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Particle dynamics simulations are used to determine the shear-induced microstructure and

rheology of jammed suspensions of soft particles. These suspensions, known as soft parti-

cle glasses (SPGs), have an amorphous structure at rest but transform into ordered phases

in strong shear flow when the particle size distribution is relatively monodisperse. Here, a

series of bidisperse SPGs with different particle radii and number density ratios are consid-

ered, and their shear-induced phase diagrams are correlated with the macroscopic rheology

at different shear rates and volume fractions. These shear-induced phase diagrams reveal

that a combination of these parameters can lead to the emergence of various microstruc-

tures such as amorphous, layered, crystals, and in some cases, coexistence of amorphous

and ordered phases. The evolution of the shear stress is correlated with the change in

the microstructure and is a shear-activated process. Stress shows pseudo-steady behavior

during an induction period before the final microstructural change leading to the forma-

tion of ordered structures. The outcomes provide a promising method to control the phase

behavior of soft suspensions and build new self-assembled microstructures.
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Shear-induced phase behavior of soft colloids

I. Introduction

Microstructure and macroscopic shear rheology of yield stress fluids, such as soft particle glasses

(SPGs),1,2 are determined by the volume fraction of particles φ , shear rate γ̇ , and particle size

distribution.3–8 SPGs, which are in the form of concentrated emulsions, microgels, star polymers

with many arms,2,9 consist of deformable particles that are jammed at volume fractions above the

random close packing of equivalent hard-sphere suspensions (i.e., φrcp = 0.64).10 In these sus-

pensions, every particle is trapped in a cage formed by the first neighboring particles in contact.

At contacts, particles exert elastic and lubrication forces onto one another. Unlike hard-sphere

glasses, which solely encounter forces arising from excluded volume interactions, SPGs undergo

compression through a bulk osmotic force and interact through an elastic repulsive potential.5 De-

pending on the particle size distribution, they can form ordered structures in shear flow at volume

fractions larger than φrcp.6,7,11,12 SPGs behave like weak elastic solids at rest but flow macroscopi-

cally and exhibit shear thinning behavior under the application of stresses larger than a stress value

known as the dynamic yield stress σy.1,13 The shear rate dependence of the shear stress is often

expressed by the Herschel-Bulkley (HB) equation, σ = σy + kγ̇n, where n is the exponent close to

0.50, k is the consistency parameter.1,8,14

It has been recognized that the distribution of particle sizes significantly influences the crystal-

lization behavior of hard spheres.15–18 Prior works have investigated the impact of polydispersity

on the rheological properties and phase behavior of hard spheres.19 In a quiescent state, suspen-

sions with particle size distribution skewed towards smaller sizes transform into small crystallites

that are not aligned or ordered in a consistent pattern across the material, resembling a smectic-

like phase.20,21 Suspensions with symmetrical and skewed size distribution towards large particles

exhibit qualitatively distinct growth behaviors.22 This observation implies a growth mechanism in

which crystallization coincides with a local fractionation process near the crystal-fluid interface.

The crystallization process in colloidal hard spheres proceeds through two distinct stages: precur-

sor and induction stages.23,24 These stages are marked by the growth of clusters with long-lived

nonequilibrium structures, followed by a delayed nucleation process, respectively. The limited

growth due to polydispersity is responsible for the induction stage and directly contributes to

the delayed nucleation. Furthermore, experimental observations, using poly-methylmethacrylate,

have shown that colloidal crystals of type AB2 and AB13 in binary hard sphere suspensions are

formed, and the stability of these crystals rely on the size ratios.17,18
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Shear-induced phase behavior of soft colloids

In the case of hard spheres, the application of either oscillatory or steady shear influences

the microstructure and rheology of colloidal suspensions, particularly comprised of sterically

stabilized colloidal particles.25–28 These hard particles can form shear-induced microstructures.

Shear-induced ordering has been observed previously in volume fractions below the random close-

packing fractions for hard spheres . In general, the phase behavior of Brownian soft particles

below random-close packing at rest is similar to that seen in the hard sphere since the dominant

interaction is based on thermal motion.29–36 Both the structural and rheological characteristics

of dense colloidal suspensions are influenced by factors such as the volume fraction of colloids,

size distribution, inter-colloid interactions and the shearing conditions. Generally, in oscillatory

shear flow, suspensions of hard spheres show different arrangements. FCC ordering is observed

at low strain and frequency amplitudes, while hexagonally close-packed layers form at higher

amplitudes.6 Oscillatory shear flow can induce order-to-disorder transition.37 These amorphous to

crystalline transitions include crystalline formations such as face-centered cubic (FCC) structures,

layers stacked in hexagonal patterns (HCP) between φ = 0.545 and 0.58, as well as string, and

liquid-like arrangements.38,39

Compared to hard spheres, the process of quiescent crystallization in dense suspensions of

soft colloids is generally more complex, primarily due to particle shape fluctuations and volume

adjustments.21,40 The softness and spatial distribution of particles within the microstructure deter-

mine the macroscopic characteristics of these colloidal suspensions.2,41,42 In quiescent conditions,

a variety of structures can emerge, and their nature is based on the interplay of Brownian, repulsive,

and attractive forces.6,43 In the case of relatively monodisperse microgels, the initiation of fluid-

crystal coexistence takes place at the identical volume fraction of 0.494, similar to hard spheres.

