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Abstract
This large-scale study characterizes the algebraic learning of a cohort of nearly 800 French 
students during the last year of middle school (9th grade, 14–15 years old) and examines 
their evolution in relation to the composition of the classes to which the students belong. 
Based on the Anthropological Theory of the Didactic (ATD), the study is founded both on 
a reference model of elementary algebra and on technological-theoretical levels charac-
terizing the students’ reasoning and their knowledge regarding institutional expectations. 
These are used to code the data and define the statistical variables on which multivariate 
descriptive analyses are carried out. Students’ learning is analyzed through Pépite, an alge-
bra test given at the beginning and at the end of the year. A cluster analysis resulted in three 
distinct clusters of similar classes and of similar students both at the beginning and end of 
the grade 9 school year. They are interpreted didactically and could be useful for a teacher 
who has to manage the heterogeneity of learning in a class. Some classes and students 
move from one cluster to another between the beginning and the end of the year, showing 
a wide variety of ways in which students’ algebra learning progresses or regresses over a 
school year.

Keywords  Assessment · Students’ learning · Algebra · Praxeology · Longitudinal study · 
Large-scale study

Algebra plays a crucial role in students’ further studies, as it is involved in many science 
courses and therefore determines their access. Since the 1990s, mathematics education 
research on the teaching and learning of algebra (Bednarz et al., 1996; Chevallard, 1989; 
Kieran, 1992, 2007; Sfard, 1991; Vergnaud et al., 1987) has made a major contribution to 
understanding and characterizing the learning processes in algebra and the effectiveness 
of teaching practices in achieving them. However, students encounter many difficulties in 
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international tests (e.g., PISA, TIMMS); in particular, in the TIMSS 2019, French Grade 8 
students attained an overall score in mathematics of 483, below the international average of 
511, and an even lower Algebra score of 468 (Le Cam & Salles, 2020).

Mathematical knowledge is highly dependent on the schools, classes and, more gen-
erally, the institutions in which it is lived, learned, and taught according to the didactic 
transposition process (Chevallard & Bosch, 2020a). Each student learns in several suc-
cessive classes composed of different students, with teachers whose expectations and 
practices are often different, with potential impact on the student’s learning. Teachers, 
who often say they have a “good” class or a “weak” class, may have to deal with signifi-
cant heterogeneity in their students’ knowledge and make teaching choices to help them 
progress toward what is expected. To illustrate this, consider the proof problem shown 
in Fig. 1 and the answers of three middle school students (Table 1) at the beginning of 
grade 9 (14–15 years old).

Students A and C both state that the assertion is true, but student A gives an incorrect proof 
by example, an arithmetic strategy corresponding to primary school practices, while student C 
uses an algebraic strategy that is expected at the end of middle school. Student B also uses an 
algebraic strategy, but incorrectly. Three levels of reasoning emerge from this example. Even 
after studying algebra for two years, students have already developed an algebraic activity that 
may differ from one student to another and be more or less adapted to their further schooling.

In addition, some researchers (Bressoux, 2012; Nye et al., 2004) are interested in the 
potential effect of the class environment on student learning. The class effect is related to 
the composition of the class, the average academic level of the students, their distribution 
between “good” and “not so good” and the resulting heterogeneity, and to the number of 
students in the class. Their studies show that the class effect needs to account for the class-
room teacher’s practices. To contribute to our understanding of the mechanisms underlying 
student learning, we aim to characterize the knowledge that students build in a mathemati-
cal domain (Grugeon-Allys et al., 2018) and the changes in this knowledge according to 
class membership over a school year.1

Therefore, we address the following questions: How can we account for the diversity of 
students’ learning in algebra? How can we summarize the diversity of algebraic learning 
by student and by class? How can we account for the variations in students’ learning over 
the course of a school year depending on the class effect, particularly the learning of other 
students in the class to which they belong?

To answer these questions, we look at student assessment. Assessing only success or 
failure in an item is insufficient. It is necessary to assess the students’ knowledge and rea-
soning, to distinguish them according to whether they are arithmetic or algebraic, and to 
situate them according to curricular expectations.

To do so, we follow the research carried out in France since the 1990s (Artigue et  al., 
2001) on the assessment of students in algebra and the regulation of teaching. We use the 
Pépite2 automated assessment (Chenevotot-Quentin et al., 2016; Grugeon, 1997; Grugeon-
Allys et al., 2018, 2022), from which the task in Fig. 1 is taken, designed both by teachers 
and by researchers in mathematics education and in interactive learning environments. Pépite 
aims to study students’ knowledge and reasoning in a holistic way, from an epistemological 

1  The relations with teaching practices are not included in this article, nor are those with socio-economic 
aspects.
2  The Pépite test is available for 8th, 9th, and 10th grade levels (Chenevotot-Quentin et al., 2016; Grugeon-
Allys et al., 2018).
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and institutional perspective. It associates the students’ answers with knowledge and errors 
listed a priori. Previous studies using Pépite, mainly qualitative, aimed at describing students’ 
learning and helping teachers to manage heterogeneous classes. They highlighted recurring 
patterns in students’ levels of reasoning in algebra. The quantitative study based on Pépite in 
grade 9 presented in this article aims to characterize both the diversity of students’ learning 
of algebra and its variation over the grade 9 school year, considering the class effect (in terms 
of learning).

The rest of the paper is organized as follows; we begin by presenting the theoretical 
background for characterizing students’ learning of school algebra, followed by the meth-
odology. The results are then provided in three sections, followed by the discussion of the 
findings.

1 � Theoretical foundations

1.1 � An anthropological approach

We use the anthropological theory of the didactic (ATD, Bosch et al., 2017; Chevallard & 
Bosch, 2020b), which is based on the hypothesis that mathematical objects do not exist per 
se but emerge from teachers’ practices through the mathematical activities they develop in 
their classes, which may differ from one teacher to another. In ATD, all regularly performed 
human activity is modeled under a single model, called “praxeologies,” in terms of types of 
tasks, techniques used to solve these tasks of a given type, “technological discourse” based 
on knowledge and reasoning developed to justify techniques, and “theories” that organize 
the local technological discourse into coherent structures. We describe the praxeologies 
learned by students in relation to the praxeologies to be taught at the end of middle school 
and at previous levels. Praxeologies are not isolated but structured in relation to each other: 
Praxeologies are aggregated into local praxeologies around a technology, then into regional 
praxeologies around a theory, and finally into global praxeologies around several theories. 
The task in Fig. 1 concerns a praxeology of proof, and the students’ answers reveal three 
techniques involving three different technological discourses.

