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We present a theoretical study of the magnetic properties for the highly geometrically-frustrated
NaCu3F7 compound, surprisingly experimentally presenting little or no frustration. The magnetic
effective exchange interactions were calculated using explicitely correlated ab-initio methods. A
model Hamiltonian was built from these interactions and used to determine the zero temperature
magnetic order versus magnetic field, using a quantum Heisenberg Hamiltonian or, for comparison,
a spin 1/2 Ising Hamiltonian. The magnetic order at zero magnetic field is non frustrated and
associated with to the propagation vector q⃗ = (0, 0, 0). The magnetization versus magnetic field
reveals the existence of a 1/3 plateau that could be observed in high-pulsed magnetic field experi-
ments. Analysing the magnetic interactions, we highlight the importance of the magnetic ion nature
and the lattice distortion in the non-frustrated nature of the NaCu3F7 magnetic structure, despite
its triangular/Kagome subnetworks. We believe that this non-frustrated behaviour could also take
place in other triangular copper-based systems.

I. INTRODUCTION

Studying the binary diagram of NaF − CuF2, Re-
naudin et al. discovered a new compound NaCu3F7 [1].
NaCu3F7 was the first example of copper fluorides with
copper ions in two different coordination polyhedra,
namely octahedra and square planar coordination. This
compound is closely related to the weberite structural
family (A2B2X7) that attracted a lot of attention due
to its highly frustrated geometry [2]. Related to the py-
rochlore structure, the weberites exhibit a wide range of
properties such as magnetic, dielectric or photo-catalytic
ones [2–5], making them interesting for both chemical
processes [6–8] and electronic applications [9]. The we-
berite structure forms stacked Kagome networks by al-
ternatively using the A/B atoms to form the hexagons,
whose centres are occupied by B/A atoms [2].

In the specific case of NaCu3F7, half of the A atoms
are replaced by copper (i.e. identical to the B atoms).
At room temperature, NaCu3F7 has a centred mono-
clinic structure, space group C2/c [1]. All the sodium
atoms are equivalent by symmetry, but there are three
non-equivalent copper atoms (see Fig. 1) and four non-
equivalent F atoms. Two copper atoms (Cu1 and Cu2)
are located in CuF6 corner-sharing elongated octahedra
and the third one (Cu3) is in a CuF4 corner-sharing
square. Along the c⃗ direction, the Cu1F6 octahedra form
chains, while the Cu2F6 ones and the Cu3F4 squares al-
ternate to form the neighbouring chains. The Cu1 and
Cu2-Cu3 chains share fluorine atoms and form (110) and
(1̄10) planes, intersecting at an angle of 62.41° on a Cu1
chain along the c⃗ axis (see Fig 1).

Formal charge analysis shows that the magnetism
is supported by the Cu2+ ions, that form a distorted
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Kagome network in the (⃗a, b⃗) plane (see Fig. 1 or Fig. 2 a).
The hexagon centres are occupied by the sodium atoms
and the Kagome networks stacked along the c⃗ direction.
In addition to the Kagome planes, the copper atoms form

Figure 1. Schematic representation of the NaCu3F7 crystal
structure. The F atoms are in light gray, and the Na in yellow.
The three independent Cu are pictured in different colours :
Cu1 in red, Cu2 in green and Cu3 in blue.

distorted triangular lattices (see Fig. 2 b) along the (110)
and (11̄0) directions. The nearest-neighbour Cu-Cu dis-
tances are all between 3.46 and 3.73 Å.

This highly frustrated geometry, lead Renaudin et
al. in 1988 [1] to predict magnetic frustration in the
NaCu3F7 system. Two years latter, an abnormally high
magnetic ordering temperature, TN = 71K, was ob-
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Figure 2. Schematic representation of the frustrated Kagome
(001) and triangular (110) copper networks in NaCu3F7 a)
along the c⃗ direction and b) in the (110) plane. Naming of
the magnetic interactions are added. The Cu atoms are rep-
resented in red Cu1, green Cu2 or blue Cu3.

tained from magnetic susceptibility measurements by the
same group [10], casting doubts on the existence of a mag-
netic frustration. Neutron diffraction experiments have
then been performed and the proposed magnetic struc-
ture was also compatible with the absence of frustration,
eventhough the small number of available reflections pre-
vented the authors to draw direct conclusions. Other
arguments can be suggested to support the absence of
magnetic frustration. First, the ordering temperature is
unusually high for cupric fluorides, and more specifically
for copper-based weberites, as the latter hardly exhibit
a 3D magnetic ordering at a temperature higher than a
few kelvins [11]. Secondly, the Curie-Weiss temperature
of ΘCW = −184 K gives a frustration parameter [12]
f = −ΘCW /TN ≈ 3 below the values (f > 10) that
Ramirez [12] suggests as defining materials with strong
geometrical frustration.

