛩𝑅

𝐵≿𝐴 = ∅. □

Symmetrically, we have obviously that 𝐵 ≻𝑅
𝛩 𝐴 ⇔ 𝛩𝑅

⊑ ∩ 𝛩𝑅
𝐴≿𝐵 =

. To test whether 𝛩𝑅
⊑ ∩ 𝛩𝑅

𝐵≿𝐴 = ∅, the mathematical programming
pproach we propose applies to cases where relation ⊑ is based on a

function 𝜉. The approach starts by computing a single model 𝜃 ∈ 𝛩𝑅

minimizing 𝜉(𝜃), which is enough for determining the value 𝜉(𝜃) of any
𝜃 ∈ 𝛩𝑅

⊑ , as they all share the same optimal value 𝜉(𝜃). We now study
the complexity of computing such an optimal 𝜃 in 𝛩𝑅. More precisely,
we study the complexity of the following decision problem MIN-𝜃-𝜉, for
𝜉 ∈ {𝚌𝚊𝚛𝚍, 𝚠𝚜, 𝚍𝚎𝚐, 𝚕𝚎𝚡} (as is well-known, the optimization problem is
at least as hard as its decision variant):

MIN-𝜃-𝜉

INPUT: A set  of alternatives, a set 𝑅 = {(𝐴,𝐵), 𝐴, 𝐵 ∈ } of strict
pairwise preferences, an integer 𝜏 ∈ Z+.

QUESTION: Does there exist 𝜃 ∈ 𝛩𝑅 such that 𝜉(𝜃) ≤ 𝜏?

4.2. Computational complexity of MIN-𝜃-𝜉 for 𝜉∈{𝚌𝚊𝚛𝚍, 𝚠𝚜, 𝚕𝚎𝚡, 𝚍𝚎𝚐}

We show here that MIN-𝜃-𝜉 is NP-hard for ⊑∈{𝚠𝚜, 𝚌𝚊𝚛𝚍, 𝚕𝚎𝚡}, while
t can be solved in polynomial time for ⊑=𝚍𝚎𝚐.

heorem 1. MIN-𝜃-𝚌𝚊𝚛𝚍 and MIN-𝜃-𝚠𝚜 are NP-complete.

roof. The membership of MIN-𝜃-𝚌𝚊𝚛𝚍 to NP follows from the fact
hat min𝜃 𝚌𝚊𝚛𝚍(𝜃) ≤ 2|𝑅| and checking that 𝜃 ∈ 𝛩𝑅 can be done in
olynomial time in |𝑅| and |𝜃|. Indeed, the parameter set 𝜃 = {𝐴 ∈

 ∶ (𝐴, ⋅)∈𝑅 or (⋅, 𝐴)∈𝑅} obviously belongs to 𝛩𝑅, and |𝜃|≤2|𝑅|. The
proof that MIN-𝜃-𝚠𝚜 belongs to NP is similar, based on the fact that
min𝜃 𝚠𝚜(𝜃)≤2|𝑅| × 𝑛.

To prove the NP-hardness, we use a reduction from Hitting Set:

Hitting Set

INPUT: Given a set of 𝑛 elements:  = {𝑥𝑖}1≤𝑖≤𝑛, a family of 𝑚 sets
 = {𝑆𝑖 ∶ 𝑆𝑖 ⊆  , 1 ≤ 𝑖 ≤ 𝑚}, and an integer 𝜏 ∈ Z+.

QUESTION: Does there exist  ′ ⊆  such that ∀𝑆𝑖 ∈  , 𝑆𝑖 ∩  ′ ≠ ∅
and | ′

| ≤ 𝜏?

Given an instance ( , , 𝜏) of the Hitting Set problem, we define the
following instance (, 𝑅, 𝜏′) of MIN-𝜃-𝚌𝚊𝚛𝚍 (resp. MIN-𝜃-𝚠𝚜).

We let  =  ∪ {∅}, 𝜏′ = 𝜏, and consider the following set of
references:

= {(𝑆, ∅) ∶ 𝑆 ∈ }.

ow we show that ( , , 𝜏) is a yes-instance of Hitting Set iff (, 𝑅, 𝜏′) is
yes-instance of MIN-𝜃-𝚌𝚊𝚛𝚍 (resp. MIN-𝜃-𝚠𝚜). Note that a set 𝜃 belongs

o 𝛩𝑅 if and only if it satisfies the following condition:

(𝑆, ∅)∈𝑅, ∃ 𝑇 ∈𝜃 such that 𝑇 ⊆ 𝑆. (C)

ndeed, each preferences in 𝑅 can then be satisfied by assigning positive
alues to parameters entailed by the elements of 𝜃. Moreover, note that
f a set 𝜃 satisfies C and ∃ 𝑇 ∈ 𝜃 such that |𝑇 | > 1, then the set 𝜃′

btained from 𝜃 by replacing 𝑇 by any singleton {𝑥}⊂𝑇 also satisfies
. Hence, within the sets satisfying C and minimizing 𝚌𝚊𝚛𝚍, there exists
set 𝜃′ compounded only of singletons, minimizing both 𝚌𝚊𝚛𝚍 and 𝚠𝚜

because 𝚌𝚊𝚛𝚍(𝜃) = 𝚠𝚜(𝜃) if 𝜃 is compounded only of singletons). By
aking  ′ = {𝑥 ∶ {𝑥} ∈ 𝜃′}, we obtain a hitting set of size | ′

| ≤ 𝜏. This
ields the following conclusion: there exists a hitting set of size 𝑠 ≤ 𝜏 if

and only if there exists a set 𝜃 satisfying C such that 𝚌𝚊𝚛𝚍(𝜃) = 𝑠 (resp.
𝚠𝚜(𝜃) = 𝑠). This argument completes the proof. □
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The following result is a direct consequence of the previous one:

Corollary 1. MIN-𝜃-𝚕𝚎𝚡 is NP-hard.

Proof. Given an instance (, 𝑅, 𝜏) of the MIN-𝜃-𝚌𝚊𝚛𝚍 problem, we could
solve for each degree 𝑑 ∈ {0, 1,… | |} an instance (, 𝑅, 𝜏′) of the
MIN-𝜃-𝚕𝚎𝚡 problem where 𝜏′ = 𝑑𝑛4𝑛 + (𝜏 + 1)𝑛2𝑛. □

In contrast, we show a polynomial-time complexity result for MIN-
-𝚍𝚎𝚐, by resorting to the kernel trick, widely used in machine learn-
ng (see e.g., Schölkopf & Smola, 2002). Given a vector space  of

dimension 𝑛 and a transformation function 𝜑 ∶  →  , where the
dimension 𝑛 of vector space  is exponential in 𝑛 , the kernel trick
consists in computing the scalar products ⟨𝜑(𝑥), 𝜑(𝑦)⟩ of 𝑥, 𝑦 ∈  in
polynomial time in 𝑛 , by using a kernel function 𝐾(𝑥, 𝑦) that returns
the value ⟨𝜑(𝑥), 𝜑(𝑦)⟩ without requiring to explicit 𝜑(𝑥) and 𝜑(𝑦). In our
setting,  is the set of characteristic vectors of subsets 𝐴 of  , and
 the set of ‘‘augmented’’ characteristic vectors containing additional
dimensions corresponding to binary values 𝐼𝐴(𝑆) for 𝑆 ∈ [ ]𝜏 (more
details in the proof). The complexity result is formulated as follows:

Theorem 2. MIN-𝜃-𝚍𝚎𝚐 can be solved in polynomial time in |𝑅| and 𝑛.

Proof. Let (, 𝑅, 𝜏) be an instance of MIN-𝜃-𝚍𝚎𝚐. We wish to determine
if preferences in 𝑅 can be represented by a 𝜃-additive model with 𝜃 =
[ ]𝜏 . For notational convenience, we set 𝜃(𝜏) = [ ]𝜏 and 𝑛𝜏 = |𝜃(𝜏)| =

𝜏
𝑖=1

(𝑛
𝑖

)

. We associate to 𝜃(𝜏) the vector ⃖⃖⃖⃖⃖⃗𝜃(𝜏) = (𝑆1,… , 𝑆𝑛𝜏 ), where
ubsets 𝑆 = {𝑎𝑖1 ,… , 𝑎𝑖𝑘} (𝑖1 < … < 𝑖𝑘) are indexed in lexicographic

order of vectors (|𝑆|, 𝑖1,… , 𝑖𝑘). For instance, if  = {𝑎1, 𝑎2, 𝑎3} and
𝜃 = 𝜃(3) then ⃖⃗𝜃 = ({𝑎1}, {𝑎2}, {𝑎3}, {𝑎1, 𝑎2}, {𝑎1, 𝑎3}, {𝑎2, 𝑎3}, {𝑎1, 𝑎2, 𝑎3}).

dditionally, for a value function 𝑣 ∶ 𝜃 → R, we denote by ⃖⃗𝑣 =
(𝑣𝑆1

,… , 𝑣𝑆𝑛𝜏
) the vector of values associated to the elements of ⃖⃖⃖⃖⃖⃗𝜃(𝜏)

ordered in the same fashion. Finally, given 𝐴 ∈ , we denote by ⃖⃖⃗𝐴𝜏 the
binary vector ⃖⃖⃖⃖⃗𝐴𝜏 = (𝐼𝐴(𝑆1),… , 𝐼𝐴(𝑆𝑛𝜏 )), where 𝐼𝐴(𝑆𝑖) is the indicator
function of 𝑆𝑖 ∈ 𝜃(𝜏).