Fig.1   Example of a proof problem

Table 1   Answers of three middle school students at the beginning of grade 9 to item 6

Student Answer

A For number 1: 1 + 4 = 5; 5✕3 = 15; 15–3 = 12; 12/2 = 6. So, it is true
B x + 4 ✕ 3—3✕ x / 2 = x + 12 -3 x / 2 = -2x + 12/ 2 = -2x + 6. So, it is false
C ((x + 4) ✕ 3—3✕ x) / 2 = (3x + 12 – 3 x) / 2 = 12 / 2 = 6. So, it is true
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To describe learned praxeologies by students that are not always mathematically ade-
quate, we link the techniques used by students, especially those that are erroneous or inap-
propriate, to the use of old knowledge or the incorrect use of new knowledge involving 
kinds of errors and reasoning already highlighted by research on school algebra.

1.2 � Results in the didactics of algebra

A large body of research links students’ difficulties to the discontinuities (Kieran, 2007; 
Vergnaud et al., 1987) that exist between arithmetic and algebraic thinking and to the spec-
ificity of algebraic semiotic practices, particularly with regard to the status of the letter, 
the status of equality, and the use of algebraic knowledge to solve problems. In the 1990s, 
teaching strategies were proposed to introduce algebraic thinking (Bednarz et al., 1996). 
Another approach, which emerged in the 2000s with the “Early Algebra” movement, aims 
to develop algebraic thinking earlier in the curriculum (Carraher et al., 2006; Kieran, 2018; 
Kieran et al., 2016; Radford, 2013) with a continuous trajectory from the beginning of pri-
mary school to the end of middle school.

We summarize findings on the teaching and learning of algebra according to Kieran’s 
(2007) model of algebraic activity. This model is based on three types of activity. First, gen-
erative activity concerns the formation of algebraic objects (formulas, algebraic expressions, 
and equations) in order to solve problems (modelling, generalizing, proving). Solving these 
problems requires translation between different registers of representation (algebraic scripts, 
numerical scripts, graphical representations, geometric figures, natural language). Second, 
transformational activity involves transforming expressions and equations in a way that pre-
serves their equivalence. This may involve substitution, development, factoring, simplifying 
algebraic expressions and solving equations. Transformational activity is based on the struc-
ture of objects (sum, product). Third, global/meta-level activity involves solving modeling, 
generalization, proof, and equation problems that involve analogy (Radford, 2013). It leads to 
algebraic justifications and proofs as opposed to arithmetic reasoning.

These three activities call on the different status of letters (variables, unknowns, as 
opposed to label letters), equality as a relation of equivalence as opposed to equality “to 
perform,” the complementary procedural and structural characteristics (Sfard, 1991) of the 
objects of algebra, their denotation (“Bedeutung”), and their sense (“Sinn”) (Drouhard, 
1992; Frege, 1971), based on their structure.

Thus, algebra is both a tool and an object. It is a tool for solving different types of prob-
lems (Chevallard, 1985, 1989; Ruiz-Munzón et al., 2013) that involve generalization, proof, 
modeling, and equating. It is a structured set of objects—algebraic expressions, formulas, 
equations or inequations—with specific properties and semiotic representations associated 
with different registers and processing modes. The algebraic processing of these objects 
brings into play both their syntactic and semantic aspects, based on a fair balance between 
the technical and theoretical dimensions of processing.

This synthesis is the foundation of both the reference model of algebra presented next 
and the analysis criteria for distinguishing different levels of reasoning.

1.3 � A reference model for elementary algebra

A reference model of a mathematical field (Bosch & Gascón, 2005; Ruiz-Munzón et al., 
2013) is a possible way to describe the complexity of the knowledge to be taught, based 
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on praxeologies. Based on the previous synthesis, the epistemological reference model of 
elementary algebra that we adopted is structured into three regional praxeologies related 
to algebraic expressions, formulas, and equations, which in turn are structured into five 
local mathematical praxeologies (Grugeon-Allys et al., 2022). We present them taking into 
account the three objects, expressions, formulas, and equations:

1.	 “Modeling” praxeologies, noted M, aimed at solving problems of generalization (alge-
braic expressions), modeling (formulas) and equating (equations)

2.	 “Proving” praxeologies, noted P, aimed at proving properties
3.	 “Calculating Numerically” praxeologies, noted CN, aimed at calculating numerical 

expressions and recognizing equalities
4.	 “Calculating Algebraically,” noted CA, aimed at operating on algebraic expressions (sub-

stituting, recognizing, developing, factoring) and equations (testing, solving an equation)
5.	 “Representing” praxeologies, noted R, aimed at translating a relation between definite 

and indefinite elements from one register of semiotic representation to another, or at 
associating several representations of an expression or equation between different semi-
otic registers.

The reference model is used to analyze and link the praxeologies to be taught, taught, 
and learned. The five praxeologies structure the analysis. As presented in the introduction 
to the proof task, students construct praxeologies that are not always mathematically cor-
rect or to what is expected at the end of middle school. We will therefore try to describe the 
levels of reasoning on which they rely in the different praxeologies.

1.4 � Assessment of students’ algebraic learning

Assessing students’ learning requires us to consider that students develop new praxeolo-
gies concerning algebraic expressions and equations in their training at middle school in 
interaction with the praxeologies taught by their teachers. We assess learning in a holistic 
way (Vergnaud, 2009). We characterize the students’ learned praxeologies based both on 
their answers to tasks covering all the local praxeologies to be taught and on the way in 
which they solve them (techniques, knowledge and reasoning). For this purpose, we use 
the 24 tasks of the Pépite test covering the praxeologies of the reference model in algebra 
(Table 2). One task can mobilize several local praxeologies.