Conversely, polydisperse microgels do not undergo crystallization but instead form an entropic

glassy state, progressing further into a jammed glassy state.44 When experimentally investigating

poly(N-isopropylacrylamide) microgels, Scotti et al. observed a shift in the fluid-crystal transition

to higher concentrations depending on the the polydispersity of the suspension.45 It is important

to note that even minor changes in the particles’ surface roughness can significantly affect their

interactions and phase behavior.46 Thus, the phase behavior of concentrated suspensions depends

on the volume fraction and the interaction at contact.

Similar to hard spheres, soft particles undergo microstructural changes when subjected to os-

cillatory or steady shear flows in experiments, and the response of spherical jammed suspensions

undergoing shear deformation is characterized by out-of-equilibrium phase diagrams.47–49 These
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Shear-induced phase behavior of soft colloids

diagrams illustrate that above the freezing point, amorphous suspensions can transition into FCC

structures, sliding layer configurations, or mixtures depending on the applied strain amplitude and

frequency.29 In oil-in-water emulsions subjected to large-amplitude shear oscillations, light scat-

tering studies have revealed the induction of sliding hexagonal layers in the microstructure. The

specific ordering observed is contingent upon the volume fraction and shear history of the sample,

particularly near or above the jamming volume fraction.50 Ultrasoft colloidal star polymers with

a volume fraction close to the glass transition line exhibit a crystal-to-crystal transition under os-

cillatory shear flow. For instance, 1,4-polybutadiene stars undergo a direct transformation from

a BCC-dominated phase to an HCP-like microstructure within an intermediate range of Péclet

numbers.51

Similarly in simulations, utilization of either oscillatory or steady shear flows alters both the

microscopic arrangement of colloidal soft suspensions and their rheological response.52 In this

regard, Khabaz et al.6,7 studied the rheology of polydisperse soft particles with varying degrees of

polydispersity undergoing both steady and oscillatory shear flows. The impact of steady shear and

polydispersity on the rheological properties and microstructure of SPGs was explored. Jammed

suspensions of soft particles, irrespective of their volume fractions, can undergo shear-induced or-

dering. The microstructure transforms from an amorphous phase to a layered structure aligned

parallel to the flow-vorticity plane. The influence of particle geometry on these transforma-

tions, particularly for elongated particles, has been explored by Bearon and Durham,53 who found

that elongation can significantly enhance directional alignment and migration under shear. In-

terestingly, similar behaviors have been observed in studies of confined micro-swimmers, where

anisotropic diffusion and external shear fields significantly alter migration patterns and orientation

dynamics.54 This structural rearrangement is associated with a decrease in shear stress and the

elastic energy of the suspensions. Furthermore, it was demonstrated that the disorder-to-layered

transformation is a shear-activated process. There is an initial induction period before the forma-

tion of the layered structure in which stress shows a pseudo-steady state behavior. This duration of

this induction period follows a universal exponential decay as a function of shear rate with varying

volume fractions. The same behavior was reported in large amplitude oscillatory shear flow when

the maximum shear rate is large enough.7

As discussed, polydisperse concentrated suspensions show shear-induced phase transition in

experiments and simulations.15,45,55,56 On the other hand, bidispersity of particle size distribution

has a notable impact on suspension rheology.16,57,58 For example, a dense bidisperse suspension of
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Shear-induced phase behavior of soft colloids

soft spheres exhibits a relative viscosity lower than that of a monodisperse hard-sphere suspension

at the same hard particle volume fraction.59 Previous work has verified the decrease in relative

viscosity by experimentally studying bidisperse suspensions using non-Brownian glass beads in

glycerin.60 This difference in relative viscosity can be attributed to the capacity to attain a larger

maximum packing fraction in soft colloidal suspensions.61 In relation to our current study, Mal-

branche et al.58 investigated the rheology of shear thickening bidisperse suspensions, and ordering

was observed when the ratio of volume fraction of the large particles to total volume fraction

was greater than 0.85. Inspired by this work, we investigate the rheology and microstructure of

jammed suspensions formed by bidisperse soft particles. Specifically, our objectives are: (1) to

understand the effect of the ratio of particle radii and their number density ratio on microstruc-

ture when bidisperse soft particles are considered, (2) to quantify the quality of the shear-induced

phases using proper structural parameters such as in-plane pair distribution functions and bond

order parameters and (3) to provide phase diagrams of bidisperse suspensions in shear flow. To

pursue these objectives, we apply a three-dimensional (3D) particle simulations,6 and explore the

impact of particle size distribution, shear rate, and volume fraction on the evolution of microstruc-

ture in steady shear flow. Our results show that aside from volume fraction and shear rate, two

additional parameters, which are the number density ratio of the large particles to small particles

and the ratio of their radii, are needed to determine the shear-induced phase behavior. Tuning these

parameters leads to the formation of shear-induced layered, amorphous, crystals and, in some rare

cases, the coexistence between amorphous and ordered structures.