Problem MIN-𝜃-𝚍𝚎𝚐 evaluates if the following proposition holds:

∃ ⃖⃗𝑣 ∈ R𝑛𝜏 s.t. ∀(𝐴,𝐵) ∈ 𝑅; ⃖⃖⃗𝐴𝜏 ⃖⃗𝑣
𝑇 > ⃖⃖⃗𝐵𝜏 ⃖⃗𝑣

𝑇 .

value vector ⃖⃗𝑣 of minimum norm can be determined by solving the
ollowing convex quadratic program:

min
𝑣⃗∈R𝑛𝜏

1
2
⃖⃗𝑣 ⃖⃗𝑣𝑇

.t. ⃖⃖⃗𝐴𝜏 ⃖⃗𝑣
𝑇 ≥ ⃖⃖⃗𝐵𝜏 ⃖⃗𝑣

𝑇 + 1 ∀(𝐴,𝐵) ∈ 𝑅

sing the same trick as Domshlak and Joachims (Domshlak & Joachims,
005), instead of solving this program whose number 𝑛𝜏 of variables is
ot polynomial in the size of our instance of MIN-𝜃-𝚍𝚎𝚐 (because 𝜏 is an
nput variable and not a constant), we consider its Wolfe dual defined
y:

max
𝛼∈R|𝑅|

∑

(𝐴,𝐵)∈𝑅
𝛼(𝐴,𝐵) −

1
2

∑

(𝐴,𝐵)∈𝑅

∑

(𝐶,𝐷)∈𝑅
𝛼(𝐴,𝐵)𝛼(𝐶,𝐷)(⃖⃖⃗𝐴𝜏 − ⃖⃖⃗𝐵𝜏 )(⃖⃖⃗𝐶𝜏 − ⃖⃖⃗𝐷𝜏 )𝑇

.t. 𝛼 ≥ 0

By defining the kernel function 𝐾 (𝜏)(𝐴,𝐵) = ⃖⃖⃗𝐴𝜏 ⃖⃖⃗𝐵𝜏
𝑇
, the previous

program can be written as:

max
𝛼∈(R+)|𝑅|

∑

(𝐴,𝐵)∈𝑅
𝛼(𝐴,𝐵) −

1
2

∑

(𝐴,𝐵)∈𝑅

∑

(𝐶,𝐷)∈𝑅
𝛼(𝐴,𝐵)𝛼(𝐶,𝐷)

(𝐾 (𝜏)(𝐴,𝐶) −𝐾 (𝜏)(𝐴,𝐷) −𝐾 (𝜏)(𝐵,𝐶) +𝐾 (𝜏)(𝐵,𝐷))

which can be solved in polynomial time in |𝑅| and 𝑛 provided that
𝐾 (𝜏)(𝑋, 𝑌 ) can be evaluated in polynomial time in 𝑛 without expliciting

and 𝑌 .
Indeed, since the reformulation yields a convex quadratic program

of polynomial size in the input data, the problem can then be solved in
polynomial time (by polynomial time solvability of convex quadratic
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programming (Kozlov, Tarasov, & Khachiyan, 1979, 1980)). We now
prove that 𝐾 (𝜏)(𝑋, 𝑌 ) can be efficiently computed without expliciting

and 𝑌 . Let 𝑘 be the size of the intersection between 𝑋 and 𝑌 ,
i.e., 𝑘 = |𝑋 ∩ 𝑌 |. Note that 𝐾 (𝜏)(𝑋, 𝑌 ) counts the number of parameters
of 𝜃(𝜏) that are subsets of both 𝑋 and 𝑌 . We conclude by noting that
the number of such elements corresponds to ∑𝜏

𝑖=1
(𝑘
𝑖

)

, i.e., the number
(<2𝑛) of non-empty subsets of size less than or equal to 𝜏 in 𝑋 ∩𝑌 . □

Remark 3. Note that Tehrani, Strickert, and Hüllermeier (Tehrani
et al., 2014) and Herin et al. (Herin et al., 2023) have proposed
kernel functions 𝐾(𝑥, 𝑦) that return the scalar product ⟨𝜑(𝑥), 𝜑(𝑦)⟩ of
augmented vectors 𝜑(𝑥), 𝜑(𝑦) used to obtain an additive expression
⟨𝑚,𝜑(𝑥)⟩ of a discrete Choquet integral 𝐶(𝑥), where 𝑚 is the vector of
Möbius masses obtained from the capacity used in 𝐶(𝑥). It turns out that
there is a close link between 𝑓𝜃,𝑣 and a Choquet integral 𝐶(𝑥) expressed
as ⟨𝑚,𝜑(𝑥)⟩ (note however that we do not impose the constraints
on the 𝑣(𝑆) values ensuring the monotonicity of the capacity, or the
normalization constraint ∑𝑆 𝑣(𝑆) = 1). However, their kernel functions
do not use the same calculations as ours: we take advantage of the
particular case we study, where all components of 𝑥 take binary values,
to compute the kernel function in 𝑂(𝑛) instead of 𝑂(𝑛2).

Algorithm 1 takes as input a set 𝑅 of strict pairwise preferences
and computes min{𝚍𝚎𝚐(𝜃) ∶ 𝜃 ∈ 𝛩𝑅} by solving a sequence of convex
quadratic programs establishing whether there exists 𝜃 ∈ 𝛩𝑅 such
that 𝜉(𝜃) = 𝜏 (which holds if the optimal value of the program is
bounded). The variable 𝜏 is gradually incremented from 1. At each
iteration, the objective function parameters are updated by using the
kernel trick, which makes the procedure polynomial-time in |𝑅| and
𝑛. More precisely, the while loop makes at most 𝑛 calls to a convex
quadratic programming solver (which operates in polynomial time in
the size of the program (Kozlov et al., 1979, 1980)), and each iteration
of the while loop requires to update |𝑅|2 components 𝑄[𝐴,𝐵, 𝐶,𝐷].
To perform efficiently the updates, we can precompute the binomial
coefficients in time 𝑂(𝑛3), by using dynamic programming to determine
the Pascal triangle. The Pascal triangle indeed involves 𝑛2 binomial
coefficients, each one computed by an addition in 𝑂(𝑛) (as the values of
the coefficients are upper bounded by 2𝑛, thus encoded on 𝑛 bits). The
overall complexity of Algorithm 1 is dominated by the |𝑛| solutions of
convex quadratic programs.

Algorithm 1 Compute min{deg(𝜃) ∶ 𝜃 ∈ 𝛩𝑅}

Input: set 𝑅 of strict pairwise preferences
Output: min{deg(𝜃) ∶ 𝜃 ∈ 𝛩𝑅}

𝜏 ← 1
for (𝐴,𝐵)∈𝑅 do

for (𝐶,𝐷)∈𝑅 do ⊳ Initialization of dictionary 𝑄
𝑄[𝐴,𝐵, 𝐶,𝐷] ← |𝐴 ∩ 𝐶| − |𝐴 ∩𝐷| − |𝐵 ∩ 𝐶| + |𝐵 ∩𝐷|

while max
𝛼≥0

∑

(𝐴,𝐵)∈𝑅
𝛼(𝐴,𝐵)−

1
2

∑

(𝐴,𝐵)∈𝑅

∑

(𝐶,𝐷)∈𝑅
𝛼(𝐴,𝐵)𝛼(𝐶,𝐷)𝑄[𝐴,𝐵, 𝐶,𝐷] is unbounded do

⊳ the 𝛼(𝑋,𝑌 )’s are the variables of the convex quadratic program
⊳ 𝛼≥0 means that 𝛼(𝑋,𝑌 )≥0 for all (𝑋, 𝑌 )∈𝑅
⊳ 𝑄 contains the coefficients of the objective function, updated at each
iteration

𝜏 ← 𝜏 + 1
for (𝐴,𝐵)∈𝑅 do

for (𝐶,𝐷)∈𝑅 do
𝑄[𝐴,𝐵, 𝐶,𝐷] ← 𝑄[𝐴,𝐵, 𝐶,𝐷] +

(

|𝐴∩𝐶|

𝜏

)

−
(

|𝐴∩𝐷|

𝜏

)

−
(

|𝐵∩𝐶|

𝜏

)

+
(

|𝐵∩𝐷|

𝜏

)

return 𝜏

4.3. Computing (𝚍𝚎𝚐(𝜃), 𝚌𝚊𝚛𝚍(𝜃), 𝚠𝚜(𝜃)) for 𝜃∈𝛩𝑅
⊑𝚕𝚎𝚡

As all models 𝜃∈𝛩𝑅
⊑𝚕𝚎𝚡

share the same vector (𝚍𝚎𝚐(𝜃), 𝚌𝚊𝚛𝚍(𝜃), 𝚠𝚜(𝜃)),
it is enough to compute a single model 𝜃∈𝛩𝑅

⊑𝚕𝚎𝚡
to deduce this vector,

which will be required to determine whether 𝐴≻𝑅
⊑𝚕𝚎𝚡

𝐵. The negative
complexity result (Corollary 1) regarding the computation of a model
 (
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𝜃∈𝛩𝑅
⊑𝚕𝚎𝚡

does not prevent us from proposing an exact solution method
that will prove efficient in practice. For this purpose, we first present a
Linear Program (LP) allowing us to determine in polynomial time in |𝑅|
and |𝜃| whether 𝜃∈𝛩𝑅, given a model 𝜃 and a set 𝑅 of strict pairwise
preferences. From this LP, we will then develop a MIP formulation for
computing 𝜃∈𝛩𝑅

⊑𝚕𝚎𝚡
.

For a given set 𝑅 of strict pairwise preferences and a given model
𝜃, checking whether 𝜃∈𝛩𝑅 can be evaluated in polynomial time in |𝑅|
and in |𝜃| by solving the following linear program 𝜃 , where there is
one variable 𝑒(𝐴,𝐵)≥0 for each pair (𝐴,𝐵) in 𝑅:

(𝑅
𝜃 )

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

min
∑

(𝐴,𝐵)∈𝑅
𝑒(𝐴,𝐵)

∑

𝑆∈𝜃
(𝐼𝐴(𝑆) − 𝐼𝐵(𝑆))𝑣𝑆 + 𝑒(𝐴,𝐵) ≥ 1 ∀(𝐴,𝐵) ∈ 𝑅,

𝑒(𝐴,𝐵) ≥ 0 ∀(𝐴,𝐵) ∈ 𝑅,
𝑣𝑆 ∈ R ∀𝑆 ∈ 𝜃.

We have that 𝜃 ∈ 𝛩𝑅 if and only if the optimal value of 𝑅
𝜃 is 0,

because in this case we can find values for variables 𝑣𝑆 that respect all
the preferences in 𝑅 without the help of the additional slack variables
𝑒(𝐴,𝐵).