The tasks are multiple-choice or open-ended. Figure  1 shows the sixth Pépite task. 
Appendix and Grugeon-Allys et al. (2018) provide other examples. The analysis of Pépite 

Table 2   Praxeologies involved 
in the 9th grade level Pépite Test 
(24 items)

Local praxeologies Number 
of items

Item number

Calculating numerically 3 1.1, 1.2, 1.3
Calculating algebraically 7 5.1, 5.2, 5.3, 7.1, 7.2, 7.3, 10.3
Modelling 3 3.1, 10.1, 10.2
Proving 7 2.1, 2.2, 2.3, 4.1, 4.2, 4.3, 6
Representing 4 3.2, 8.1, 8.2, 9
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is fully automated. Students answer on the computer and an algorithm analyzes and codes 
their answers (closed and open) (Grugeon-Allys et al., 2018). In addition, Pépite not only 
assesses the validity of the answers produced by the students, task by task, but also assesses 
the validity of the answers produced by each student regarding what is expected in the cur-
riculum. Indeed an a priori analysis of each task also enables an assessment of the knowl-
edge and reasoning used by the student to justify his or her answer to each praxeology.

1.5 � Technological‑theoretical levels of students’ algebraic learning

We assess the learned praxeologies according to four technological-theoretical levels 
(Grugeon-Allys, 2016) on each local reference praxeology, called θ-levels. Based on the 
epistemological study of algebra presented above, we define these θ-levels a priori by hier-
archizing them as shown in Table 3. These θ-levels enable us to distinguish the knowledge 
and reasoning used by a student for each task of a given type. These levels are then used 
to code the students’ answers according to each local praxeology, as described in Table 4.

Given a school level, for each item, possible students’ answers are listed and a priori 
coded in an analysis according to whether they are correct (V1 or V2 coding3) or not (V3 
coding) and the θ-level they involve in each praxeology (Grugeon-Allys, 2016; Grugeon-
Allys et al., 2022). Tables 5 and 6 show an excerpt from this analysis for the item shown in 
Fig. 1. We have chosen to indicate the most frequent (non-exhaustive) techniques identified 
in the didactic analysis and in the students’ recurrent answers. These techniques can be 
based on primary arithmetic or algebraic and depend on the correct or incorrect semiotic 
representations used. They are related to the corresponding θ-level on the list.

The answer analysis of the three students presented in Table 1 is detailed in Table 7.
The definition of θ-levels enables a macroscopic analysis on all tasks with the same 

coding to avoid sticking to a microscopic and task-by-task analysis. We can then identify 
the knowledge and reasoning that students predominantly use on all the tasks related to the 
same local praxeology. The student’s learned praxeology in algebra is therefore described 
by his or her percentage of successful tasks and by five θ-levels related to each of the five 
local praxeologies, described by a sextuplet.4

Table 3   Description of the θ-levels for algebra

Level Description for the algebraic field

Adequate (A) Appropriate algebraic justification with formulation of the expected knowledge
Weakly adequate (WA) Appropriate algebraic justification without formulation of the expected knowl-

edge
Under construction (UC) Appropriate algebraic justification for direct application tasks, but incomplete or 

unsuitable justification for more complex tasks, which lets erroneous formal 
rules live or rules used outside their field of validity. The expected knowledge 
and the aggregation of the different praxeologies are under construction

Old (O) Justification using primary school arithmetic, with errors linked to a failure to 
negotiate the epistemological break between arithmetic and algebra

3  V2 means that the answer is correct but not expected at this grade level.
4  A sextuplet could be noted (success (%),θ-level on M, θ-level on P, θ-level on R, θ-level on CA, θ-level on 
CN).
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In projects using Pépite, an algorithm determined the dominant θ-levels for each local 
praxeology (Grugeon-Allys et al., 2022), with thresholds set based on experience. In addi-
tion, we have defined three groups of students (Grugeon-Allys et al., 2018) to enable teach-
ers to better organize their teaching according to the learning needs of their students. For 
each group, a type of reasoning is used predominantly, either an adequate algebraic reason-
ing, or one in the process of being constructed, or one taken from elementary school. In 
this study, this algorithm is not used as we perform statistical analyses on all the θ-levels 
used by students in their answers.

1.6 � Research questions

A teacher needs to have an overview of his or her class to know what his or her students’ 
learning needs are. Even if the potential number of learned praxeologies (sexuplets) is 
large, there are certainly praxeologies learned by students who are close, that is, with many 
of the same θ-levels on all tasks (for instance, a majority of “Adequate” per local praxeolo-
gies). The composition of one class may differ from another, depending on the praxeolo-
gies learned by the students who make up the class. Indeed, in any class, there may be a 
varying number of students with adequate, old, or under construction learned praxeolo-
gies, which does not offer the same learning conditions to the students. Therefore, we ask 
for classes (RQ1): Are there similar classes in terms of learning, that is, with most of the 
same θ-levels of local praxeologies on all task answers of students composing a class? And 
for students (RQ2): Are there students with similar learned praxeologies? In addition, for 
similar classes and students, we want to know (RQ3) if there are any variations between 
the beginning and the end of the grade 9 year. And (RQ4) do these variations rely on class 
effect (in terms of learning)?

Table 7   Analysis and coding of the answers of three students to item 6

Student Analysis and coding

A The answer is incorrect, coded V3, of an arithmetical nature without algebraic modeling, coded 
M_O, with a proof by example, coded P_O, with a correct representation of the numerical 
calculations step by step, coded R_A and CA_UC as algebraic calculations are expected at the 
end of secondary school (third row of Table 5)

B The answer is incorrect, coded V3; the modelling is algebraic, but the representation of the cal-
culation program is incorrect (no brackets indicating operating priorities), so it is coded M_UC 
and R_UC; the proof is algebraic but the calculations are incorrect (no development) so they are 
coded P_UC and CA_UC (fourth line of Table 6)

C The answer is correct, so it is coded V1; the modelling and proof are algebraic, so are coded M_A 
and P_A; the calculation program is correctly translated (use of brackets), so is coded R_A; 
the development and reduction of the expression are correct, so are coded CA_A (first line of 
Table 6)
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2 � Methodology

This large-scale study involves a sample of 36 classes and 771 students and their teach-
ers (36). We begin by presenting how the sample was constituted for this large-scale 
study. We then move on to the construction of the databases, showing how the refer-
ence model of algebra and the θ-levels serve as a basis for structuring data and inter-
preting statistical analyses. Finally, we present the multivariate descriptive statistical 
methods used to obtain clusters of classes and students to establish learning similari-
ties between classes (RQ1) and students (RQ2) at the beginning and at the end of the 
year (RQ3). The study of class and student belonging to clusters between the begin-
ning and end of the year enables us to analyze variations over the school year in rela-
tion to class effect (RQ4).