II. Simulation details and method

A. Suspensions specifications

10,000 particles with a bidisperse size distribution are suspended in a Newtonian liquid with a

viscosity ηs in a cubic periodic box, as seen in Fig. 1(A). Two parameters are used to control

the dispersity of the suspension, namely r and X . r represents the radius ratio of large to small

particles, i.e., r = Rb/Rs, and X represents the number density ratio of each population, i.e., X =

nb/ns. The volume fraction and the total number of particles are fixed; thus, the box length for

a given volume fraction can vary by adjusting r and X values. Overall, three volume fractions,

φ = 0.70,0.80, and 0.90, are studied in these simulations.

B. Force law and shear flow protocol

Following previous works on this topic,1,6 we utilize the methodology for simulating SPGs in

shear flow with a subtle difference in the force law where the normal contact elastic force (fe
αβ )
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Shear-induced phase behavior of soft colloids

FIG. 1. (A) Configuration of a bidisperse suspension with a volume fraction of φ = 0.80 with X = 0.10

and r = 1.60 subjected to shear flow with an applied shear rate of γ̇ηs/E∗ in a periodic simulation box. The

velocity (u), gradient (∇), and vorticity (ω) directions are indicated. (B) Schematic showing the pair-wise

interaction between particles α and β .

between particles are governed by the Hertz law according to:

fe
αβ =

4

3
E∗ε1.5

αβ R2
cn⊥, (1)

where E∗ is the contact modulus of the individual particle (E∗ = E/2(1 − ν2), with E is the

Young’s modulus and ν is the Poisson ratio), εαβ is the dimensionless overlap parameter which

is defined as εαβ = (Rα +Rβ − rαβ )/Rc, where Rc = RαRβ/(Rα +Rβ ) is the effective radius of

the two particles in contact and rαβ is the distance between particles α and β . n⊥ is the normal

vector to the facets at contact as shown in Fig. 1(B). Two particles in contact also experience

elastohydrodynamic (fEHD
αβ ) force according to:

fEHD
αβ =−(ηsuαβ∥E∗R3

c)εαβ n∥, (2)

where uαβ∥ is the magnitude of the relative velocity of two particles in the direction parallel to

the facets in contact, i.e., n∥. The vector n∥ lies in the tangential plane at the contact point.

Its specific direction within this plane is critical for modeling the sliding interactions that occur

when particles move relative to each other under shear, and usually, this alignment is parallel to

the shear direction, ensuring that the EHD force represents the shear-driven relative velocities of

the particles along the contact plane. This particular orientation is necessary for calculating the

component of relative velocity that is tangential to the point of contact, urel
n⊥

, which influences the

shear interactions between the particles. It is calculated by urel
n⊥

= (uβ −uα) ·n⊥n⊥ = urel ·n⊥n⊥,

where urel
n⊥

is the component of relative velocity along n⊥. The relative tangential velocity is given

by urel
n∥

= u∥− (RαΩα +RβΩβ )×n⊥, where u∥ = ur −ur ·n⊥n⊥. In our suspensions, since the
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Shear-induced phase behavior of soft colloids

volume fraction is high, the rotational motion of our particles is limited, therefore, urel
n∥

= u∥. The

direction of the applied force is n∥ =
urel

n∥

||urel
n∥
||

. Considering these two forces and using the scales of

the particle size R and time ηs/E∗, the dimensionless equation of motion for particle α in shear

flow becomes:

dx̃α

dt̃
= u∞

α +
M

R̃α
·

[

4

3

(

γ̇ηs

E∗

)−1

∑
β

ε1.5
αβ R2

cn⊥−

(

γ̇ηs

E∗

)− 1
2

∑
β

(

uαβ ,∥Rc
3
)

1
2 εαβ n∥

]

, (3)

where M =
f (φ)
6π I (I is the identity tensor) is the mobility coefficient and is set to 0.01.5 u∞

α =

γ̇ηs

E∗ yαex describes the shear advection velocity of a particle α , ex is the unit vector in the flow

direction. Note that the dimensionless shear rate of γ̇ηs/E∗ which emerges from this equation

is used to impose the shear rate on the suspensions by applying the Lees–Edwards boundary

conditions.62 The stress tensor is then computed as a function of time using the Kirkwood for-

mula, i.e., σ = 1
L3 ΣαΣβ fαβ (xα −xβ ), where fαβ is the total force exerted on particle α by particle

β , and L is the length of the cubic box.63 In all simulations, the suspensions are subjected to shear

flow for at least 200 strains.