We now show how to derive, from 𝑅
𝜃 , a MIP formulation for

computing a model 𝜃 ∈ 𝛩𝑅
⊑𝚕𝚎𝚡

. For this, we first compute 𝚍𝚎𝚐(𝑅) =
min{𝚍𝚎𝚐(𝜃) ∶ 𝜃 ∈ 𝛩𝑅}, by using Algorithm 1. We then add a binary
variable 𝑏𝑆 for each 𝑆∈[ ]𝚍𝚎𝚐(𝜃), as well as big-M constraints to ensure
that 𝑏𝑆 = 1 iff 𝑆∈𝜃 (i.e., 𝑆 belongs to the model 𝜃∈𝛩𝑅

⊑𝚕𝚎𝚡
). Determining

a model 𝜃 ∈𝛩𝑅
⊑𝚕𝚎𝚡

can be done by solving the following lexicographic
optimization problem:

(𝑅
⊑𝚕𝚎𝚡

)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

min lex
∑

𝑆∈[ ]𝚍𝚎𝚐(𝑅)
𝑏𝑆 ,

∑

𝑆∈[ ]𝚍𝚎𝚐(𝑅)
𝑏𝑆 |𝑆|

∑

𝑆∈[ ]𝚍𝚎𝚐(𝑅)
(𝐼𝐴(𝑆) − 𝐼𝐵(𝑆))𝑣𝑆 ≥ 1 ∀(𝐴,𝐵) ∈ 𝑅,

−𝑏𝑆𝑀 ≤ 𝑣𝑆 ≤ 𝑏𝑆𝑀 ∀𝑆 ∈ [ ]𝚍𝚎𝚐(𝑅),
𝑏𝑆 ∈ {0, 1} ∀𝑆 ∈ [ ]𝚍𝚎𝚐(𝑅).

(1)

where 𝑀 = (2
∑𝚍𝚎𝚐(𝑅)

𝑖=1
(𝑛
𝑖

)

+ |𝑅|)× (|𝑅|)2|𝑅|+2, so that if the values 𝑣𝑆 can
be set to satisfy constraints 1, then there exist such values in the interval
[−𝑀,𝑀] (see Papadimitriou, 1981). Every feasible instantiation of
variables 𝑣𝑆 , 𝑏𝑆 in 𝑅

⊑𝚕𝚎𝚡
corresponds to an element 𝜃 ∈ 𝛩𝑅, namely

𝜃 = {𝑆 ∈ [ ]𝚍𝚎𝚐(𝑅) ∶ 𝑏𝑆 = 1}. Lexicographic optimization amounts to
determine, among feasible instantiations of 𝑣𝑆 , 𝑏𝑆 that minimize the
first objective ∑

𝑆∈[ ]𝚍𝚎𝚐(𝑅) 𝑏𝑆 , one that minimizes the second objective
∑

𝑆∈[ ]𝚍𝚎𝚐(𝑅) 𝑏𝑆 |𝑆|. It is well-known that this can be achieved as fol-
ows (see, e.g., Section 5.1 in Ehrgott, 2005) using a mixed integer
rogramming solver:

• first, we solve the MIP 1 obtained by replacing the lexicographic
objective function in 𝑅

⊑𝚕𝚎𝚡
by min

∑

𝑆∈[ ]𝚍𝚎𝚐(𝑅) 𝑏𝑆 ;
• denoting by opt1 the optimal value of 1, we then solve the

MIP 2 where the objective function in 𝑅
⊑𝚕𝚎𝚡

is replaced by
min

∑

𝑆∈[ ]𝚍𝚎𝚐(𝑅) 𝑏𝑆 |𝑆|, under the additional constraint
∑

𝑆∈[ ]𝚍𝚎𝚐(𝑅) 𝑏𝑆 ≤ opt1.

s every feasible instantiation corresponds to a model 𝜃 of mini-
al degree 𝚍𝚎𝚐(𝜃) (i.e., 𝚍𝚎𝚐(𝜃) = 𝚍𝚎𝚐(𝑅)), we thus obtain a model
∈ 𝛩𝑅

⊑𝚕𝚎𝚡
, from which we deduce (𝚍𝚎𝚐(𝜃), 𝚌𝚊𝚛𝚍(𝜃), 𝚠𝚜(𝜃)) for 𝜃 ∈

𝑅
⊑𝚕𝚎𝚡

. In the following, we denote by (𝚍𝚎𝚐𝚕𝚎𝚡, 𝚌𝚊𝚛𝚍𝚕𝚎𝚡, 𝚠𝚜𝚕𝚎𝚡) the vector
𝚍𝚎𝚐(𝜃), 𝚌𝚊𝚛𝚍(𝜃), 𝚠𝚜(𝜃)) for 𝜃∈𝛩𝑅 .
⊑𝚕𝚎𝚡
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4.4. Determining whether 𝐴≻𝑅
⊑𝚕𝚎𝚡

𝐵

Determining whether 𝐴≻𝑅
⊑𝚕𝚎𝚡

𝐵 amounts to solve:

𝐴≻𝑅
⊑𝚕𝚎𝚡

𝐵)

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

min
∑

𝑆∈[ ]𝚍𝚎𝚐(𝑅)
𝑏𝑆 |𝑆|

∑

𝑆∈[ ]𝚍𝚎𝚐(𝑅)
𝑏𝑆 ≤ 𝚌𝚊𝚛𝚍𝚕𝚎𝚡, (a)

∑

𝑆∈[ ]𝚍𝚎𝚐(𝑅)
(𝐼𝐵(𝑆) − 𝐼𝐴(𝑆))𝑣𝑆 ≥ 0, (b)

∑

𝑆∈[ ]𝚍𝚎𝚐(𝑅)
(𝐼𝑋 (𝑆) − 𝐼𝑌 (𝑆))𝑣𝑆 ≥ 1 ∀(𝑋, 𝑌 ) ∈ 𝑅, (c)

−𝑏𝑆𝑀 ≤ 𝑣𝑆 ≤ 𝑏𝑆𝑀 ∀𝑆 ∈ [ ]𝚍𝚎𝚐(𝑅),
𝑏𝑆 ∈ {0, 1} ∀𝑆 ∈ [ ]𝚍𝚎𝚐(𝑅).

(2)

A feasible solution of 𝐴≻𝑅
⊑𝚕𝚎𝚡

𝐵 yields a model 𝜃 satisfying 𝚍𝚎𝚐(𝜃) =

𝚍𝚎𝚐𝚕𝚎𝚡 (variables 𝑏𝑆 are only defined for 𝑆 ∈ [ ]𝚍𝚎𝚐(𝑅)) and 𝚌𝚊𝚛𝚍(𝜃) =
𝚌𝚊𝚛𝚍𝚕𝚎𝚡 (by constraint (2(a)) on the value of 𝚌𝚊𝚛𝚍(𝜃)). Furthermore,
constraint (2(b)) ensures that 𝜃∈𝛩𝑅

𝐵≿𝐴, while constraint (2(c)) ensures
that 𝜃 ∈ 𝛩𝑅. If the optimal value of 𝐴≻𝑅

⊑𝚕𝚎𝚡
𝐵 is 𝚠𝚜𝚕𝚎𝚡, then the

corresponding model 𝜃 belongs to 𝜃 ∈ 𝛩𝑅
⊑𝚕𝚎𝚡

(because then (𝚍𝚎𝚐(𝜃),
𝚌𝚊𝚛𝚍(𝜃), 𝚠𝚜(𝜃)) = (𝚍𝚎𝚐𝚕𝚎𝚡, 𝚌𝚊𝚛𝚍𝚕𝚎𝚡, 𝚠𝚜𝚕𝚎𝚡)), and thus there exists 𝜃 ∈
𝛩𝑅
⊑𝚕𝚎𝚡

∩ 𝛩𝑅
𝐵≿𝐴. Consequently:

• if the optimal value is strictly greater than 𝚠𝚜𝚕𝚎𝚡, or the polyhe-
dron is empty, then 𝛩𝑅

⊑𝚕𝚎𝚡
∩ 𝛩𝑅

𝐵≿𝐴 = ∅ and hence 𝐴≻𝑅
⊑𝚕𝚎𝚡

𝐵 (by
Proposition 1);

• if the optimal value of 𝐴≻𝑅
⊑𝚕𝚎𝚡

𝐵 is 𝚠𝚜𝚕𝚎𝚡, then 𝐴⊁𝑅
⊑𝚕𝚎𝚡

𝐵.

5. Numerical tests

We call hereafter OROR the learning approach consisting in comput-
ing (𝚍𝚎𝚐(𝑅), 𝚌𝚊𝚛𝚍(𝑅), 𝚠𝚜(𝑅)) and using ≻𝑅

⊑𝚕𝚎𝚡
for preference prediction,

for Occam’s Robust Ordinal Regression. Numerical tests were carried out
on Google Colab,6 to compare OROR with state-of-the-art approaches
in two different settings:

• A first set of experiments were carried out on synthetic data,
i.e., obtained by simulating a user. They aimed at evaluating our
approach in an ideal setting where a 𝜃-additive model perfectly
fits the preferences.

• A second set of experiments were carried out on real-world data
for content-based filtering methods (more precisely, movies de-
scribed by binary attributes). These tests aimed at evaluating how
our approach deals with partially described alternatives (i.e., with
possible ‘‘collisions’’ if two distinct alternatives share the same
description), compared to other state of the art approaches.

In both sets of experiments, we start with a learning set of preferences,
consisting of a strict weak order on a subset of alternatives. Based on
this learning set, pairwise preference predictions are then requested on
random pairs of alternatives (pairs not in the learning set). As said
earlier, the model may reject a prediction if it is not robust enough
given the available preference data (i.e., if there is no ⊑𝚕𝚎𝚡-ordinal
dominance).

5.1. The synthetic and real-world datasets

The dataset consists of ratings assigned by a user (DM) on a set
 of 𝑁 alternatives. Given a set  = {𝑎1,… , 𝑎𝑛} of binary features,
a learning set 𝑡𝑟𝑎𝑖𝑛 consists of 𝑘 ≤ 𝑁 ratings of alternatives in ,
where each alternative 𝐴𝑖 (𝑖 = 1,… , 𝑁) is described by a binary vector
⃖⃖⃗𝐴𝑖 = (𝐴1

𝑖 ,… , 𝐴𝑛
𝑖 ), with 𝐴𝑗

𝑖 = 1 if 𝑎𝑗 ∈ 𝐴𝑖, and 𝐴𝑗
𝑖 = 0 otherwise. The

user rating of 𝐴𝑖 is denoted by 𝑟𝑖. The set of known strict preferences
is 𝑅 = {(𝐴𝑖, 𝐴𝑗 )∈2

𝑡𝑟𝑎𝑖𝑛 ∶ 𝑟𝑖 > 𝑟𝑗}. We recall that alternatives 𝐴𝑖 and 𝐴𝑗

6 two virtual CPU at 2.2 GHz, 13 GB RAM.
 l
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are incomparable (and not indifferent) if 𝑟𝑖 = 𝑟𝑗 . The ratings thus induce
a strict weak order on 𝑡𝑟𝑎𝑖𝑛.