2.1 � Sampling

The sample was constructed with the help of the Limoges Académie French educational 
authority.5 It is not representative of the population studied, but it was built according to 
specific criteria, presented in Table  8, to have a diversity of teaching contexts (rural or 
urban, public or private education, priority or not education) and teachers (experience and 
age) within the Académie.

The 771 grade 9 students were distributed in 36 classes, from the same academy. The 
students in the sample classes took the same Pépite algebraic test twice during the school 
year, Test 1 at the beginning and Test 2 at the end of the 9th grade. Each test was admin-
istered during a 50-min class period. The administration of the tests in schools was man-
aged by the DEPP and the Limoges Académie during the 2018–2019 school year, which 
was not a period of educational reform in France. We did not meet the teachers or the 
students and had no information on how the teachers planned their lessons or on what was 
taught.

Table 8   Criteria used to select the sample

Variables Choice

Education authority The same: “Académie” of Limoges
Number of classes according to the population den-

sity of the three departments in the “Académie”
17 in Corrèze, 8 in Creuse and 16 Haute-Vienne

Diversity of the establishments to which the classes 
belong

4 classes in private establishments under contract, 3 
classes in public establishments in priority educa-
tion, 29 classes in public establishments outside 
priority education

Regional diversity 20 classes in rural areas, 16 classes in urban areas
Number of students per class From 13 to 29 students
Age of teachers From 26 to 62
Number of years’ experience From 1 to 30 years

5  In France, an Académie is an administrative district of the Ministry of National Education and the Minis-
try of Higher Education and Research.
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2.2 � Organizing the data

We built a database of students’ responses coded in relation to the θ-levels for each 
local praxeology of algebra to study similar classes or similar students. Once the 771 
students passed the tests, the collected data were anonymized, cleaned, and organized 
into databases in the form of individuals/variables tables. The data were cleaned to keep 
only the 25 classes in which at least 15 students passed Test 1 and the 454 students that 
took both tests. We constructed two classes databases C1 and C2 (unit of analysis is the 
class), one for each test to answer to RQ1 and RQ3. Respectively, we constructed two 
students databases S1 and S2 (unit of analysis is the individual student), one for each 
test to answer to RQ2 and RQ3.

The databases are structured by continuous quantitative statistical variables concern-
ing the success rate and the θ-levels of the local algebraic praxeologies. We built these 
databases on the initial coding of the students’ answers in Pépite (Fig. 2), where each 
row captures the coding of a student’s answer to an item and each column corresponds 
to the θ-levels of the local praxeologies. A 1 is assigned when the answer corresponds 
to that θ-level.

Fig. 2   Coding of the answers to the 24 items in Pépite from student 22 in class 1016269
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For the classes database, an extract of which is presented in Fig. 3, the values of the 
variables displayed in the columns are the results of several calculations, carried out on 
tasks answered by the students of each class:

–	 A Success rate: the percentage of tasks successfully answered by the students in the 
class.

–	 A Failure rate: the percentage of failed items. The sum of the Success and Failure rates 
does not necessarily equal 100%, because the calculation does not consider the tasks 
not processed and the answers not analyzed by the Pépite software.

–	 A rate on each θ-level for each praxeology of algebra: percentage calculated from the 
sum of the “1” for each variable, for all the answers on the tasks processed by the stu-
dents in the class.

Note that not all θ-levels appear in Fig. 2. To obtain consistent statistical analyses, it 
was necessary to group certain θ-levels because some students did not answer to the open-
ended modeling and proof tasks. The same rates are calculated for each student on each 
test:

–	 A Success rate: the percentage of successful items completed by the student.
–	 A Failure rate: percentage of failed items.
–	 A rate on each θ-level for each praxeology: percentage calculated from the sum of the 1 

for each θ-level, for all the student’s answers.

2.3 � Multivariate descriptive analysis

Given our research questions and the large sample, we apply multivariate descriptive sta-
tistical analyses to these databases, in particular principal component analysis (PCA) and 
hierarchical agglomerative clustering (HAC), to determine clusters both of classes and stu-
dents and the variables (θ-levels for each local praxeology) that best identify them.

The objective of a PCA is to identify the structure of the data based on the most relevant 
dimensions using a factorial method to obtain an overview of the similarities between indi-
viduals, in this case the characterization of classes in terms of learning and then that of the 

Fig. 3   Extract from the classes database for Test 1, showing the proportion of success and failure and the 
various praxeologies
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students. This method consists of constructing and selecting new variables, the principal 
components, obtained from the correlation matrix constructed on the data; these summa-
rize the most important information in the database. The principal components enable us 
to determine one or more factorial plans that maximize the information in the cloud of 
points-individuals projected on these designs (Hahn & Macé, 2017). The quality of the 
representation of individuals and variables is obtained using the Cos2 method (Hahn & 
Macé, 2017). The representations used for PCA, such as correlation circles and individual 
scatterplots, are visual graphical summaries. Correlation circles indicate which of the lin-
ear combinations of variables are the most informative for each factorial axis. In this study, 
PCAs were performed on the classes and then the students databases for Tests 1 and 2. 
Studying the scatterplots of classes and students enables us to locate them in relation to 
each other and to situate classes or students according to the direction of the factorial axes 
we have interpreted.

HACs are then performed to further group classes or students into clusters that are simi-
lar in terms of learning. We chose this clustering method because the structure of the clus-
ters is not known in advance, and our data have an intrinsic hierarchical structure (hier-
archy in θ-levels for each local praxeology). An HAC consists of performing a series of 
successive partitions of individuals, nested one within the other, with the groupings into 
clusters being made in relation to the greatest proximity of the individuals. HACs were 
performed on data reduced by PCAs. This choice was made to simplify the complexity of 
the data while preserving crucial information. Comparing the clusters obtained by the PCA 
and HAC of Test 1 with those of Test 2 for the classes and students enables us to study the 
variation of learning over a school year (RQ3) and the link with the composition of the 
classes in terms of learning (RQ4).