III. Results and discussion

A. Shear rheology

The effects of particle radii ratio, r, and number density ratio, X , on shear stress, σ/E∗, and elastic

energy, UR3/E∗, per unit volume of suspensions as functions of strain, γ , at nondimensional shear

rates of γ̇ηs/E∗ = 10−4 (high) and γ̇ηs/E∗ = 10−9 (low) are shown in Fig. 2. Starting from a

disordered state, at a volume fraction of φ = 0.80, the shear stress of suspensions with r = 1.65,

X = 0.50 and r = 1.65, X = 0.10 shows an initial linear increase and an overshoot at γp
∼= 0.4

(Fig. 2(A)). This overshoot strain is consistent with the range obtained for SPGs in previous

simulations, γp
∼= 0.1−0.4,6 and experiments.64 When r = 1.65, X = 0.10, the shear stress attains

a steady state value after the overshoot point as seen in Fig. 2(A), when r = 1.65 and X = 0.50,

the shear stress shows a pseudo-steady state over the strain of γIND, known as the induction period,

before a rapid drop to its steady state value. The latter is reminiscent of the stress-strain behavior

seen in polydisperse soft particles when the polydispersity index is smaller than 0.2. Over this

strain interval, amorphous suspensions undergo structural rearrangements, which act as precursors

to phase transition from glassy to layers parallel to the flow-vorticity plane6,7 at larger strains. We

also note that the trend of the γIND is similar to prior works;6 γIND decreases with an increase in

the shear rate and a decrease in the volume fraction.
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Shear-induced phase behavior of soft colloids

FIG. 2. (A and B) Shear stress, σ/E∗, and (C and D) elastic energy, UR3/E∗, per unit volume as a function

of shear strain, γ , for different bidisperse suspensions with r = 1.65, X = 0.50 and X = 0.10 at shear rate

of γ̇ηs/E∗ = 10−4, r = 1.25, X = 0.02 and X = 0.50 at shear rate of γ̇ηs/E∗ = 10−9 at volume fraction of

φ = 0.80.

In Fig. 2(B), the stress response is plotted for the suspensions, which show glassy (r = 1.25,

X = 0.50) and crystalline microstructures (r = 1.25, X = 0.02), at a low shear rate of γ̇ηs/E∗ =

10−9. We note that we do not observe stress overshoot at low shear rates. The shear stress of the

glassy microstructure reaches a steady state value after the initial increase. On the other hand, the

system with r = 1.25, X = 0.02 enters a pseudo-steady state period before it shows fluctuations

past a strain of γ = 1. The fluctuations in the stress values for the suspension are caused by the

deviation of the particle’s position from the lattice points, indicating the possibility of having a

crystalline structure.6 Similarly, the dimensionless elastic energy per unit volume shows the same

behavior as observed in the shear stress (Fig. 2C-D). In suspensions under a high shear rate of

γ̇ηs/E∗ = 10−4, the elastic energy initially increases and then plateaus out for the glassy system,

or decreases to its steady state for the layered configuration as shown in Fig. 2(C). The elastic

energy shows constant values for the glassy structure while it rapidly drops at γ = 1 to its steady-

state for the crystalline structure as shown in Fig. 2(D) at a low shear rate of γ̇ηs/E∗ = 10−9.
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Shear-induced phase behavior of soft colloids

FIG. 3. Steady-state flow curve as a function of shear rate for suspensions with r = 1.65,X = 0.10,0.50 and

r = 1.25,X = 0.02 at volume fraction φ = 0.80.

The flow curve of a few selected suspensions at φ = 0.80, which cover a wide range of mi-

crostructures at steady-state, are presented in Fig. 3 (see Table. I for summary of results). The

shear-stress response for the disordered suspensions with r = 1.65,X = 0.10 follows the HB equa-

tion. The exponent value obtained for the suspensions is n = 0.4±0.05, which is slightly smaller

than the value of 0.5 found by SPGs with stiffer contact force law.1,8 This deviation is also due

to the limited number of shear rates investigated at higher rates. In addition, there is a weak de-

pendence of the shear stress on the number density ratio of the suspensions, X , in the low shear

rate regime. In contrast, the dependence of the flow curve on this parameter becomes negligible

in the power-law flow regime. At high enough shear rates, i.e., γ̇ηs/E∗ = 10−4, the shear-stress

response for the suspensions with r = 1.65,X = 0.50 plateaus instead of showing a monotonic

increase. This behavior is a direct consequence of the decreases of the shear stress as seen in Fig.

2(A) where the stress attains a lower steady-state than the glassy suspensions after experiencing

an induction period followed by crystallization. The discontinuity in the flow curve is similar to

the results reported by Khabaz et al.6,11 In suspensions with a low polydispersity index, a discon-

tinuity in the flow curve at intermediate or high shear rates was observed for mildly polydisperse

suspensions. This discontinuity shifts to higher shear rates when there is an increase in polydisper-

sity and volume fraction of the suspensions. In the case of suspensions with r = 1.25,X = 0.10,
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Shear-induced phase behavior of soft colloids

particles at all shear rates transition to ordered structures, but the nature of the microstructure

shows a sharp change at a shear rate of γ̇ηs/E∗ = 10−6 and then shear stress shows a significant

drop than expected value based on the HB relationship. The rearrangements of particles occurring

in the microstructure are responsible for the evolution in the shear stress and elastic energy seen

in Fig. 2, which are discussed next.

TABLE I. Shear induced microstructures of the selected suspensions in III A.