It remains to understand the reasons for the absence
of magnetic frustration despite the presence of a Kagome
and a triangular lattice. In their 1990 paper, Renaudin
et al [10] suggested that the nature and orientation of the
Cu2+ magnetic orbitals could be at hand. They proposed
a guess on the nature of the magnetic orbitals involved

in each magnetic interaction and predicted its character
(ferromagnetic or antiferromagnetic). To our knowledge,
no additional studies have been published to either cor-
roborate or challenge these hypotheses, nor to provide
further clarity on the magnetic behaviour.

The aim of this paper is thus to study the effective
magnetic interactions and the resulting magnetic order-
ing in the NaCu3F7 compound, in order to provide a
theoretical explanation of non-frustrated magnetic be-
haviour as hinted at by experimental observations and
to ground the amplitude and sign of the magnetic inter-
actions in the geometry and electronic structure.

II. TECHNICAL DETAILS

The methodology used in this work is similar the the
one used in some of our previous works such as Ref. [13].
Nevertheless for a better understanding we detailled it in
this section.

A. Ab-initio calculations

In order to correctly describe the exchange-correlation
effects which are responsible for the magnetic interac-
tions, those will be computed using a multireference
configuration interaction method, namely the complete
active space plus single and double excitations from
the difference dedicated configuration interaction space
(CAS+DDCI) method [14]. As such configuration inter-
action methods require the diagonalization of large ma-
trices, they can only be applied to formally finite-size sys-
tems. We have therefore designed, for each magnetic in-
tegral, appropriate fragments embedded in a set of renor-
malized charges [15] and total ions pseudo-potentials
(TIPS) [16], in order to reproduce the effects of the rest
of the crystal on the quantum fragment. The TIPS repro-
duce the exclusion effects due to the electrons of the first
layers surrounding the fragment, and the set of charges is
chosen in order to reproduce the Madelung potential seen
by the fragment with an error of less than 0.1 meV. The
quantum fragments were chosen so that to include the
magnetic atoms associated with the desired interaction,
their first coordination shell, and any additional bridging
ligands.

The fragment orbitals were optimized within a com-
plete active space self consistent field [17] (CASSCF) cal-
culation on the 3d open-shell electrons of the Cu2+ ions,
using the MOLCAS package [18]. We used a valence ba-
sis set of 3ζ + P quality, associated to the relativistic
core pseudo-potentials of the Stuttgart group [19]. The
CAS+DDCI calculations were then performed using the
RelaxSE code [20]. The latter provides the fragment low-
energy excitations, from which the effective exchange in-
tegrals can be deduced.

The crystal structure used in all calculations is the
room temperature X-Ray structure given in Ref. [1].
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B. Exact diagonalization

The magnetisation versus magnetic field has been eval-
uated using a Lanczos diagonalization of the Heisenberg
Hamiltonian derived from our ab-initio calculations. The
calculations were done on a finite lattice of 24 spins with
periodic boundary conditions.

While the matrix exhibits a block diagonal structure
with a sector of Sz, the blocks associated with smaller
Sz values prove challenging for complete diagonalization
due to their substantial size. To address this, an exten-
sive calculation of at least 1000 lower-energy states has
been undertaken for each sector. This approach ensures
accurate treatment of the ground state and the consider-
ation of temperature effects for low temperature values.

C. Monte-Carlo calculations

The Monte Carlo (MC) simulations were performed
on the same Heisenberg Hamiltonian mentioned above.
For this purpose we used the standard Metropolis algo-
rithm [21] on a classical approximation of the spin Hamil-
tonian. The phase space sampling was done using an
adaptive algorithm, keeping the acceptance rate close to
50%, as proposed by Alzate-Cardona et al. [22]. To pre-
vent numerical catastrophic cancellation while comput-
ing the specific heat, we used the Welford algorithm [23].
At each temperature, 500 Monte-Carlo steps per atom
(MCS) were performed, to ensure the thermal equilib-
rium and a good approximation of the mean magnetic
energy. The specific heat was then computed using a
thermodynamical average performed with 10 000 MCS.
The calculations were performed using supercells up to
20a× 20b× 20c (96000 magnetic atoms).

III. RESULTS AND DISCUSSION

A. Magnetic integrals

The formal charge analysis of NaCu3F7 yields
Na+Cu2+F−

3 corresponding to a 3d9 Copper electronic
configuration. The corresponding theoretical magnetic
moments are SCu = 1/2, which is fully consistent with
the magnetic moments found in powder neutron scatter-
ing [10].