3 � Results: similar classes in terms of learning and their variation 
over the school year

3.1 � A multivariate analysis on test 1 results per class

We identify similar classes and their characteristics on the C1 database. To facilitate 
PCA, certain statistical variables have been grouped together. For example, Represent-
ing_Adequate and Representing_Weakly-Adequate have been grouped together into 
Representing_Adequate_Weakly-Adequate.

The PCA identifies a first factorial plane (71% of the information) and the four vari-
ables correlated with Axis 1 (59% of the information) that best contribute to its formation, 
namely, Failure, Success, Calculating-Algebraically_Adequate, and Representing_Ade-
quate_Weakly-Adequate (Fig. 4). These variables have a very good representation quality 
of since their cos2 is greater than 0.8. Calculating-Numerically_Weakly-Adequate and Cal-
culating-Numerically_Old variables are correlated with Axis 2 (12% of the information) 
but with a less good quality of representation.

In the first factorial plane (Fig. 5), the classes located farthest to the right in the first and 
fourth quadrants have a good Success rate, as well as Calculating-Algebrically_Weakly-
Adequate (correlated with axis 1) and Calculating-Numerically_Weakly-Adequate, unlike 
the classes located farthest to the left. For several classes located in the middle, with Cos2 
close to or less than 0.25, the quality of the representation is less good than those with a 
Cos2 greater than 0.5.
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Fig. 4   Correlation circle in the first factorial plane for Test 1 (N = 25)

Fig. 5   Distribution of classes in Test 1 on the first factorial plane and quality of their representation (N = 25)
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Fig. 6   Correlation circle of the second factorial plane for Test 1 (N = 25)

Fig. 7   Distribution of classes on the second factorial plane and quality of representation for test 1 (N = 25)
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The second factorial plane (68% of the information) shows a good quality of repre-
sentation for the variable Calculating-Numerically_Under-Construction on Axis 3 (9% 
of the information) (Fig. 6). Figure 7 shows the distribution of the classes on the second 
factorial plane.

We interpret these two factorial planes as relating the Adequate or Old θ-levels of 
algebraic praxeologies and θ-levels of Calculating-Numerically in order to study class 
similarity.

The HAC then identifies three clusters of similar classes (Fig.  8), called Cl-A1 (4 
classes), Cl-B1 (14 classes), and Cl-C1 (7 classes) and described in Fig. 9.

Cluster Cl-A1 has a higher Success rate (53%) than Failure (40%), and the rates for 
the Adequate or Weakly-Adequate θ-levels concerning each praxeology are close to 

Fig. 8   Three clusters of similar classes on Test 1 (N = 25)
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Fig. 9   Percentages for the variables that best contribute to the formation of the first factorial plane on Test 1 
(a) and Test 2 (b)
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50%. At the beginning of the school year, the Cl-A1 classes contain many students who 
use the algebraic practices expected at this school level.

Cluster Cl-B1 has a lower Success rate (41%) than the Failure rate (53%). These classes 
have rates for the Adequate or Weakly-Adequate θ-levels concerning Calculating-Alge-
braically, Modeling, and Representing that are close to 30%. But the rate on Calculating-
Numerically_Weakly-Adequate is 46% indicating that these classes have a learning leverage 
for Calculating-Numerically. Having a rate of Calculating-Numerically_Weakly_Adequate 
seems to be a lever at the beginning of the school year. This cluster brings together classes 
of rather heterogeneous composition.

Cluster Cl-C1 has a very low Success rate (30%) and very low rates on the Adequate or 
Weakly-Adequate levels below 30%. Moreover, the rate on Calculating-Numerically_Old 
is high (60%). At the beginning of the school year, the Cl-C1 classes have a predominantly 
primary arithmetical practices to solving algebraic problems. The Calculating-Numerically 
praxeology is a not lever for classes that are far from what is expected by the school.

3.2 � Variation during a school year

We performed the same analyses on the C2 database. The variables that best contribute to 
the formation of the first factorial plane are the same as in Test 1, except for Calculating-
Numerically_Old (absent) and Proving_Adequate (new). We study how the classes are dis-
tributed in the clusters of the two tests (RQ1) and how the classes move from one cluster to 
another (RQ3).

The PCA and HAC analyses distinguish three clusters, called Cl-A2 (9 classes), Cl-B2 
(13 classes) and Cl-C2 (3 classes) (Fig. 10).

The characteristics of the three clusters in Test 1 (Cl-A1, Cl-B1, Cl-C1) and those of the 
Test 2 (Cl-A2, Cl-B2, and Cl-C2) are broadly comparable for all the variables that best con-
tribute to the formation of the first factorial plane (Fig. 9), although the Success rate in Test 
2 is higher than in Test 1 for each cluster (5 points higher for Cl-A2 and Cl-B2 and 2 points 
higher for Cl-C2).

Fig. 10   Three clusters of similar classes on Test 2 (N = 25)
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The comparison of the number of classes in each cluster shows that the number of 
classes is greater in Cl-A2 than in Cl-A1 (4 Cl-A1 and 9 Cl-A2), less in Cl-C2 than in 
Cl-C1 (7 Cl-C1 and 3 Cl-C2), and closer in Cl-B2 (13 classes) and Cl-B1 (14 classes). 
Furthermore, as shown in Table  9, 10 classes advance by changing clusters, 5 from 

Table 9   Variation of the 
distribution by cluster of classes 
between Tests 1 and 2

Legend:
An arrow → indicates that classes remain in a cluster of equivalent 
level between Test 1 and Test 2 (e.g., classes in Cl-A1 then in Cl-A2)
An arrow ↗ indicates that classes progress to a higher-level cluster 
between Test 1 and Test 2 (e.g., classes in Cl-B1 then in Cl-A2)
An arrow ↘ indicates that classes regress to a lower-level cluster 
between Test 1 and Test 2 (e.g., classes in Cl-B1 then in Cl-C2)

Test Frequency (%)

Test 1 Test 2

Cluster Cl-A1 4 (16) Cl-A2 → 4 (16)
Cl-B1 14 (56) Cl-A2 ↗ 5 (20)

Cl-B2 → 8 (32)
Cl-C2 ↘ 1 (4)

Cl-C1 7 (28) Cl-B2 ↗ 5 (20)
Cl-C2 → 2 (8)

Total Total of classes 25 (100) Total of classes 25 (100)

Table 10   Variation of the 
distribution by cluster of students 
between Test 1 and Test 2