Suspensions Shear rate (γ̇ηs/E∗) Microstructure

r = 1.65, X = 0.50 10−4 Layered

r = 1.65, X = 0.10 10−4 Glassy

r = 1.25, X = 0.02 10−9 Crystalline

r = 1.25, X = 0.50 10−9 Glassy

B. Microstructure

1. Local microstructure

To clarify the effect of shear flow on the microstructure of suspensions at steady state, the

two-dimensional (2D) pair distribution functions in the flow-gradient, gu∇(r), and flow-vorticity,

guω(r), planes are determined at different shear rates. Since there are two sets of particles, i.e.,

small and large, all combinations of these pair distribution functions are determined in Figs. 4

and 5. At both high and low shear rates, gu∇(r) and guω(r) for glassy structures show one major

peak indicating that there is only a short range structure at contact distance between particles in

the first neighbor shell. The latter confirms the existence of a disordered structure at steady state

as shown in Figs. 4(A), 4(C), 5(B), and 5(D). However, when a layered microstructure is formed,

more peaks are observed at large r, as seen in Figs. 4(B) and 4(D). Finally, crystalline structures

show several well-defined peaks at large distances which are associated with the formation of an

ordered phase (Figs. 5(C) and 5(A)). Comparison between the structures in the uω and u∇ planes

shows that there is a larger peak in the guω(r) than in gu∇(r) which indicates that the particles

are more packed in the flow-vorticity plane than the flow-gradient plane. The number density

ratio and radius ratio of these bidisperse suspensions play a critical role in determining the final

microstructure. Holding r constant and decreasing X results in a glassy microstructure, as seen

in Fig. 4 and Fig. 5 while decreasing r and keeping X constant yield glassy and crystalline

microstructures in selected systems. These variations indicate that different combinations of X
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Shear-induced phase behavior of soft colloids

and r produce distinct microstructures and phase behaviors.

FIG. 4. Flow-gradient and flow-vorticity pair distribution functions of bidisperse suspensions at φ = 0.80

as a function of the two-dimensional distance (r) at high shear rate of γ̇ηs/E∗ = 10−4 and suspensions

showing a glassy (A and C) and layered microstructure (B and D).

FIG. 5. Flow-gradient and flow-vorticity pair distribution functions of bidisperse suspensions at φ = 0.80 as

a function of the two-dimensional distance (r) at low shear rate of γ̇ηs/E∗ = 10−9 and suspensions showing

a glassy (A and C)and a crystalline (B and D) microstructure.
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Shear-induced phase behavior of soft colloids

To measure the variance in the configuration of the particles at steady-state, especially the crys-

talline structures, the microstructures are characterized by calculating the local order parameters,

ql for particle i,65–67 using the following equation:

ql(i) =

√

√

√

√

4π

2l +1

l

∑
m=−l

∣

∣qm
l (i)

∣

∣

2
, (4)

where l and m are indices used in the definition of spherical harmonics and, qm
l (i) is given as:

qm
l (i) =

1

Nb(i)

Nb(i)

∑
j=1

Y m
l (ri j), (5)

Nb(i) is the number of neighbors of particle i, Y m
l (ri j) are spherical harmonics coefficients for

neighboring particles j and ri j is the separation vector. These parameters are quantitative metrics

used to evaluate the level of order and arrangement within a set of particles and to detect whether

the particles are in a fluid-like environment or a solid-like environment.68 The ql quantifies the

degree of local ordering by assessing the symmetry and alignment of particles within a given re-

gion or cluster. This ql parameter is close to zero in the amorphous phase and acquires a specific

nonzero value for a given crystalline structure.65 In our systems, we calculate these quantities for

all particles. The probability density of ql at the steady state, along with snapshots of the mi-

crostructure and analysis of crystalline structure, are presented for these selected systems in Fig.

6. A disordered microstructure can be seen in Fig. 6(A) for suspensions with r = 1.65,X = 0.10.

In Fig. 6(B), when r = 1.75,X = 0.8, most of the particles are configured in layered structures

parallel to the flow-vorticity plane that does not correspond to any known crystalline structures.

Furthermore, Fig. 6(C) shows clusters of crystalline assemblies. Mostly FCC and HCP config-

urations are detected in the crystalline phase. The order parameters, q4 and q6 are particularly

sensitive to the fourth and sixth orders of spherical harmonics, respectively. This makes them

well-suited to detect symmetries associated with common crystal structures.65 The distribution of

q4 and q6 for glassy structure (Fig. 6D) shows normal distributions with average values of 0.1

and 0.2, respectively. These averages slightly shift to larger values for the layered structure (Fig.

6E). Interestingly, the distributions for the selected crystalline structure show a bimodal behavior

with peak values of q4 = 0.169 and 0.2, and q6 = 0.49 and 0.538. Note that for a perfect FCC

crystal lattice, values of q4 = 0.171 and q6 = 0.507 have been reported, whereas for a perfect HCP

crystal, these parameters take values of q4 = 0.107 and q6 = 0.445, respectively.65,69,70 In com-

parison to reported values, the co-existence of an FCC and an HCP crystalline structure is evident

for r = 1.25 and X = 0.02.
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Shear-induced phase behavior of soft colloids