The magnetic exchange interactions were obtained
from the ab-initio calculations, by mapping the computed
magnetic spectra onto the energy spectra of a Heisenberg
Hamiltonian on the same fragments

ĤHeis = −
∑
<i,j>

Jij

(
Ŝi · Ŝj −

n̂in̂j

4

)
(1)

where Ŝi and Ŝj are the quantum spin operators asso-
ciated with the first-neighbour i and j sites; Jij are the

effective exchange interactions, positive and negative val-
ues corresponding to ferromagnetic (FM) and antiferro-
magnetic (AFM) interactions.

We computed seven independent interactions (see
Fig. 2) that are reported in Table I. One can see that
the three dominant interactions, namely J1, J2 and J4,
are AFM, unlike what was guessed by Renaudin et al. [10]
that supposed J4 to be FM. These interactions are much
larger than the others, and will dominate the magnetic
behaviour of the compound. Indeed, the remaining in-
teractions are FM and very weak.

Table I. Effective exchange interactions obtained from ab-
initio calculations. The associated metal-metal distances
dM−M , superexchange path and metal-ligand-metal angles
are also reported. Negative values correspond to AFM in-
teractions and positive to FM ones.

Ji Value dM−M Superexchange Angle
[meV] [Å] paths [°]

J1 -12.33 3.462 Cu1-F4-Cu1 131.2
J2 -20.13 3.544 Cu1-F1-Cu2 138.7
J3 0.28 3.723 Cu1-F2-Cu2 121.5
J4 -8.10 3.462 Cu2-F2-Cu3 124.9
J5 0.24 3.544 Cu1-F2-Cu3 111.3
J6 0.50 3.672 Cu2-F3-Cu3 123.7
J7 0.01 3.723 - -

Let us now analyse the physical effects at work in mag-
netic interactions in order to better understand these
results. It is well known [24, 25] that effective mag-
netic exchange integrals can be understood within the
quasi-degenerate perturbation theory formalism [26] at
the fourth order. It comes as

J ≃ 2K︸︷︷︸
J(1)

−4
t2MM

UM︸ ︷︷ ︸
J(2)

−4
t4LM

UM∆2
− 8

t4LM

(2∆ + UL)∆2︸ ︷︷ ︸
J(4)

(2)

where K is the Pauli direct exchange integral (always
FM), tMM the transfer integral between the two magnetic
orbitals, and UM its energetic cost, tLM is the bridging-
ligand to metal transfer integral and ∆ its energetic cost.

The J (1) first-order contribution essentially depends on
the metal-metal distance and the magnetic orbitals ori-
entation. Indeed, if m1 and m2 stands for the magnetic
orbitals on the two copper sites, at first order expansion
in the Cu-Cu distance, R, one gets J (1) ≃ 2⟨m1|m2⟩2/R.
The J (2) second-order contribution depends as well on
the metal-metal distance and the magnetic orbitals ori-
entation, except that the magnetic orbitals overlap is re-
placed by the hopping integral between the latter. The
fourth-order contribution, J (4), mostly depends on the
overlap between the metal magnetic orbitals and the
bridging-ligand orbitals. As a conclusion, not only the
magnetic exchange integral depends on the metal-metal
distance but also on the metal-ligand ones and more im-
portantly on the nature and relative orientation of the
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magnetic orbitals. This analysis implicitly supports the
Kanamori-Goodenough rules [27]).

In NaCu3F7 the copper magnetic orbitals are all of
dx2−y2 nature, pointing toward the F atoms in the
squares pictured in Fig 3. In order to better under-

Figure 3. Schematic picture of the squares supporting the
dx2−y2 magnetic orbitals in NaCu3F7. The dx2−y2 point to-
ward the F atoms (in gray) at the square corners.

Figure 4. Computed magnetic and bridging-ligand orbitals
in the a) J2 and b) J5 magnetic interactions. The magnetic
orbitals are drawn using solid isodensity curves, while the
bridging-ligand orbital is drawn using wireframe isodensity
curves.

stand the amplitude of the magnetic interactions, let us
analyse the difference between the J2 and J5 interactions
that do correspond to equivalent metal-metal distances,
but very different magnetic exchanges. Picturing their
magnetic and bridging-ligand orbitals (see Fig. 4), one
sees immediately that while both magnetic orbitals in the
J2 interaction are approximately pointing toward each-
other and toward the bridging F atom, in the J5 interac-
tion only the Cu3 orbital is pointing toward the bridging
F atom, the Cu1 magnetic orbital being nearly parallel
(but in another plane) to the Cu3 one. As a result, not
only no orbital of the bridging F atom can participate

in the J (4) super-exchange term, but also the overlap
between the two magnetic orbitals is very small. As a
result, all terms in J5 are nearly zero. The magnetic or-
bitals involved in the J3, J6 and J7 interactions present
similar orientations, thus resulting in nearly nil magnetic
exchange integrals.