The real-world data consist of ratings of movies by users picked
up from the IMDb dataset.7 This is a dataset of movie reviews that
contains over 50k reviews. Each movie 𝐴𝑖 is described by a set of binary
features 𝐴𝑗

𝑖 , and the ratings 𝑟𝑖 are integer values ranging from 1 to 10.
The experiments were conducted with a dataset of 50 users (randomly
sampled) who each rated at least 𝑘 = 100 movies. Each movie is
described using a subset of 𝑛 = 8 binary features (corresponding to the
main genres of the movie, e.g., ‘‘adventure’’, ‘‘animation’’, ‘‘children’’,
‘‘comedy’’, ‘‘fantasy’’, etc.). In the dataset, 18% (resp. 29%, 32%, 13%,
4%, 1%) of the movies have 1 (resp. 2, 3, 4, 5, 6) positive binary
feature(s). This implies that 𝚍𝚎𝚐(𝑅)≤6.

The synthetic data consists of a randomly sampled 𝜃-additive func-
tion 𝑓𝜃,𝑣 where the value function 𝑣 is integer-valued. The rating of an
alternative 𝐴𝑖 corresponds to the value 𝑓𝜃,𝑣(𝐴𝑖). For sampling a function
𝑓𝜃,𝑣, we first sample a set 𝜃 and then we sample parameters 𝑣𝑆 for
𝑆∈𝜃. More precisely, the generation of 𝜃 is achieved as follows. First,
𝜃 is initialized as the set of singletons {𝑎1}, {𝑎2},… , {𝑎𝑛}, then we add
⌊𝛼 × (2𝑛 − 𝑛)⌋ subsets of attributes, where the coefficient 𝛼 ∈ [0, 1]
makes it possible to control the model’s complexity: for 𝛼 = 0, only
the singletons are in 𝜃, which yields the simple additive utility model,
and for 𝛼 = 1, all subsets of attributes are present, which yields the
most general utility model. Each subset 𝑆 is sampled according to a
parameter 𝑝∈(0, 1]:

1. Initialize 𝑆 as a singleton by uniformly sampling in  .
2. Uniformly sample another attribute in  and add it to 𝑆.
3. Exit this process if 𝑆 =  .
4. Exit this process with a probability 𝑝 otherwise go to 2.

The expected size of sets 𝑆 we sample is E[|𝑆|] = 2+(1−𝑝−(1−𝑝)𝑛−1)∕𝑝.
Once 𝜃 is set, we sample the parameters 𝑣𝑆 for each 𝑆∈𝜃 with a discrete
uniform distribution  {−2, 2} (where all integers in {−2,… , 2} are
equally probable). The sampling of 𝑓𝜃,𝑣 thus depends on two parameters
𝑝 and 𝛼. In the tests, 𝑝 varies in [0.1, 0.9] and 𝛼 in [0.1, 0.5].

5.2. Baseline models

We briefly describe here the baseline models to which OROR is
compared. Throughout the subsection, we have 𝜃 = [ ]𝚍𝚎𝚐(𝑅) and
each alternative 𝐴 is described by an augmented binary vector ⃖⃖⃗𝐴𝜃 =
(𝐼𝐴(𝑆1),… , 𝐼𝐴(𝑆|𝜃|)), where 𝑆1,… , 𝑆

|𝜃| are the subsets of  of size less
than or equal to 𝚍𝚎𝚐(𝑅). The three baseline models (OR, SVM and GP)
we consider involve a reject option (either inherently or because we
introduce it). We describe them below.

Robust ordinal regression (ROR). This corresponds to the robust ordinal
regression model proposed by Greco et al. (2008). It consists in pre-
dicting a preference between two alternatives 𝐴,𝐵 if 𝑓𝜃,𝑣(𝐴) > 𝑓𝜃,𝑣(𝐵)
for each 𝑣 ∈ 𝑉 𝑅

𝜃 . Note that 𝜃 = [ ]𝚍𝚎𝚐(𝑅) implies that 𝑉 𝑅
𝜃 ≠ ∅. We use

Algorithm 1 to compute 𝚍𝚎𝚐(𝑅).

Support vector machine (SVM). This baseline model is inspired by the
approach proposed by Domshlak and Joachims (2005). An SVM ap-
proach is a supervised learning method for binary classification: each
example in the dataset is labeled by 0 or 1; an SVM is learned from
the dataset, from which labels are inferred for new examples.8 In our
setting, each couple (𝐴,𝐵) ∈𝑅 yields an example formalized by a |𝜃|-
dimensional vector ⃖⃖⃗𝐴𝜃 − ⃖⃖⃗𝐵𝜃 labeled by 1 as 𝐴 ≻ 𝐵. The model fitted
using the deterministic SVM is a hyperplane 𝐰∈R|𝜃| that separates all

7 www.kaggle.com/datasets/gauravduttakiit/imdb-recommendation-
ngine.

8 We use the SVC implementation from the scikit-learn python
ibrary (Pedregosa et al., 2011).

http://www.kaggle.com/datasets/gauravduttakiit/imdb-recommendation-engine
http://www.kaggle.com/datasets/gauravduttakiit/imdb-recommendation-engine
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vectors (⃖⃖⃗𝐴𝜃 − ⃖⃖⃗𝐵𝜃) from vectors (⃖⃖⃗𝐵𝜃 − ⃖⃖⃗𝐴𝜃). This hyperplane is obtained
y solving the following optimization problem:

in
𝐰

1
2
𝐰𝑇𝐰 (3)

subject to:

𝐰 ⋅ (⃖⃖⃗𝐴𝜃 − ⃖⃖⃗𝐵𝜃) ≥ 1, ∀(𝐴,𝐵)∈𝑅 (4)

ince the alternatives are projected using 𝜃 = [ ]𝚍𝚎𝚐(𝑅), the problem
s linearly separable; that is, there always exists a hyperplane that
atisfies the constraints of the optimization problem. To predict a
reference on a pair 𝐴,𝐵 of alternatives, we determine the side of
he hyperplane on which the vector ⃖⃖⃗𝐴𝜃 − ⃖⃖⃗𝐵𝜃 lies by evaluating the
VM score 𝐰 ⋅ (⃖⃖⃗𝐴𝜃 − ⃖⃖⃗𝐵𝜃). If this value is strictly positive (resp. strictly
egative), then we predict 𝐴 ≻ 𝐵 (resp. 𝐵 ≻ 𝐴). To introduce a reject

option, Platt scaling (Platt, 1998) is used to transform the SVM scores
into probabilities P(𝐴 ≻ 𝐵|𝑅). This probability is obtained through a
sigmoid function parameterized by parameters 𝛼, 𝛽 ∈ R2:

P𝛼,𝛽 (𝐴 ≻ 𝐵|𝑅) = 1
1 + exp(−𝛼[𝐰 ⋅ (⃖⃖⃗𝐴𝜃 − ⃖⃖⃗𝐵𝜃)] − 𝛽)

These parameters are fitted using maximum likelihood estimation:

̂ , 𝛽 = arg max
𝛼,𝛽∈R

∑

(𝐴,𝐵)∈𝑅
log

(

P𝛼,𝛽 (𝐴 ≻ 𝐵|𝑅)
)

The optimal parameters 𝛼̂ and 𝛽 are then used to compute the proba-
bility P(𝐴 ≻ 𝐵|𝑅) = P𝛼̂,𝛽 (𝐴 ≻ 𝐵|𝑅). We predict 𝐴 ≻ 𝐵 if P(𝐴 ≻ 𝐵|𝑅) ≥ 𝑡
for a given threshold 𝑡. The higher the threshold, the more rejections
are made.

Gaussian process (GP). We consider the preference learning method
proposed by Chu and Ghahramani (2005). Given a set 𝑅 of known
pairwise preferences, the GP approach to preference learning approx-
imates a probability distribution P(𝑓 |𝑅) on the space 𝑓 of utility
functions defined on .9 Formulated in our setting, the idea is to
assume that each utility value 𝑓 (𝐴) is a random variable following a
normal distribution. The joint distribution on , the so-called Gaussian
process, is a multivariate Gaussian, characterized by a mean function
and a covariance matrix. The approach is non-parametric, in the sense
that no analytical definition of 𝑓 is used, but only the idea that
alternatives 𝐴,𝐵 with similar vectors ⃖⃖⃗𝐴𝜃 and ⃖⃖⃗𝐵𝜃 should have similar
utilities 𝑓 (𝐴) and 𝑓 (𝐵). This is formalized by defining the covariance
matrix using a kernel function (Schölkopf & Smola, 2002), i.e., a
symmetric function 𝑘 ∶  ×  → R such that 𝑘(𝐴,𝐵) ≥ 0 reflects the
similarity between ⃖⃖⃗𝐴𝜃 and ⃖⃖⃗𝐵𝜃 . More precisely, we use a Mercer kernel
function 𝑘(𝐴,𝐵) = exp

(

−(1∕2)(⃖⃖⃗𝐴𝜃 − ⃖⃖⃗𝐵𝜃)𝑇 (⃖⃖⃗𝐴𝜃 − ⃖⃖⃗𝐵𝜃)
)

. Given a learning
set 𝑡𝑟𝑎𝑖𝑛 = {𝐴1,… , 𝐴𝑘}, the prior probability of the utility values
𝑓 (𝐴1),… , 𝑓 (𝐴𝑘) is a zero mean multivariate Gaussian:

P(𝑓 ) = 1

(2𝜋)
𝑘
2
|𝛴0|

1
2

exp
(

−1
2
𝑓𝑇𝛴−1

0 𝑓
)

where 𝑓 = [𝑓 (𝐴1), 𝑓 (𝐴2),… , 𝑓 (𝐴𝑘)]𝑇 and:

𝛴0 =
⎡

⎢

⎢

⎣

𝑘(𝐴1, 𝐴1) ⋯ 𝑘(𝐴1, 𝐴𝑘)
⋮ ⋱ ⋮

𝑘(𝐴𝑘, 𝐴1) ⋯ 𝑘(𝐴𝑘, 𝐴𝑘)

⎤

⎥

⎥

⎦

.