FIG. 6. (A-C) Microstructure, (D-F) crystallinity analysis, and (G-H) distribution of q4 and q6 values of

suspensions with r = 1.65,X = 0.10, r = 1.75,X = 0.80, and r = 1.25,X = 0.02, at steady state. The

crystalline phases have been identified using polyhedral template matching.71

In addition to the distribution of these parameters, average bond order parameters q4 and q6

are calculated and plotted as a function of strain, γ , in Fig. 7 at shear rates of γ̇ηs/E∗ = 10−4

and 10−9. These metrics provide a generalized view of the level of order within the system as

the jammed suspensions are sheared. The results showed that the q4 and q6 values of the layered

and crystalline bidisperse suspensions are higher than the glassy ones at both high and low shear

rates. The q4 and q6 values of a layered system were higher than the glassy system, as shown in

Fig. 7(A). In comparison between a glassy and a crystalline system, the crystalline system showed

lower q4 but higher q6, indicating the prominent presence of an HCP crystal. Furthermore, the

crystalline q4 and q6 values showed an initial increase until γ ∼= 10 followed by fluctuations and

attainment of a steady state as seen in Fig. 7(B).
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Shear-induced phase behavior of soft colloids

FIG. 7. Average bond order parameters (q4) and (q6) as a function of strain (γ) for different bidisperse

systems at shear rates of (A) γ̇ηs/E∗ = 10−4 and (B) γ̇ηs/E∗ = 10−9. In each plot, two suspensions with

ordered and disordered structures are selected.

2. Phase diagram

There are four parameters that control the phase behavior, i.e., γ̇ηs/E∗, X , r, and φ . Thus,

considering the behavior of the pair distribution functions and using values of the local bond order

parameters, q4 and q6,6,7 we construct phase diagrams of these suspensions by holding the shear

rate and volume fraction constant while varying X and r values as seen in Fig. 8. Depending
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Shear-induced phase behavior of soft colloids

on the phase, q4 and q6 distribution can vary significantly. For an amorphous system, q4 and q6

values are 0.10 and a maximum of 0.36, respectively. The distribution is slightly shifted for layered

structures, and the values do not fall under the amorphous criterion. Finally, in a HCP crystalline

structure, the values of q4 and q6 are 0.107 and 0.445, respectively. These values are 0.17 and

0.507, respectively, for an FCC crystalline structure.65,69,70 In addition to bond order parameters,

polyhedral template matching71 was used to identify if the particles correspond to any known

crystalline configuration. If the majority of the particles (i.e., more than 90%) do not belong to

any known lattice structure and form layers parallel to the flow-vorticity plane, they are called

"layered," while others that show a coexistence between FCC and HCP are named crystal. Note

that the layered systems show smooth steady stress response after the induction period, while

crystals show high fluctuations. In Fig. 8(A-C), at high shear rates and a volume fraction of

φ = 0.70, only a small region with amorphous microstructure is present. This amorphous phase

behavior is observed when 0.1 < X < 0.2 and 1.6 < r < 1.75. Outside of these domains, soft

particles rearrange into either layered structures or form crystals in shear flow. With decreasing

shear rate, the presence of glassy structures becomes more evident as seen in Fig. 8(D) and Fig.

8(E). Crystals start forming near monodisperse boundaries and when X = 1 at low shear rates of

γ̇ηs/E∗ = 10−8 and 10−9 as observed in Fig. 8(F). For φ = 0.80, at high shear rates, crystals are

observed at X = 0.05 and X = 0.95 for nearly all r considered. Fig. 8(G-L) shows that several

glassy and crystalline phases are generated. When r > 3 and X = 0.50 crystals structures appear,

and at X = 0.95, all systems at different particle size ratio r become crystal. This non-monotonic

dependence of the phase diagram on the size ratio r, as observed in 8(E) can be attributed to

a complex interplay of factors including particle size distribution, volume fraction, and shear-

induced dynamics. In monodisperse systems, the uniformity of particle size promotes optimal

packing under shear, facilitating the formation of crystalline structures. On the other hand, at very

high size ratios, r > 3, the smaller particles can effectively fill the gaps between larger particles,

enhancing order due to improved packing and alignment under shear. Moreover, the behavior

under shear significantly influences the microstructural transitions from amorphous to ordered

states, particularly noticeable at these size extremes. When size ratio, r, is large, the motion of

small particles around larger ones under shear allows for more effective particle rearrangements,

leading to crystalline formations.72

On the other hand, at X = 0.05, crystalline structures are seen only at r < 2. It can be concluded

that at high shear rates, an increase in X and r will result in an ordered structure, and a decrease of
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Shear-induced phase behavior of soft colloids

X towards a monodisperse system will result in crystallization. At lower shear rates, an increase

in the dominance of the glassy phase is observed, accompanied by reduced layering and enhanced

crystallization, as evident in Fig. 8(I) and Fig. 8(J). These results suggest the prevalence of the

glassy phase and the suppression of layering in the majority of bidisperse suspensions, especially

at the two lowest shear rates. Moving towards the lowest shear rates, crystals are formed, no

layering occurs and the phases are glassy and crystalline as seen in Fig. 8(K) and Fig. 8(L). For

the suspensions at φ = 0.90, mostly glassy and crystalline structures are observed throughout the

shear rates. Layering is only observed at the two highest shear rates of γ̇ηs/E∗ = 10−4 and 10−5

and only glassy and crystalline structures are observed at lower shear rates.

Interestingly, at volume fractions of φ = 0.80 and 0.90, a few suspensions, over the simulation

time scale of 1000 strain units, show the coexistence of the amorphous and ordered structures.