Legend:
An arrow → indicates that students remain in a cluster of equivalent 
level between Test 1 and Test 2 (e.g., students in St-A1 then in St-A2)
An arrow ↗ indicates that students progress to a higher-level cluster 
between Test 1 and Test 2 (e.g., students in St-B1 then in St-A2)
An arrow ↘ indicates that students regress to a lower-level cluster 
between Test 1 and Test 2 (e.g., students in St-B1 then in St-C2)

Test Frequency (%)

Test 1 Test 2

Cluster St-A1 116 (26) St-A2 → 72 (16)
St-B2 ↘ 36 (8)
St-C2 ↘ 8 (2)

St-B1 178 (39) St-A2 ↗ 38 (8)
St-B2 → 73 (16)
St-C2 ↘ 67 (15)

St-C1 160 (35) St-A2 ↗ 4 (1)
St-B2 ↗ 50 (11)
St-C2 → 106 (23)

Total Total of students 454 (100) Total of students 454 (100)
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Cl-B1 to Cl-A2 (especially for Proving_Adequate), and 5 from Cl-C1 to Cl-B2. On 
average, by the end of the year, students in these five classes improve their arithmetic 
practices and begin to use the algebraic practices expected at this grade level to solve 
algebraic tasks, even if some algebraic techniques are still incorrect. Only one class 
regresses from Cl-B1 to Cl-C2 which means that, overall, this class uses more arith-
metic practices than at the beginning of the year. The other classes progress within the 
same cluster, from Cl-A1 to Cl-A2 (4 classes) or Cl-B1 to Cl-B2 (5 classes) or Cl-C1 to 
Cl-C2 (2 classes). These classes perform better but with no significant change in their 
practices.

Statistical analysis has revealed three clusters of similar classes at the beginning 
and end of the year, answering to RQ1. The levels on the Calculating-Numerically, 
Calculating-Algebraically, Modeling, and Representing (i.e., 4 of the 5 local praxeolo-
gies) that best represent these clusters are consistent within each cluster, with rates at 
the Adequate or Weakly_Adequate levels close to or above 50% for Cl-A1 and Cl-A2, 
between 30 and 50% for Cl-B1 and Cl-B2, and close to or below 30% for Cl-C1 and 
Cl-C2 (Fig. 9). These characteristics are consistent with the informal labels often used 
by teachers to designate “good” and “weak” classes, but they provide criteria for learn-
ing algebra and can guide teaching decisions to manage class heterogeneity.

To answer RQ3 about classes, comparing the overall distribution of classes within 
clusters shows that not all classes are moving in the same direction in terms of learn-
ing between the beginning and the end of the year. Classes in the Cl-A1 cluster move to 
Cl-A2, while a majority (5 out of 7) of Cl-C1 classes move to Cl-B2, marking an evolution 
in the Calculating-Numerically praxeology. Cl-B1 classes evolve in very different ways.

These analyses are based on rates calculated by class, which do not provide any informa-
tion about the students’ learning who make up these classes. This is why the following analy-
ses focus on students (RQ2 and RQ3).

4 � Results: similar students’ learned praxeologies in algebra and their 
variation during a school year

4.1 � A multivariate analysis on test 1 results per student

We identify clusters of students with common learning characteristics on the S1 database. 
PCA identifies a first factorial plane (62% of information) with six variables that best con-
tribute to its formations (Fig.  11): Success, Calculting-Numerically_Weakly-Adequate, 
Failure, Calculting-Numerically_Under-Construction_Old, Calculating-Algebraically_
Adequate, and Representing_Adequate_Weakly-Adequate. As for classes, we interpret the 
first factorial plane as relating the Adequate or Old θ-levels of algebraic learned praxeolo-
gies and θ-levels of Calculating-Numerically. The HAC then leads to the identification of 
three clusters of students (Fig. 12), named St-A1 (26%), St-B1 (39%), and St-C1 (35%), 
and described in Fig. 13.

Cluster St-A1 includes students whose Success rate (60%) is very high compared to 
Failure rate (32%) and whose rates on the Adequate or Weakly-Adequate θ-levels on three 
of the five local praxeologies (Calculating-Numerically, Calculating-Algebraically, and 
Representing) close to 60%. St-A1 students start the school year with already well-estab-
lished algebraic practices.
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Fig. 11   Correlation circle in the first factorial plan for Test 1

Fig. 12   Three clusters of similar students on Test 1 (N = 454)
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Cluster St-B1 is composed of students whose Success rate (38%) is lower than the Fail-
ure rate (47%) and whose rates on the Adequate or Weakly-Adequate are close to 30% on 
Calculating-Algebraically and Representing. The rate for Adequate and Weakly-Adequate 
(56%)  in Calculating-Numerically is the highest among  the Adequate and  Weakly-Ade-
quate θ-levels of other praxieologies and is higher than for Under-Construction and Old 
(40%). Students in St-B1 start the year having built up Calculating-Numerically praxeolo-
gies, which are a possible support point for moving towards algebraic practices.

Cluster St-C1 is composed of students whose Success (22%) rate is very low compared 
to the Failure rate (63%) and whose rates on Adequate or Weakly-Adequate on three of 
the five local praxeologies (Calculating-Numerically, Calculating-Algebraically, and Rep-
resenting) are less than 20%. Calculating Numerically is not a support for these students 
(82% on Under-Construction or Old levels against 16% on Weakly-Adequate). St-C1 stu-
dents start the year well below school expectations.

4.2 � Variation between tests 1 and 2

We performed the same analysis on S2 database. The variables that best contribute to the 
formation of the first factorial plane are the same. To answer RQ3 for students, we then 
compared how students are distributed in clusters on the two tests, and which cluster each 
student belongs to at the beginning and end of the year. Analogous analyses carried out on 
the S2 database led to three clusters, St-A2 (25%), St-B2 (35%), and St-C2 (40%) (Fig. 14).