As implicit in Fig. 3, and well-known from the ligand-
field theory, the Cu magnetic orbitals point toward
the closest F ligands. Table II reports the coppers-to-
bridging-ligand distances for the seven magnetic interac-
tions. One sees immediately that the nil interactions are
directly related with the existence of a metal to bridging-
ligand distance larger than the typical Cu-F distance
(∼ 1.9Å). Indeed, such a distance not only means that
the magnetic orbital of that copper is not pointing to-
ward the ligand, but also that it has a weak overlap with
the other copper magnetic orbital. As we will see in the

Table II. Metals-to-bridging-ligand distances (in Å) and de-
composition of the exchange integrals in the direct and super-
exchange terms (in meV).

Ji dM1−L dM2−L J(1) J(2) + J(4)

J1 1.901 1.901 2.024 −14.350
J2 1.906 1.891 2.569 −22.694
J3 2.322 1.940 0.069 0.209
J4 1.940 1.964 1.469 −9.573
J5 3.322 1.964 0.060 0.184
J6 2.297 1.861 0.111 0.387
J7 - - 0.010 0.005

next section, those large differences in the magnetic in-
teractions for similar copper-copper distances will induce
a magnetic network different from the Kagome and tri-
angular one pictured in Fig 2.

B. Magnetic order at zero temperature

The magnetic order in the ground state can be easily
deduced from the above main three interactions.

The leading interaction J2 orders AFM spin chains
in the a⃗ + b⃗ direction. When adding J1 a 3D, non-
frustrated, AFM order is created in the (110) and (1̄10)
planes. This order involves the Cu1 and Cu2 atoms. The
third leading interaction, J4, integrates the Cu3 atoms
into this order without adding any frustration. The FM
interactions, J3, J6, and J7, are also consistent with this
magnetic order, whereas the remaining interaction, J5,
will bring some frustration but so weak it can be con-
sidered negligible. Indeed, assuming a classical Ising
Hamiltonian the magnetic energy associated with J5 is
8 J5 S

2 = 0.5meV per unit cell (12 Cu atoms), that is
less than 1% of the magnetic energy due to the others
interactions [4 J1 + 8 (J2 + J4)− 8 (J3 + J6 + J7)] S

2 =
−70.3meV. One should note that this weak energetic
contribution of the J5 interaction is in agreement with
the weak value of the frustration parameter [12] f =
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−ΘCW /TN ≈ 3 as can be deduced from the Curie-Weiss
temperature.

One can thus safely predict a 3D, non-frustrated AFM
order (pictured in Fig.5), associated with a propagation
vector q⃗ = (0, 0, 0) (in good agreement with Ref [10]).

Figure 5. Ground-state magnetic order. The global spin ori-
entation is arbitrary. The three independent Cu are pictured
in different colors : Cu1 in red, Cu2 in green and Cu3 in blue.
The red-red lines represent the J1 magnetic interactions, the
red-green lines represent J2, and the green-blue lines repre-
sent J4.

C. Magnetic order with temperature and field

The total magnetization versus magnetic field is ob-
tained at zero temperature from the Lanczos diagonal-
ization of the quantum Heisenberg Hamiltonian. It is
shown in Fig. 6.a. The magnetization goes from 0 to 1
with two main plateaus at 1/3 and 2/3. The finite size of
the unit cell (24 spins) is responsible for the presence of
the other j/12 plateaus (j = 0, . . . , 12) which are there-
fore to be considered as simulation artefacts.

The mean values of the nearest-neighbour spin-spin
correlations, < Ŝi · Ŝj >, associated with the three lead-
ing interactions (J2, J1, and J4) are shown in Fig. 6.b).
At zero magnetic field the three correlations are negative
(respectively −0.402, −0.248, and −0.304) in agreement
with the AFM character of the magnetic order.