In these suspensions, large particles tend to form ordered structures, and the smaller ones form

disordered microstructures (Fig.9). We note that the generic behavior of the flow curve and stress

response of these systems with coexistence is similar to the ones forming layered structures. The

pair distribution function between the small-small and large-large pairs confirms this existence. In

summary, from the phase diagrams, it is observed that glassy systems are observed at low shear

rates throughout all the volume fractions, layered microstructures are prevalent at high shear rates

of γ̇ηs/E∗ = 10−4 and 10−5, especially at φ = 0.70 and φ = 0.80, and crystals are mostly found

when suspensions compositions are close to a monodisperse case or large X values, where the

number density ratio of the larger particles is greater.

C. Kinetics of the transition and reversibility

The shear stress and elastic energy in the bidisperse suspensions, which eventually transform into

ordered structures, experience a swift decrease with strain after reaching the induction stage, where

stress shows a relatively prolonged pseudo-steady behavior. As seen earlier, analysis of the mi-

crostructure revealed that this decline is associated with rearrangements in the structure within

the flow-gradient and flow-vorticity planes. It was established that the γIND shows an exponential

decay with the shear stress, i.e., γIND ∼ exp(−E/σ), where E is a fitting parameter.6 Thus, the

induction strain should decrease with the applied shear rate for a given suspension. Indeed, we

also observe the same behavior for the bidisperse suspensions studied here in Fig. 10. As dis-

cussed earlier, there are four parameters that affect γIND, i.e., γIND = γIND(r,X , γ̇ηs/E∗,φ). Values

of the induction strain γIND are plotted as a function of X and shear rate for systems with different

volume fractions in Fig. 10. Throughout all volume fractions, the relationship between X and
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Shear-induced phase behavior of soft colloids

FIG. 8. Phase diagrams of the bidisperse SPGs as a function of number density ratio, X , and particle size

ratio, r, at φ = 0.70 (A-F), φ = 0.80 (G-L), and φ = 0.90 (M-R) at different shear rates ranging between

γ̇ηs/E∗ = 10−9 and 10−4.
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Shear-induced phase behavior of soft colloids

FIG. 9. 3D pair distribution function between liquid-liquid and solid-solid particles of suspensions with

r = 2.50 and X = 0.20 at φ = 0.80 and γ̇ηs/E∗ = 10−5. Inset shows the flow-gradient view of the simulation

box.

γIND is direct. γIND increases with an increase in number density ratio X and a decrease in shear

rate γ̇ηs/E∗. The longest induction stage of γIND = 135 was observed for a system with φ = 0.80,

r = 3.50, and X = 0.95 at shear rate of γ̇ηs/E∗ = 10−6. However, there is no apparent correlation

between r and the induction strain. Nevertheless, for a given r, the induction strain decreases with

the increase of φ .

Furthermore, we track the evolution of the microstructure of selected systems as a function of

strain for a selected system with φ = 0.80 and r = 2.00,X = 0.50 in Fig. 11 by determining the

maximum values of the 2D-dimensional pair distribution functions in both u∇ and uω planes that

correspond to their value at the first peak, whose location does not change as a function of strain.

As shown on the graphs, the induction period for this system corresponds to the strain range of

1 < γ < 30. During this period, the small-small and small-large pairs do not show a change in

the value of gmax
u∇

(r). While gmax
uω (r) shows a slight decrease between small-large and an increase

for large-large pairs. Then, both the small-small (Fig. 11(A)) and large-large (Fig. 11(C)) pair

distributions show transition increases with a high rate during the stress reduction stage. This

increase is more pronounced for the large particles. After experiencing this transition, all pair

distribution functions attain a steady state consistent with transient stress behavior. Note that in

suspensions with low polydispersity index, particles showed rearrangement in the flow-vorticity

plane during the induction period,6 while in bidisperse suspensions, the majority of the structure

18

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
2
1
6
7
5
8



Shear-induced phase behavior of soft colloids

FIG. 10. Induction strain, γIND, as a function of the composition of the suspension, X , and shear rate,

γ̇ηs/E∗, obtained at (A) φ = 0.70, (B) φ = 0.80, and (C) φ = 0.90. The color bar indicates the value of the

particle size ratio, r.

FIG. 11. The magnitude of the pair distribution function at the first peak between (A) small-small, (B)

small-large, and (C) large-large pairs as a function of strain for a system with φ = 0.80, r = 2.00, and

X = 0.50 and at a shear rate of γ̇ηs/E∗ = 10−5.

change occurs during the stress reduction stage.