The clusters for Test 1 and Test 2 are comparable across all variables (Fig. 13), but 
with more or less pronounced changes for certain variables depending on the clusters. 
The Success rate in Test 2 is higher than in Test 1 for each cluster (16 points higher 
for St-A2, 11 for St-B2, and 5 for St-C2). Students in St-C2 are making progress in 
Calculating-Numerically, with the rate on Weakly-Adequate almost doubling although 
still very low (31%), but not in Calculating-Algebraically_Adequate and Representing_
Adequate-Weakly-Adequate. Calculating-Numerically praxeology is not always a point 
of support.
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Test 2: End of Grade 9 (N=454)
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Fig. 13   Percentages for the variables that best contribute to the formation of the first factorial plane on Test 
1 (a) and Test 2 (b)
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The composition of the clusters varies slightly between the two tests. However, St-C2 
has slightly more students than St-C1 (about 40% against 35%) and the reverse is true for 
St-B2 and St-B1 (35% versus 39%).

According to Table 10, 45% of the students progressed without changing cluster (16% 
from St-A1 to St-A2, 16% from St-B1 to St-B2, and 23% from St-C1 to St-C2), that is, 
there are no major advances in the θ-levels they use to solve algebraic problems. Twenty 
percent of the students progressed with changing cluster (8% from St-B1 to St-A2, 1% from 
St-C1 to St-A2, 11% from St-C1 to St-B2). At the end of the year, these students belonged 
to clusters that had learned praxeologies closer to what is expected at the end of 9th grade. 
However, about 25% of students regressed and, at the end of the year, belonged to clus-
ters that had built praxeologies that are different from what is expected (8% from St-A1 to 
St-B2, 15% from St-B1 to St-C2, and 2% from St-A1 to St-C2).

Taking these results together, we answer RQ2, indicating that the students’ learned 
praxeologies fall into three clusters at the beginning and the end of the year with similar 
characteristics. They are consistent in terms of learning on the Adequate and/or Weakly-
Adequate levels of the representative local praxeologies, Calculating-Numerically, Calcu-
lating-Algebraically, and Representing: rate above 50% for St-A1 and St-A2, rate between 
30 and 50% for St-B1 and St-B2, and rate below 30% for St-C1 and St-C2 (Fig. 13). In the 
light of these results, we associate each cluster with a dominance described by the same 
level on these three local praxeologies: Adequate and/or Weakly-Adequate for St-A1 and 
St-A2, Under-Construction for St-B1 and St-B2, and Old for St-C1 and St-C2. Further-
more, we find that the Modeling and Proving praxeologies are not representative in the 
characterization of the clusters, which raises questions about the place attributed to these 
praxeologies in algebra teaching.

Between the beginning and the end of the school year, despite a higher success rate in 
Test 2, the proportion of students in each cluster remain fairly close (Table 10): A quarter 
of the students (St-A1 and St-A2) have learned the praxeologies expected at the end of 
middle school, between 35 and 40% of the students (St-C1 and St-C2) have old praxeolo-
gies, and between 39 and 35% of the students (St-B1 and St-B2) have praxeologies under 

Fig. 14   Three clusters of similar students for Test 2 (N = 454)
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construction. However, some students change cluster (Table  10), with 20% progress 
and 25% regress. Calculating-Numerically is the central lever for moving from cluster 
St-C1 to St-B2. These results are comparable to those found in work using Pépite, but 
they are richer because they indicate what is most representative of the students’ learned 
praxeologies.

5 � Variations in students’ learning within the same class over the school 
year

We study links between variations in students’ learning and the class effect (RQ4) during 
one year.

To do this, we go deeper into the characterization of similar classes for Test 1, particu-
larly to improve the description of cluster Cl-B1. For each class, we examine the distribu-
tion of students according to the cluster to which they belong.

First, we combine multivariate descriptive analyses on classes and students to com-
pare the distribution of students in similar classes on Test 1. In this way, we identify com-
mon characteristics in the distribution of students in classes of the same cluster, which we 
express in terms of threshold percentages of students (Table 11).

Two similar classes according to PCA and HAC have student distributions that follow 
the same trend for clusters Cl-A1 and Cl-C1 (Table 11), but with different trends for cluster 
Cl-B1. For the classes in this cluster, we distinguish three intervals on St-A1 and St-C1 to 
better characterize the proximity of Cl-B1 classes and to be more useful for interpreting 
learning variations.

Second, in order to further investigate the fact that similar classes do not evolve in the 
same way, Fig. 15 shows the variation of the distribution of students between Tests 1 and 2 
within each class, distinguishing between students who progress without changing cluster 
(St-A1 to St-A2, St-B1 to St-B2, St-C1 to St-C2), with changing clusters (St-B1 to St-A2, 

Table 11   Class characterization for Cl-A1, Cl-B1 and Cl-C1 clusters

Class 
clusters 
for Test 1

Cross-characterization with HCA student clusters 
on Test 1

New characterization Number 
of classes

Cl-A1 -St-A1 around half or more
-St-A1 and St-B1 greater than 80%

4

Cl-B1 -St-A1 less than 50%
-St-A1 and St-B1 between around 50% and 80%

Subgroup 1: Cl-B1-1
-St-A1 between 40 and 50%
-St-C1 less than 25%

4 14

Subgroup 2: Cl-B1-2
-St-A1 between 20 and 40%
-St-C1 between 25 and 50%

8

Subgroup 3: Cl-B1-3
-St-A1 less than 20%
-St-C1 between 25 and 50%

2

Cl-C1 -St-C1 greater than 50%
-St-A1 less than 10%
-St-A1 and St-B1 less than 50%

7
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St-C1 to St-B2, St-C1 to St-A2) and those who regress (St-A1 to St-B2, St-A1 to St-C2, 
St-B1 to St-C2).

All but one class make progress, but not all classes show the same growth in student 
learning. To do this, we take into account the percentage of students present for both 
tests as new information about the class in Fig.  15. This one varies between 55 and 
100% depending on the class. We comment on the most salient results.