Note that the terms on the diagonal of the matrix are all equal to 1.
A probit likelihood function is used to update the prior from the set
𝑅 of pairwise preferences inferred from 𝑡𝑟𝑎𝑖𝑛. The posterior distribu-
tion P(𝑓 |𝑅) is approximated, using Laplace’s approximation, by a new
multivariate Gaussian distribution centered on 𝑓MAP, the maximum a
posterior estimate of 𝑓 (obtained by solving a convex programming
problem) (see Brochu, Cora, & De Freitas, 2010, Section 3.1).

9 We use the GaussianProcessClassifier implementation from the
cikit-learn python library (Pedregosa et al., 2011).
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Predicting a preference on a pair 𝐴,𝐵 of alternatives works as
follows. The following prior joint multivariate Gaussian distribution is
considered:
[

𝑓
𝑓𝐴𝐵

]

∼ 
([

0
0

]

,
[

𝛴0 𝐾𝐴𝐵
𝐾𝑇

𝐴𝐵 𝛴𝐴𝐵

])

where 𝑓𝐴𝐵 = [𝑓 (𝐴), 𝑓 (𝐵)]𝑇 and:

𝐾𝐴𝐵 =
[

𝑘(𝐴1, 𝐴) … 𝑘(𝐴𝑘, 𝐴)
𝑘(𝐴1, 𝐵) … 𝑘(𝐴𝑘, 𝐵)

]𝑇

and 𝛴𝐴𝐵 =
[

𝑘(𝐴,𝐴) 𝑘(𝐴,𝐵)
𝑘(𝐵,𝐴) 𝑘(𝐵,𝐵)

]

.

he predictive preference P(𝐴 ≻ 𝐵|𝑅) is evaluated from the predictive
istribution P(𝑓𝐴𝐵|𝑅), which is itself computed from the (approxi-
ated) posterior P(𝑓 |𝑅). It can be shown (see Chu & Ghahramani,
005) that P(𝐴 ≻ 𝐵|𝑅) corresponds to:

(𝐴 ≻ 𝐵|𝑅) = 𝛷
(𝜇∗

𝐴 − 𝜇∗
𝐵

𝜎∗

)

where 𝛷 is the cumulative distribution function of the standard normal
distribution, [𝜇∗

𝐴, 𝜇
∗
𝐵]

𝑇 = 𝐾𝑇
𝐴𝐵𝛴

−1
0 𝑓MAP and 𝜎∗ is computed from 𝛴0,

𝛴𝐴𝐵 , 𝐾𝐴𝐵 and the variance of the probit model (for the detailed
formula, see Chu & Ghahramani, 2005, Section 2.3). As for SVM, we
predict 𝐴 ≻ 𝐵 if P(𝐴≻𝐵|𝑅)≥ 𝑡 for a given threshold 𝑡. The higher the
hreshold, the more rejections are made.

.3. Experimental setup

In all experiments, the dataset is a set  of 𝑁 alternatives, described
y a set  of 𝑛 binary features, and an associated rating vector 𝑟
integer values). The rating 𝑟(𝐴) of each alternative 𝐴 ∈  is known.
o compare the performances of the different learning methods, we
xtract a subset 𝑡𝑟𝑎𝑖𝑛 of 𝑘 alternatives from , on which the models
re trained. The alternatives in 𝑡𝑟𝑎𝑖𝑛 are chosen uniformly at random.
e then randomly sample 100 pairs {𝐴,𝐵} in  such that 𝐴∉𝑡𝑟𝑎𝑖𝑛 or
∉𝑡𝑟𝑎𝑖𝑛 (possibly neither 𝐴 nor 𝐵 belongs to 𝑡𝑟𝑎𝑖𝑛), and we compare

he predicted pairwise preference with the actual preference: 𝐴≻𝐵 if
(𝐴)> 𝑟(𝐵), 𝐵≻𝐴 if 𝑟(𝐵)> 𝑟(𝐴), 𝐴∼𝐵 (incomparability) if 𝑟(𝐴) = 𝑟(𝐵).
he extraction of a subset 𝑡𝑟𝑎𝑖𝑛 from , the training of each model and
he (100) pairwise preference predictions are performed 10 times, and
he prediction performances are averaged over the 10 runs. We detail
elow the parameters that are used for the experiments on synthetic
ata and for the experiments on real-world data.

ynthetic data. The experiments on synthetic data were conducted with
 | = 8 binary features, which yields a set  of 2| | = 256 alternatives,
nd the set of parameters (𝛼, 𝑝) = (0.1, 0.9) for the generation of 𝑓𝜃,𝑣.
his set of parameters yields functions 𝑓𝜃,𝑣 that are usually up to 4-
dditive, with an average |𝜃| equal to 12. This setting is not really
estrictive as, given the number of strict pairwise preferences in 𝑅 that
re considered in our experiments (i.e., |𝑅| ≤

(

|𝑡𝑟𝑎𝑖𝑛|
2

)

), it is unlikely
hat 𝑅 cannot be represented by using a function 𝑓𝜃,𝑣 of degree up to 4.
he size of 𝑡𝑟𝑎𝑖𝑛 indeed varies between 4 and 18, from which between
𝑅| =

(4
2

)

= 6 and
(18
2

)

= 153 pairwise preferences can be inferred.

eal-world data. For each of the 50 users that have rated at least 100
ovies, a dataset  including between 45 and 100 alternatives is first

xtracted. A training set 𝑡𝑟𝑎𝑖𝑛 is then extracted from , with |𝑡𝑟𝑎𝑖𝑛|

orresponding to 90% of || (which is common practice in machine
earning, in particular for performing 10-fold cross-validation). The size
f 𝑡𝑟𝑎𝑖𝑛 thus varies from 5 to 10, from which between |𝑅| =

(5
2

)

= 10
nd

(10
2

)

= 45 pairwise preferences can be inferred.

.4. Evaluation metrics

We outline here the specific metrics that will be used to evaluate
he OROR approach and compare it to other methods. To define our
etrics we consider the 9 cases that can occur in the confusion matrix
efined below.
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Table 2
Confusion matrix.

Predicted/Real (B)etter (W)orse (I)ncomparable
(𝑟(𝐴)>𝑟(𝐵)) (𝑟(𝐵)>𝑟(𝐴)) (𝑟(𝐴) = 𝑟(𝐵))

(B)etter (𝐴≻𝐵) BB BW BI
(W)orse (𝐵≻𝐴) WB WW WI
(R)ejection RB RW RI

Confusion matrix. For a given pair of alternatives (𝐴,𝐵) ∈ 2 each
odel could either infer (predicted output) that 𝐴 is better than 𝐵
𝐴 ≻ 𝐵), or that 𝐴 is worse than 𝐵 (𝐵 ≻ 𝐴), or it could reject the instance
no prediction). Then, as outlined earlier, by comparing 𝑟(𝐴) and 𝑟(𝐵),
e can have (real outputs) that 𝐴 is indeed better than 𝐵 if 𝑟(𝐴)>𝑟(𝐵)
r that 𝐴 is worse than 𝐵 if 𝑟(𝐵)>𝑟(𝐴) or that 𝐴 and 𝐵 are incomparable
f 𝑟(𝐴) = 𝑟(𝐵). Our metrics are based on the confusion matrix defined
n Table 2, where the rows symbolizes the predicted outputs and the
olumns the real outputs.

Precision, recall and F-score are widely used metrics to assess a
binary) classification method with a positive class and a negative
lass. In the standard setting, they are only four components in the
onfusion matrix: True Positive (TP), True Negative (TN), False Positive
FP) and False Negative (FN). For instance, a true (resp. false) positive
orresponds to an instance that is predicted as positive and that is
ndeed positive (resp. is negative). Before detailing how we adapt the
etrics to our setting where the confusion matrix has nine components

BB, BW, etc.), we recall how the metrics are defined from TP, TN,
P and FN in the standard setting (see e.g., Goutte & Gaussier, 2005;
an Rijsbergen, 1979):

recision. The precision is defined as the ratio between the number of
rue positives among all the instances predicted as positive.

= 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

.

Recall. The recall is defined as the ratio between the number of true
ositives among all the positive instances.

= 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

.

Both metrics are complementary because the precision metric penal-
izes the models making unreliable positive predictions, while the recall
metric penalizes the models that avoid making positive predictions.

These classic metrics have been adapted to various contexts, where
TP, TN, FP and FN need to be redefined. This is, for instance, the
case when the classifier may predict a subset of classes (Del Coz, Díez,
& Bahamonde, 2009; Zaffalon, Corani, & Mauá, 2012). We adapt the
metrics in a similar, yet different, manner: semantically, rejecting a
pair 𝐴,𝐵, i.e., not predicting 𝐴 ≻ 𝐵 nor 𝐵 ≻ 𝐴, is indeed different
from predicting both 𝐴 ≻ 𝐵 and 𝐵 ≻ 𝐴. Other papers have defined
metrics to evaluate classifiers using reject options (Hendrickx et al.,
2024). However, these metrics require knowing which class would have
been predicted, if the sample were not rejected. Such information is not
available in our method, which leads us to define our own metrics.

To adapt these metrics to our confusion matrix, we now explicit how
we define TP, FP, TN and FN from the components of the matrix in
Table 2.10 In our setting, the positive instances correspond to pairs 𝐴,𝐵
such that 𝑟(𝐴)≠𝑟(𝐵) (i.e., there is a strict preference between 𝐴 and 𝐵),
and the negative instances to pairs 𝐴,𝐵 such that 𝑟(𝐴) = 𝑟(𝐵) (i.e., 𝐴
and 𝐵 are incomparable). A true positive corresponds then to making
a prediction when 𝑟(𝐴) ≠ 𝑟(𝐵). As these predictions may be correct or
wrong, we denote by CTP (resp. WTP) the number of correct (resp.