We further test the reversibility of these transitions by subjecting the shear-induced structures

to different shear rate rates. It is important to keep in mind that these phase transitions are shear-

activated. For instance, as seen in Fig. 12 starting with a layered microstructure with r = 2.00

and X = 0.5 obtained at a shear rate of γ̇ηs/E∗ = 10−5, the microstructure becomes amorphous as
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FIG. 12. Simulation snapshots of suspensions with (A and B) r = 2.00 and X = 0.50 and (C and D) r = 1.05

and X = 0.95 at γ = 0 and γ = 2.0. The shear rates used in these simulations are γ̇ηs/E∗ = 10−6 and 10−5

for the layered and crystal phases, respectively. (E) Evolution of the shear stress as a function strain. The

volume fraction of suspensions is φ = 0.80.

the shear rate is decreased to γ̇ηs/E∗ = 10−6. This observation is applicable to all layered struc-

tures. Consider a system with r = 1.05 and X = 0.95, the suspensions show crystalline structure

at γ̇ηs/E∗ = 10−9 as seen in Fig. 11(C-D). When this structure is subjected to a higher shear

rate of γ̇ηs/E∗ = 10−7 it transforms into an amorphous one. This behavior is reminiscent of the

shear melting process seen in hard-sphere suspensions. Previous works73,74 discovered that once

a high shear rate is applied to an initially crystallized microstructure, the microstructure becomes

disordered. Shear melting proceeds by temporary melting of localized domains of particles. With

an increase in shear rate, particles spend more time in the disordered environments, but ordered

domains keep nucleating and melting indefinitely, whereas the suspension as a whole is consid-

ered to be shear melted. In the case of soft particles, the critical strain required to eliminate the

crystalline phase is about γ ∼= 0.5. This is evident from the stress-strain curve shown in Fig. 12(E),

where initially, stress linearly increases in the solid phase and reaches the static yield point, and

then suspensions start flowing by significantly reducing the shear stress. Thus, this static yield

strain highlights the end of the crystalline structure and the onset of the flow.
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IV. Conclusions

We studied the effect of shear flow on the microstructure of jammed suspensions of bidisperse soft

particles. Our results show that these soft jammed suspensions undergo shear-induced microstruc-

tural transformation depending on the applied shear rate, γ̇ηs/E∗, and suspension volume fraction,

φ , number density ratio of particles, X , and particle size ratio, r. Different combinations of X and

r at a given volume fraction produce distinct microstructures such as crystal, amorphous, combi-

nation of crystal and amorphous, and layered phase. Typically, at high shear rates, the transient

shear stress shows an overshoot and attains a steady state in amorphous suspensions, and their flow

curve is described using the HB relationship. When shear-induced layering occurs, the shear stress

shows a significant drop after experiencing an induction period and then reaches steady state. The

duration of this induction period grows when shear rate increases and X decreases, though we ob-

served no evident correlation between the induction strain and particle size ratio. The consequence

of the latter is that flow curve plateaus in the suspensions showing layering.

These layers are formed in the direction parallel to the flow-vorticity plane. Analysis of the

pair distribution function shows that during the induction period, there are minor structural rear-

rangements. The observed alignment and layered structuring in our bidisperse suspensions under

shear bear similarities to the bioconvective patterns formed by gyrotactic cells in shear flows, high-

lighting the universal nature of shear-induced phenomena across different scales and systems.75

The latter is somewhat different from our prior work,6 where there were significant rearrange-

ments for particles to form these layered structures. Clearly, when particles are bidisperse, the

phase transition is facilitated. Furthermore, crystalline structures emerge when the suspensions

are monodisperse or X is a large number. Bond order parameter analysis showed that these crys-

talline structures are dominated by HCP and FCC lattices. Apart from these distinct microstruc-

tures, a few suspensions showed a coexistence of the amorphous and crystals. In particular number

and radius ratios, the larger particles formed the crystal domain, and the smaller ones showed an

amorphous structure. Using these parameters along with the shear rate and volume fraction of the

suspensions, shear-induced phase diagrams of these suspensions were constructed.

Examining the microstructure through pair distribution functions, bond order parameters, and

phase diagrams provided further insights into the sensitivity of these jammed suspensions to vari-

ations in particle size distributions. The composition-dependent dominance of glassy, layered, or

crystalline states showed the significance of r and X , especially in dictating the prevalence of spe-
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cific structures at varying shear rates. In summary, this comprehensive study offers an understand-

ing of the multifaceted interplay between parameters governing the microstructure and rheological

responses of bidisperse suspensions of soft particles. The microstructures, which show coexistence

between amorphous and crystal, persist over 1000 strain units and possibly correspond to a stable

thermodynamic state rather than a kinetically trapped one. Furthermore, LaCour et al.72 observed

ordering in hard sphere suspensions when there is an excess of the smaller particles, where they

act like plasticizers and enable suspensions to reach a greater supersaturation before kinetic ar-

rest occurs. However, studying this phenomenon, i.e., kinetic arrest, extends beyond the scope of

the present study. This coexistence opens new avenues in shear-induced phase equilibrium prob-

lems in these suspensions which make a prominent distinction compared to the prior works. For

example, a thermodynamic model based on the framework proposed by Bonnecaze et al.76 may

be utilized to describe this coexistence which will be pursued in future work. Bonnecaze et al.’s

framework, which effectively utilizes excess entropy scaling to correlate transport properties such

as viscosity and diffusivity with microstructural states, provides a robust basis for this analysis.

By applying this model, we aim to determine whether the observed coexistent structures in our

systems are thermodynamically stable or are results of kinetic entrapment. Finally, this research

opens avenues to investigate the phase behavior of hard sphere suspensions with a bidisperse size

distribution in shear flow since it has not been thoroughly investigated.
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