The Cu3 magnetization (blue line in Fig. 6a)) clearly
shows that the 1/3 plateau corresponds to the ordering
of the Cu3 moments along the magnetic field. Simul-
taneously the Cu2 magnetization (green line in Fig. 6a))
orders opposite to the field, in order to keep the magnetic
energy minimum. Indeed, the only important interaction
involving Cu3 is J4 that couples it antiferromagnetically
to the Cu2 atoms. The 2/3 plateau is not characterised
by the full ordering of another copper atom along the
field, but rather by the partial contribution of the Cu1
and Cu2 magnetic moments. The contribution of the
Cu2 ion is reflected by the J4 exchange interaction, as
can be seen by the positive value of the spin-spin corre-
lation associated to it. This correlation is about 0.11 to

be compared with 0.25 corresponding to a full FM order.
Eventhough we believe that this plateau will remain for
an infinity system, its confirmation would require calcu-
lations that are currently unfeasible with the numerical
techniques used in this work.

Figure 6. Magnetic moments (a) and spin-spin nearest-
neighbour correlations (b) at T = 0 K, versus magnetic field,
obtained from the diagonalisation of the quantum Heisenberg
Hamiltonian using a double unit cell containing 24 spins. a)
The red, green and blue curves represent the average magnetic
moments of the Cu1, Cu2, and Cu3 atoms respectively while
the average total magnetization is in black. b) < Ŝi · Ŝj >
associated with J4 (blue), J1 (brown), and J2 (magenta).

The magnetization versus magnetic field is shown in
Fig. 7 at 0K, 5 K and 10 K. The calculations were per-
formed using either a classical Ising or a quantum Heisen-
berg Hamiltonian, with the exchange interactions given
in Table I. The two Hamiltonians qualitatively show a
similar physical picture, with the existence of 1/3 and
2/3 plateaus when the magnetic field is increased. It’s
worth highlighting that the classical Hamiltonian can be
successfully solved analytically for a cell containing 24
spins. Additionally, this result is further corroborated by
observations using a Monte Carlo method for systems up
to 96000 spins.

The specific heat versus temperature was computed us-
ing the classical Ising Hamiltonian to estimate the Néel
temperature at zero magnetic field. The MC average en-
ergy at low temperature is about −69.8meV per unit
cell, in good agreement with the theoretical ground-state
energy of the predicted magnetic order (−70.3 + 0.5 =
−69.8meV). The specific heat shows a transition tem-
perature near 100 K (see Fig. 8) to be compared to the
experimental transition temperature at 71 K [10].
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Figure 7. Magnetization versus magnetic field at 0K (black),
5K (red) and 10 K (blue). a) Quantum S = 1/2 Heisenberg

Hamiltonian and b) classical S = 1/2 Ising Hamiltonian. In
both calculations, a double unit cell containing 24 spins have
been used.

Figure 8. Monte Carlo specific heat versus temperature cal-
culated with a classical Ising Hamiltonian.

IV. CONCLUSION

We carried out a complete magnetic and thermody-
namic analysis of the NaCu3F7 compound, determining
the effective low energy magnetic Hamiltonian and its
properties.

Despite the fact that NaCu3F7 appears as a highly
geometrically-frustrated compound, the experimental
data exhibit a non-frustrated magnetic behaviour. Our
evaluation of the effective magnetic integrals was able

to explain this apparent contradiction and theoretically
confirm the non frustrated behaviour of the NaCu3F7.
Indeed, due to the strong distortions of the CuO6 octa-
hedra, the orientation of the copper magnetic orbitals is
such that there are only three non-negligible magnetic
interactions, irrespective of the metal-metal distances.
These interactions result in a very-stable, AFM, non-
frustrated ground-state at q⃗ = (0, 0, 0).

We studied the magnetic ordering temperature using
Monte-Carlo simulations (Ising model), and found a or-
dering transition close to 100K, i.e. of the same order of
magnitude as the experimental one.

We then studied the evolution of the magnetic struc-
ture under magnetic field and exhibited the existence of
a 1/3 and probably a 2/3 magnetization plateaus under
the applied field. The 1/3 plateau was shown to be as-
sociated with the alignment along the field of the Cu3
atoms, which spin reversal is associated with the lowest
magnetic energy. The 2/3 plateau is not associated with
the alignment of another type of copper atoms, but shows
partial contributions of both the Cu1 and Cu2 atoms.
MC simulations show that these plateaus also exist at
non-zero temperature ; the 1/3 one being located around
100 T, it could possibly be observed during pulsed high-
field experiments.

Finally, let us point out that the unique magnetic or-
bital of the Cu2+ ions allows strong AFM interactions in
only two directions, the two directions with the closest
ligands. As a result, small geometrical distortions, such
as a small increase of the Cu-Ligand distances in one
direction and a decrease in another, can modify the ori-
entation of the magnetic orbital. Consequently, they can
switch off the magnetic interactions along one direction
and switch it on along the other. Such large effects to
small distortions are thus the perfect tools to lower the
energy in geometrically frustrated systems, and prevent
the magnetic frustration that should have resulted from
the geometric one.
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