10 Another approach could be to consider 𝑊 , 𝐵, and 𝐼 as three different
classes and to resort to metrics for multi-class classification (Grandini, Bagli,
& Visani, 2020). However, this approach would not capture the symmetry
between cases 𝑊𝑊 and 𝐵𝐵, nor between 𝑊𝐵 and 𝐵𝑊 .
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wrong) true positives. A correct true positive corresponds to predicting
𝐴 ≻ 𝐵 (resp. 𝐵 ≻ 𝐴) when 𝑟(𝐴) > 𝑟(𝐵) (resp. 𝑟(𝐵) > 𝑟(𝐴)), while a
wrong true positive corresponds to predicting 𝐴≻𝐵 (resp. 𝐵≻𝐴) when
𝑟(𝐵)>𝑟(𝐴) (resp. 𝑟(𝐴)>𝑟(𝐵)). Conversely, a false positive corresponds to
redicting 𝐴≻𝐵 or 𝐵≻𝐴 while 𝑟(𝐴) = 𝑟(𝐵). A true negative corresponds
o rejecting a pair 𝐴,𝐵 when 𝑟(𝐴) = 𝑟(𝐵). Conversely, a false negative
orresponds to rejecting a pair 𝐴,𝐵 while 𝑟(𝐴) ≠ 𝑟(𝐵). This yields the
ollowing equations:

𝑇𝑃 = 𝐵𝐵 +𝑊𝑊 , 𝑊 𝑇𝑃 = 𝐵𝑊 +𝑊𝐵, 𝑇𝑁 = 𝑅𝐼,

𝑃 = 𝐵𝐼 +𝑊 𝐼, 𝐹𝑁 = 𝑅𝑊 + 𝑅𝐵.

Precision and recall are thus defined as follows in our setting:

= 𝐶𝑇𝑃
𝐶𝑇𝑃 +𝑊 𝑇𝑃 +𝐹𝑃

, 𝑅 = 𝐶𝑇𝑃
𝐶𝑇𝑃 +𝑊 𝑇𝑃 +𝐹𝑁

.

The precision indicates the proportion of correct comparisons among all
the preference predictions made by the model, while the recall indicates
the proportion of correct comparisons among all the comparable pairs.

F𝛽 -Score. F𝛽 -score is a metric that combines precision and recall to
provide a balanced evaluation of a model’s performance. It is obtained
by computing the weighted harmonic mean of precision and recall:

F𝛽 = (1 + 𝛽2) × P × R
(𝛽2 × P) + R

.

he 𝐹𝛽 -score, characterized by its tunable 𝛽 parameter, offers a flexible
approach to balancing precision and recall. A 𝛽 value of 1 indicates an
equal emphasis on both precision and recall, maintaining a harmonious
balance. When 𝛽 exceeds 1, the score leans towards prioritizing recall,
mphasizing the identification of all positive instances. Conversely, a
value less than 1 shifts the focus towards precision, stressing the

mportance of correctly identifying positive instances while minimizing
alse positives.

.4.1. Results on synthetic data
In Table 3, we give a comprehensive assessment of OROR and the

aseline models (using thresholds 𝑡 ∈ {0.5, 0.6, 0.8, 0.9} for SVM and
GP) across 300 couples (𝑓𝜃,𝑣,𝑡𝑟𝑎𝑖𝑛), where 𝑓𝜃,𝑣 is a randomly sampled
integer-valued 𝜃-additive function (as described in Section 5.1) and
𝑡𝑟𝑎𝑖𝑛 is a subset of 𝑘∈ {4,… , 18} alternatives (random subsets of ).
The functions 𝑓𝜃,𝑣 are sampled with parameters (𝑛, 𝑝, 𝛼) = (6, 0.2, 0.2).
The evaluation metrics include precision, recall, and 𝐹1-score (see
Section 5.4). From each couple (𝑓𝜃,𝑣,𝑡𝑟𝑎𝑖𝑛), we define a set 𝑅 of
strict pairwise preferences, by comparing each pair of alternatives in
𝑡𝑟𝑎𝑖𝑛. The size |𝑅| ranges from 6 to 153. The preference sets 𝑅 are
ategorized into four groups according to |𝑅|: [6, 40], [40, 80], [80, 120],
nd [120, 153].

In Fig. 2, the average 𝐹𝛽 -scores for each |𝑅| group, and a confidence
interval of 95% around them, are given for OROR and for the baseline
models, for various 𝛽 values. For the ROR and SVM models, a threshold
𝑡 = 0.6 is used in this figure because preliminary tests showed that this
value of 𝑡 achieves the best trade-off between precision and recall.

The information presented in Table 3 helps understand the impact
of robustness requirements on model performances. Obviously, for the
SVM and GP models, the recall increases and the precision decreases as
the threshold increases. The best compromise according to the 𝐹1-score
is to favor smaller thresholds for |𝑅|∈ [6, 80] and larger thresholds for
|𝑅| ∈ [80, 153]. Additionally, while ROR is always the most accurate
model, its low recall undermines its precision advantage, resulting in
lower 𝐹1-scores for |𝑅|∈[6, 80]. The OROR model strikes a good balance
between prediction quantity and quality for |𝑅|∈[80, 153], outperform-
ing the other models in terms of 𝐹1-score for |𝑅|≥80, and significantly
surpassing them for |𝑅| ≥ 120. This advantage for |𝑅| ≥ 80 is further
demonstrated in Fig. 2, where 𝐹𝛽 -scores for 𝛽 ∈ {0,… , 4}, quantifying
various trade-offs between accuracy and recall, are compared across
the different models. The OROR model often outperforms the baseline
models, especially the ROR model for 𝛽≤1.5.
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Table 3
Performance comparison between OROR and the baseline models on synthetic data for 𝑛 = 6, 𝑝 = 0.2 and 𝛼 = 0.2.

Model t SVM GP ROR OROR

0.5 0.6 0.8 0.9 0.5 0.6 0.8 0.9

𝑅 ∈ [6, 40]
P 0.57 0.62 0.64 0.72 0.59 0.63 0.72 0.81 0.84 0.67
R 0.69 0.57 0.51 0.31 0.63 0.56 0.29 0.13 0.16 0.47
𝐹1 0.62 0.59 0.57 0.46 0.61 0.59 0.45 0.33 0.37 0.55

𝑅 ∈ [40, 80]
P 0.71 0.79 0.81 0.85 0.70 0.76 0.88 0.94 0.95 0.83
R 0.87 0.80 0.75 0.63 0.84 0.77 0.51 0.32 0.39 0.74
𝐹1 0.78 0.78 0.76 0.71 0.77 0.76 0.63 0.50 0.55 0.76

𝑅 ∈ [80, 120]
P 0.74 0.82 0.84 0.87 0.74 0.82 0.93 0.97 1.00 0.85
R 0.92 0.85 0.82 0.75 0.90 0.89 0.62 0.44 0.57 0.90
𝐹1 0.81 0.82 0.82 0.78 0.81 0.85 0.73 0.60 0.71 0.86

𝑅 ∈ [120, 153]
P 0.80 0.88 0.90 0.88 0.83 0.87 0.92 1.00 1.00 0.96
R 0.96 0.93 0.87 0.83 0.96 0.92 0.69 0.50 0.79 0.98
𝐹1 0.86 0.89 0.87 0.85 0.89 0.89 0.76 0.64 0.87 0.96
Fig. 2. Evolution of the 𝐹𝛽 score w.r.t. 𝛽 on synthetic data.
Fig. 3. Running times of OROR (in seconds).
The curves in Fig. 3 give the average running times of OROR (in
seconds, averaged over 20 instances) according to the number 𝑛 of fea-
tures (for 300≤ |𝑅|≤400) and the number |𝑅| of known strict pairwise
preferences (for 𝑛 = 8). The orange curve gives the average running
time for one pairwise preference prediction; this is the most time-
consuming phase: note indeed that learning (𝚍𝚎𝚐(𝑅), 𝚌𝚊𝚛𝚍(𝑅), 𝚠𝚜(𝑅)) is
only performed once for each 𝑅. In contrast, 100 preference predictions
are made for each 𝑅 in our tests.

5.4.2. Results on real-world data
Fig. 4 gives the average 𝐹𝛽 -score (for 𝛽 ∈ [0, 4]) and a 95% con-

fidence interval for both OROR and the baseline models across 50
random users for different sizes |𝑅|, evaluated through 10-fold valida-
tion (Ojala & Garriga, 2010).

The first observation that can be made is that, for |𝑅|∈[60, 160], the
best 𝐹1-score is achieved by ROR, after using Algorithm 1 to compute
the degree 𝚍𝚎𝚐(𝑅) of the preference set 𝑅. Nevertheless, for |𝑅|∈[5, 60]
(i.e., when there are fewer preference examples), the OROR model
is the only one to outperform SVM and GP for all 𝛽 values. More
generally, the results seem to confirm that the OROR model outper-
forms overall SVM and GP. This makes the OROR model particularly
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valuable for addressing the cold-start challenges often encountered in
recommendation systems.

6. Conclusion

We have presented here a robust ordinal regression method for
subsets comparisons with interactions. The model we use is not re-
strictive, in the sense that any strict weak order on subsets can be
represented. The learning method achieves a trade-off between the
number of predicted preferences and the accuracy of the predictions,
by relying on a new ordinal dominance relation between subsets.

Several research directions are worth investigating, notably the
trade-off that should be made between the flexibility of the decision
model and the ability to detect mistakes. The model we propose here
is indeed very flexible and may allow any transitive preferences, which
makes it compatible with preference examples that might almost seem
irrational. While there may be good reasons for the DM to express such
preferences, it is also well-known that mistakes are often made when
providing preference statements. In such a case, the model might overfit
to accommodate these mistakes. A way to overcome this drawback is
to use a probabilistic approach for eliciting the parameter set, e.g., by
Bayesian updating (Gilbert, Ouaguenouni, Öztürk, & Spanjaard, 2023).
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Fig. 4. Evolution of the 𝐹𝛽 score w.r.t. 𝛽 on real-world data.
The realized trade-off (i.e., a trade-off favoring flexibility or robustness
to errors) is tuned by the choice of the prior on the parameter set.
Another research direction is the adaptation of the approach to an
active learning setting where one interactively determines a sequence
of queries to minimize the cognitive burden for the decision maker or
a better consideration of potential ‘‘errors’’ in the preferences used as
a learning set.
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Appendix. Properties of the 𝜽-ordinal dominance relation

Proposition 2. The following properties hold for ≻𝑅
𝜃 :

(i) ≻𝑅
𝜃 is asymmetric.

(ii) ≻𝑅
𝜃 may not be complete.

(iii) ≻𝑅
𝜃 is not necessarily negatively-transitive.