The seven Cl-C1 classes have a low rate of attendance (only 52% to 76% of students 
passing both tests), whereas Cl-A1 classes have high rate of attendance (72% to 100% 
of students passing both tests). Students in Cl-C1 classes seem to be progressing better 
overall than those in Cl-A1 classes. Likewise, the students in two classes (1710604 in 
Cl-B1-2, 2307079 in Cl-C1) are all making progress, but around a third of the class is 

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

4395992, A1 to A2, 29/29 (100%)

8113711, A1 to A2, 14/18 (78%)

9081242, A1 to A2, 27/30 (90%)

1682439, A1 to A2, 13/21 (62%)

4309761, B1-1 to B2, 20/26 (77%)

1789941, B1-1 to B2, 13/15 (87%)

3318285, B1-1 to A2, 20/22 (91%)

4050694, B1-1 to A2,27/30 (90%)

1016269, B1-2 to A2,22/29 (76%)

1710604, B1-2 to A2, 16/22 (73%)

3906447, B1-2 to B2, 15/19 (79%)

5048524, B1-2 to B2, 14/20 (70%)

7420933, B1-2 to B2, 23/27 (85%)

8324322, B1-2 to B2, 20/23 (87%)

8838896, B1-2 to A2, 17/19 (89%)

8951136, B1-2 to C2, 18/23 (78%)

4699980, B1-3 to B2, 23/30 (59%)

9800039, B1-3 to B2, 14/18 (78%)

7231552, C1 to B2, 19/25 (76%)

2307079, C1 to B2, 18/28 (64%)

3933855, C1 to B2, 18/26 (69%)

3714802, C1 to C2, 16/24 (67%)

9879528, C1 to B2, 11/21 (52%)

2010183, C1 to B2, 12/22 (55%)

2833478, C1 to C2, 15/20 (75%)

Students progressing without changing cluster Students progressing with changing cluster

Students in regressions with changing cluster

Fig. 15   For each class (N = 25), percentage of students progressing or regressing between the two tests, and 
percentage of students taking part in both tests
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missing. As absenteeism is very high, these results cannot be interpreted in relation to 
the initial class composition.

Students in five of the nine Cl-A2 classes passed both tests at over 89%. Three of these 
classes progressed from Cl-B1-1 or Cl-B1-2 to Cl-A2, with more students in these classes 
progressing (from 74 to 80%) than students in the other two classes (around 70%).

Although the progression is substantial from Cl-C1 to Cl-B2, for five of the seven 
classes, it is important to notice that only between half and three quarters of students 
are present for both tests. The progress of students who change clusters in these classes 
concerns 25% to 56% of them. However, the regression of students from one cluster to 
another is much lower than in the classes from Cl-A1 or Cl-B1, which may be related to 
absenteeism.

We cannot interpret these results further and answer RQ4 because absenteeism does not 
allow us to return to the initial composition of the class.

6 � Discussion

The originality of this large-scale statistical study lies in its didactic foundations, in par-
ticular the characterization of elementary algebra by five local praxeologies and the hier-
archy of students’ reasoning and knowledge by four θ-levels. This reference model of ele-
mentary algebra structures the databases and allows us to define similar classes and similar 
students, to study their variation for a year (RQ1, RQ2, and RQ3). The statistical analyses 
used, PCA and HAC, reflect the quality and relevance of the data coding. They are mutu-
ally consistent and interpretable with respect to the reference model (e.g., description of 
clusters).

Some of our choices could be questioned. Firstly, we grouped θ-levels of the same prax-
eology across the analyses to address impossible to code or missing answers. This group-
ing is a limitation when it comes to characterizing clusters by praxeologies and the most 
representative levels associated with them. Secondly, we chose to build the class base by 
aggregating the coding of all students’ responses to all items. Another option would have 
been to use student clusters, taking as a variable the number of students in each student 
cluster in each class. This would make it possible to interpret the similarity of the classes in 
terms of learning and their variation regarding the composition of the classes according to 
the number of students per cluster at the beginning of the year.

In addition, our study reveals a methodological limitation regarding the inclusion of stu-
dent absenteeism in both tests which did not allow us to answer RQ4. Limiting absentee-
ism turns out to be an indispensable condition for studying the dependence, if any, between 
the evolution of students’ learning and the class effect. These methodological comments 
led us to define the conditions for a new study, which could be a large-scale study on a rep-
resentative sample of students and schools in France.

In addition to the composition of the class, according to student learning, we could 
take into account the teaching choices and practices of French teachers that influence 
the variation of students’ learned praxeologies. The Praesco6 study (Content-Specific 
Teaching Practices) (Coppé et  al., 2021a, 2021b) has shown that there are four dif-
ferent clusters of teaching practices. They depend particularly on whether teachers 

6  PRAESCO: PRAtiques d’Enseignement Spécifiques aux COntenus.
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emphasize algebraic problem-solving or the technical aspect of algebraic calculation, 
and whether they take into account students’ productions. To fully answer RQ4, we 
could examine the possible links between variations in similar classes over a school 
year and the teaching choices of their teachers according to the clusters of practices to 
which they belong.

Appendix

Examples of Pépite items

We present three items from Pépite (early 9th grade) and excerpts from their a priori 
analyses.

Choice A priori analysis for item 1.2 Code

3/5 Addition of numerators and of denominators V3 CN_O
3/6 Addition of numerators and product of denominators V3 CN_UC
5/6 Incorrect rule for reducing to the same denominator V3 CN_UC
7/6 Correct V1 CN_A



	 B. Grugeon‑Allys, J. Pilet 

A priori analysis of item 2.1 when a student selects “False” Code

a2 = 2a
False

Use of a counterexample to invalidate a2 = 2a
(32 = 9 et 2 × 3 = 6 or 9 ≠ 6 So a2 ≠ 2a)

V1 P_A

Algebraic justification by comparing definitions
(a × a = a2 ≠ a + a = 2a)

V1 P_A

Algebraic justification by comparing general definitions
(an ≠ a × n)

V1 P_A

Justification by textual definition
(When a number is squared, we multiply it by itself and not by the 

exponent)

V1 P_WA

Justification by comparing operations
(Addition and multiplication must not be confused)

V1 P_WA

Incomplete algebraic justification
(Because: a2 = a × a)

V3 P_UC
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Possible solutions A priori analysis of item 3.1 Coding

(x + 2) (x + 3) Use the definition of the area of a rectangle (with com-
mutativity)

V1, M_A, CA_A, R_A

x2 + 5x + 6 Expanded expression of area V1, M_A, CA_A, R_A
x + 2 (x + 3) Use the definition of the area of a rectangle, but without 

using parentheses for the two factors
V3, M_A, CA_UC, R_UC

x + 2 × x + 3 Use the definition of the area of a rectangle, but without 
using parentheses

V3, M_A, CA_UC, R_UC

2 (x + 3 + x + 2) Confusion between area and perimeter V3, M_O, CA_A, R_A
2x × 3x
5x2

6x2

Abbreviated translation V3, M_O, CA_O, R_O
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