Proof. (𝑖) 𝐴 ≻𝑅
𝜃 𝐵 ⇒ ∀𝑣 ∈ 𝑉 𝑅

𝜃 , 𝑓𝜃,𝑣(𝐴) > 𝑓𝜃,𝑣(𝐴). Thus there is no value
function 𝑣′∈𝑉 𝑅

𝜃 such that 𝑓𝜃,𝑣′ (𝐴) < 𝑓𝜃,𝑣′ (𝐴).
(𝑖𝑖) As shown in Example 2, we may have 𝑣, 𝑣′ ∈ 𝑉 𝑅

𝜃 such that
𝑓𝜃,𝑣(𝐴) > 𝑓𝜃,𝑣(𝐵) and 𝑓𝜃,𝑣′ (𝐵) > 𝑓𝜃,𝑣′ (𝐴). We have then neither 𝐴 ≻𝑅

𝜃 𝐵
nor 𝐵 ≻𝑅

𝜃 𝐴, and thus ≻𝑅
𝜃 may not be complete.

(𝑖𝑖𝑖) Let  = {𝑎1, 𝑎2, 𝑎3}, 𝑅 = {({𝑎1}, {𝑎3})}, 𝜃 = {{𝑎1}, {𝑎2}, {𝑎3}}
and 𝑣, 𝑣′ two value functions defined as follows:

𝑣({𝑎1}) = 2, 𝑣({𝑎2}) = 3, 𝑣({𝑎3}) = 1,

𝑣′({𝑎1}) = 3, 𝑣′({𝑎2}) = 1, 𝑣′({𝑎3}) = 2.

We have that 𝑣, 𝑣′ ∈ 𝑉 𝑅
𝜃 as 𝑓𝜃,𝑣({𝑎1}) > 𝑓𝜃,𝑣({𝑎3}) and 𝑓𝜃,𝑣′ ({𝑎1}) >

𝑓𝜃,𝑣′ ({𝑎3}).
It follows from 𝑓𝜃,𝑣({𝑎2}) > 𝑓𝜃,𝑣({𝑎1}) that ¬({𝑎1} ≻𝑅

𝜃 {𝑎2}).
It follows from 𝑓𝜃,𝑣′ ({𝑎3}) > 𝑓𝜃,𝑣′ ({𝑎2}) that ¬({𝑎2} ≻𝑅

𝜃 {𝑎3}).
Yet {𝑎1} ≻𝑅

𝜃 {𝑎3} by definition of 𝑅. □

Proposition 3. Given a set 𝑅 of strict pairwise comparisons, and 𝜃∈𝛩𝑅, if
𝑅′⊆𝑅 then: (i) 𝜃∈𝛩𝑅′ ; (ii) 𝐴≻𝑅′ 𝐵⇒𝐴≻𝑅𝐵; (iii) 𝐴≻𝑅𝐵⇒¬(𝐵 ≻𝑅′ 𝐴).
𝜃 𝜃 𝜃 𝜃
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Proof. (𝑖) If all the preferences in 𝑅 can be represented by a 𝜃-additive
function, then so can the preferences in 𝑅′ as 𝑅′ is compounded of a
subset of the preferences in 𝑅.

(𝑖𝑖) If the preferences in 𝑅′ imply that 𝐴 should be necessarily
strictly preferred to 𝐵, then 𝑅 will imply the same conclusion as 𝛩𝑅⊆
𝛩𝑅′ (because 𝑅 contains all the preference constraints in 𝑅′, along with
additional constraints).

(𝑖𝑖𝑖) The contrapositive is proved as follows: 𝐵≻𝑅′

𝜃 𝐴⇒𝐵 ≻𝑅
𝜃 𝐴 by (𝑖𝑖),

and 𝐵 ≻𝑅
𝜃 𝐴⇒¬(𝐴 ≻𝑅

𝜃 𝐵) because strict preferences are asymmetric. □

Proposition 4. Let 𝜃, 𝜃′∈𝛩𝑅. If 𝜃′⊆𝜃, then the following assertions hold:
(i) 𝐴≻𝑅

𝜃 𝐵⇒𝐴≻𝑅
𝜃′ 𝐵; (ii) 𝐴∼𝑅

𝜃′ 𝐵⇒𝐴∼𝑅
𝜃 𝐵; (iii) 𝐴≻𝑅

𝜃′ 𝐵⇒¬(𝐵≻𝑅
𝜃 𝐴).

Proof. (𝑖) is true because if 𝑓𝜃,𝑣(𝐴) > 𝑓𝜃,𝑣(𝐵) for all 𝑣 ∈ 𝑉 𝑅
𝜃 , then we

should also have 𝑓𝜃′ ,𝑣(𝐴) > 𝑓𝜃′ ,𝑣(𝐵) for all 𝑣 ∈ 𝑉 𝜃′
𝑅 . Indeed, each element

of 𝑉 𝑅
𝜃′ can be seen as a value function in 𝑉 𝑅

𝜃 in which the parameters
𝑣𝑆 are set to 0 for 𝑆 ∈ 𝜃 ⧵ 𝜃′.

(𝑖𝑖) follows by a similar argument as for (𝑖).
(𝑖𝑖𝑖) The contrapositive is proved as follows: 𝐵≻𝑅

𝜃 𝐴⇒𝐵 ≻𝑅
𝜃′ 𝐴 by (𝑖),

and 𝐵 ≻𝑅
𝜃′ 𝐴⇒¬(𝐴 ≻𝑅

𝜃′ 𝐵) because strict preferences are asymmetric. □

References

Adam, L., & Destercke, S. (2021). Possibilistic preference elicitation by minimax regret.
In Proceedings of the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence,
UAI 2021 (pp. 718–727).

Andreopoulou, Z., Koliouska, C., & Zopounidis, C. (2017). Multicriteria and Clustering:
Classification Techniques in Agrifood and Environment. In Cooperative Management.
Springer.

Angilella, S., Corrente, S., & Greco, S. (2015). Stochastic Multiobjective Acceptability
Analysis for the Choquet integral preference model and the scale construction
problem. European Journal of Operational Research, 240(1), 172–182.

Angilella, S., Corrente, S., Greco, S., & Słowiński, R. (2016). Robust Ordinal Regression
and Stochastic Multiobjective Acceptability Analysis in Multiple Criteria Hierarchy
Process for the Choquet integral preference model. Omega, 63, 154–169.

Bartee, E. M. (1971). Problem solving with ordinal measurement. Management Science,
17(10), B–622.

Benabbou, N., Leroy, C., Lust, T., & Perny, P. (2021). Combining preference elicitation
with local search and greedy search for matroid optimization. In Proceedings of the
Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021 (pp. 12233–12240).
AAAI Press.

Bigot, D., Fargier, H., Mengin, J., & Zanuttini, B. (2012). Using and learning GAI-
decompositions for representing ordinal rankings. In ECAI’2012 Workshop on
Preference Learning (PL 2012) (pp. 5–10).

Blumer, A., Ehrenfeucht, A., Haussler, D., & Warmuth, M. K. (1987). Occam’s razor.
Information Processing Letters, 24(6), 377–380.

Bourdache, N., Perny, P., & Spanjaard, O. (2019). Incremental elicitation of rank-
dependent aggregation functions based on Bayesian linear regression. In Proceedings
of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI 2019
(pp. 2023–2029).

Boutilier, C., Patrascu, R., Poupart, P., & Schuurmans, D. (2006). Constraint-based
optimization and utility elicitation using the minimax decision criterion. Artificial
Intelligence, 170(8), 686–713.

Bresson, R., Cohen, J., Hüllermeier, E., Labreuche, C., & Sebag, M. (2020). Learning
2-additive Hierarchical Choquet Integrals with non-monotonic utilities. In DA2PL
2020.

Brochu, E., Cora, V. M., & De Freitas, N. (2010). A tutorial on Bayesian optimization of
expensive cost functions, with application to active user modeling and hierarchical
reinforcement learning. arXiv preprint arXiv:1012.2599.

http://refhub.elsevier.com/S0377-2217(24)00562-9/sb1
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb1
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb1
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb1
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb1
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb2
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb2
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb2
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb2
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb2
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb3
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb3
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb3
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb3
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb3
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb4
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb4
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb4
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb4
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb4
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb5
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb5
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb5
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb6
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb6
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb6
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb6
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb6
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb6
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb6
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb7
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb7
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb7
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb7
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb7
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb8
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb8
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb8
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb9
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb9
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb9
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb9
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb9
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb9
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb9
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb10
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb10
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb10
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb10
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb10
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb11
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb11
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb11
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb11
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb11
http://arxiv.org/abs/1012.2599


H. Gilbert et al.

H

H

K

K

K

K

L

L

M

O

P

P

P

S

S

T

V
W

W

Z

Z

European Journal of Operational Research 320 (2025) 146–159 
Charnetski, J. R., & Soland, R. M. (1978). Multiple-attribute decision making with
partial information: the comparative hypervolume criterion. Naval Research Logistics
Quarterly, 25(2), 279–288.

Chu, W., & Ghahramani, Z. (2005). Preference learning with Gaussian processes. In
Proceedings of the Twenty-Second International Conference on Machine Learning, ICML
2005 (pp. 137–144).

Ciomek, K., Kadziński, M., & Tervonen, T. (2017). Heuristics for prioritizing pair-wise
elicitation questions with additive multi-attribute value models. Omega, 71, 27–45.

Corrente, S., Greco, S., Kadziński, M., & Słowiński, R. (2013). Robust ordinal regression
in preference learning and ranking. Machine Learning, 93(2), 381–422.

Corrente, S., Greco, S., Kadziński, M., & Słowiński, R. (2014). Robust ordinal regression.
Wiley Encyclopedia of Operations Research and Management Science, 1–10.

Corrente, S., & Tasiou, M. (2023). A robust TOPSIS method for decision making prob-
lems with hierarchical and non-monotonic criteria. Expert Systems with Applications,
214, Article 119045.

Del Coz, J. J., Díez, J., & Bahamonde, A. (2009). Learning nondeterministic classifiers.
Journal of Machine Learning Research, 10(10).

Dias, L. C., Morton, A., & Quigley, J. (Eds.), (2018). Elicitation : The science and art of
structuring judgement. Springer.

Domshlak, C., & Joachims, T. (2005). Unstructuring user preferences: efficient non-
parametric utility revelation. In Proceedings of the Twenty-First Conference on
Uncertainty in Artificial Intelligence, UAI 2005 (pp. 169–177).

Dragone, P., Teso, S., & Passerini, A. (2017). Constructive preference elicitation over
hybrid combinatorial spaces. In Proceedings of the Thirty-Second AAAI Conference on
Artificial Intelligence, AAAI 2018 (pp. 2943–2950).

Ehrgott, M. (2005). Multicriteria optimization. Springer.
Fishburn, P. C. (1970). Utility theory for decision making. Wiley.
Fishburn, P. C., & Lavalle, I. H. (1996). Binary interactions and subset choice. European

Journal of Operational Research, 92, 182–192.
Fürnkranz, J., & Hüllermeier, E. (2003). Pairwise preference learning and ranking. In

Proceedings of the Fourteenth European Conference on Machine Learning, ECML 2003
(pp. 145–156). Springer.

Ghaderi, M., Ruiz, F., & Agell, N. (2017). A linear programming approach for learn-
ing non-monotonic additive value functions in multiple criteria decision aiding.
European Journal of Operational Research, 259(3), 1073–1084.

Ghosh, S., & Kalagnanam, J. (2003). Polyhedral sampling for multiattribute preference
elicitation. In Proceedings of the Fourth ACM conference on Electronic Commerce, EC
2003 (pp. 256–257).

Gilbert, H., Ouaguenouni, M., Öztürk, M., & Spanjaard, O. (2023). A hybrid approach
to preference learning with interaction terms. In Proceedings of the Twenty-Sixth
European Conference on Artificial Intelligence ECAI 2023 (pp. 835–842). IOS Press.

Gonzales, C., & Perny, P. (2005). GAI networks for decision making under certainty. In
Proceedings of the First Multidisciplinary Workshop on Advances in Preference Handling,
M-PREF 2005 (pp. 100–105).

Goutte, C., & Gaussier, E. (2005). A probabilistic interpretation of precision, recall and
F-score, with implication for evaluation. In Advances in information retrieval (pp.
345–359). Springer.

Grabisch, M. (1996). The application of fuzzy integrals in multicriteria decision making.
European Journal of Operational Research, 89(3), 445–456.

Grabisch, M., Kojadinovic, I., & Meyer, P. (2008). A review of methods for capacity
identification in Choquet integral based multi-attribute utility theory: Applications
of the Kappalab R package. European Journal of Operational Research, 186(2),
766–785.

Grabisch, M., Marichal, J.-L., & Roubens, M. (2000). Equivalent representations of set
functions. Mathematics of Operations Research, 25(2), 157–178.

Grandini, M., Bagli, E., & Visani, G. (2020). Metrics for multi-class classification: an
overview. arXiv preprint arXiv:2008.05756.

Greco, S., Mousseau, V., & Słowiński, R. (2008). Ordinal regression revisited: multiple
criteria ranking using a set of additive value functions. European Journal of
Operational Research, 191(2), 416–436.
159 
Guo, S., & Sanner, S. (2010). Multiattribute Bayesian preference elicitation with
pairwise comparison queries. In Proceedings of the Seventh International Symposium
on Neural Networks, ISNN 2010 (pp. 396–403). Springer.

endrickx, K., Perini, L., Van der Plas, D., Meert, W., & Davis, J. (2024). Machine
learning with a reject option: A survey. Machine Learning, 113(5), 3073–3110.

erin, M., Perny, P., & Sokolovska, N. (2023). Learning preference models with
sparse interactions of criteria. In Proceedings of the Thirty-Second International Joint
Conference on Artificial Intelligence, IJCAI 2023 (pp. 3786–3794).

Iyengar, V. S., Lee, J., & Campbell, M. (2001). Evaluating multiple attribute items using
queries. In Proceedings of the Third ACM Conference on Electronic Commerce, EC 2001
(pp. 144–153).

Jacquet-Lagrèze, E., & Siskos, J. (1982). Assessing a set of additive utility functions
for multicriteria decision-making, the UTA method. European Journal of Operational
Research, 10(2), 151–164.

adziński, M. (2022). Robust Ordinal Regression for Multiple Criteria Decision Aiding.
In Intelligent decision support systems: combining operations research and artificial
intelligence – Essays in honor of Roman Słowiński (pp. 185–205). Springer.

ompa, B., Snoek, J., & Beam, A. L. (2021). Second opinion needed: communicating
uncertainty in medical machine learning. NPJ Digital Medicine, 4(1).

ozlov, M. K., Tarasov, S. P., & Khachiyan, L. G. (1979). Polynomial solvability
of convex quadratic programming. Vol. 248, In Doklady akademii nauk (5), (pp.
1049–1051). Russian Academy of Sciences.

ozlov, M. K., Tarasov, S. P., & Khachiyan, L. G. (1980). The polynomial solvability of
convex quadratic programming. USSR Computational Mathematics and Mathematical
Physics, 20(5), 223–228.

ahdelma, R., Hokkanen, J., & Salminen, P. (1998). SMAA–Stochastic Multiobjective
Acceptability Analysis. European Journal of Operational Research, 106(1), 137–143.

ahdelma, R., & Salminen, P. (2001). SMAA-2: Stochastic multicriteria acceptability
analysis for group decision making. Operations Research, 49(3), 444–454.

ousseau, V., Figueira, J., Dias, L., da Silva, C. G., & Clımaco, J. (2003). Resolving
inconsistencies among constraints on the parameters of an MCDA model. European
Journal of Operational Research, 147(1), 72–93.

jala, M., & Garriga, G. C. (2010). Permutation tests for studying classifier performance.
Journal of Machine Learning Research, 11(6).

apadimitriou, C. H. (1981). On the complexity of integer programming. Journal of the
ACM, 28(4), 765–768.

edregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et
al. (2011). Scikit-learn: Machine learning in python. Journal of Machine Learning
Research, 12, 2825–2830.

latt, J. (1998). Sequential Minimal Optimization: A Fast Algorithm for Training
Support Vector Machines. (MSR-TR-98-14), Microsoft.

auré, D., & Vielma, J. P. (2019). Ellipsoidal methods for adaptive choice-based conjoint
analysis. Operations Research, 67(2), 315–338.

chölkopf, B., & Smola, A. J. (2002). Learning with kernels: support vector machines,
regularization, optimization, and beyond. MIT Press.

ehrani, A. F., Strickert, M., & Hüllermeier, E. (2014). The Choquet kernel for monotone
data. In Proceedings of the Twenty-Second European Symposium on Artificial Neural
Networks, ESANN 2014 (pp. 337–342).

an Rijsbergen, C. J. (1979). Information retrieval (2nd ed.). London: Butterworths.
ang, T., & Boutilier, C. (2003). Incremental utility elicitation with the minimax regret

decision criterion. In Proceedings of the Eighteenth International Joint Conference on
Artificial Intelligence, IJCAI 2003 (pp. 309–318).

hite, C. C., Sage, A. P., & Dozono, S. (1984). A model of multiattribute decisionmaking
and trade-off weight determination under uncertainty. IEEE Transactions on Systems,
Man and Cybernetics, (2), 223–229.

affalon, M., Corani, G., & Mauá, D. (2012). Evaluating credal classifiers by utility-
discounted predictive accuracy. International Journal of Approximate Reasoning,
53(8), 1282–1301.

hang, Z., Xu, Y., Yang, J., Li, X., & Zhang, D. (2015). A survey of sparse representation:
algorithms and applications. IEEE Access, 3, 490–530.

http://refhub.elsevier.com/S0377-2217(24)00562-9/sb13
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb13
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb13
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb13
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb13
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb14
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb14
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb14
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb14
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb14
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb15
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb15
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb15
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb16
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb16
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb16
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb17
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb17
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb17
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb18
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb18
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb18
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb18
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb18
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb19
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb19
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb19
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb20
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb20
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb20
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb21
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb21
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb21
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb21
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb21
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb22
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb22
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb22
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb22
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb22
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb23
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb24
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb25
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb25
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb25
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb26
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb26
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb26
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb26
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb26
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb27
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb27
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb27
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb27
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb27
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb28
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb28
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb28
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb28
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb28
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb29
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb29
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb29
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb29
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb29
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb30
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb30
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb30
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb30
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb30
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb31
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb31
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb31
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb31
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb31
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb32
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb32
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb32
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb33
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb33
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb33
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb33
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb33
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb33
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb33
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb34
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb34
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb34
http://arxiv.org/abs/2008.05756
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb36
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb36
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb36
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb36
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb36
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb37
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb37
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb37
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb37
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb37
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb38
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb38
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb38
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb39
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb39
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb39
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb39
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb39
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb40
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb40
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb40
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb40
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb40
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb41
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb41
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb41
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb41
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb41
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb42
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb42
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb42
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb42
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb42
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb43
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb43
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb43
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb44
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb44
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb44
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb44
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb44
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb45
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb45
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb45
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb45
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb45
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb46
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb46
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb46
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb47
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb47
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb47
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb48
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb48
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb48
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb48
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb48
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb49
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb49
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb49
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb50
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb50
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb50
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb51
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb51
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb51
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb51
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb51
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb52
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb52
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb52
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb53
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb53
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb53
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb54
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb54
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb54
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb55
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb55
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb55
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb55
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb55
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb56
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb57
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb57
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb57
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb57
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb57
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb58
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb58
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb58
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb58
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb58
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb59
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb59
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb59
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb59
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb59
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb60
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb60
http://refhub.elsevier.com/S0377-2217(24)00562-9/sb60

	Robust ordinal regression for subsets comparisons with interactions
	Introduction
	Related work
	Incremental preference elicitation
	Incorrect preference statements and inconsistencies
	Beyond the additive utility model

	From the θ-additive model to ⊑-ordinal dominance
	The θ-additive model
	The θ-ordinal dominance relation
	The ⊑-ordinal dominance relation
	Different definitions for ⊑

	Preference prediction by using ⊑-ordinal dominance
	Determining whether A ≻Rθ B and whether A ≻R⊑ B
	Computational complexity of MIN-θ-ξ for ξ∈{card,ws,lex,deg}
	Computing (deg(θ), card(θ),ws(θ)) for θ∈ΘR⊑lex
	Determining whether A≻R⊑lexB

	Numerical tests
	The synthetic and real-world datasets
	Baseline models
	Experimental setup
	Evaluation metrics
	Results on synthetic data
	Results on real-world data


	Conclusion
	CRediT authorship contribution statement
	Acknowledgments
	Appendix. Properties of the θ-ordinal dominance relation
	References


