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ON SUMS OVER PRIME IDEALS

BRUNO ANGLÈS, HUY HUNG LE, AND TUAN NGO DAC

Abstract. In 2017 Speyer proved a rational theorem for certain sums over

irreducible polynomials of the polynomial ring A = Fq [θ]. In this paper we
generalize Speyer’s theorem for sums over prime ideals for an arbitrary coeffi-

cient ring A. Our approach is based on the theory of Goss’s zeta values and

that of Drinfeld-Hayes A-modules related to the class field theory.

Contents

1. Introduction 1

2. Goss’s zeta values and Drinfeld-Hayes modules 3

3. Symmetric polynomials 6

4. A generalization of Speyer’s theorem 9

5. Vanishing and non-vanishing results for the first sum 13

References 16

1. Introduction

Throughout this paper, Z≥0 (resp. N) denotes the set of non-negative integers
(resp. the set of positive integers).

Let Fq be a finite field of q elements, where q is a power of a prime number p.
Let K/Fq be a global function field (Fq is algebraically closed in K) and ∞ be a
place of K. Let A be the ring of elements of K which are regular outside ∞. Let
K∞ be the ∞-adic completion of K and F∞ be the residue field of K∞ of degree
d∞ := [F∞ : Fq]. We denote by v∞ the discrete valuation on K corresponding to
the place ∞ normalized such that v∞(K×∞) = Z. Let C∞ be the completion of a
fixed algebraic closure K∞ of K∞. The unique valuation of C∞ which extends v∞
will still be denoted by v∞.

1.1. Speyer’s theorem for A = Fq[θ].
In [14] Speyer considered the function field K = Fq(θ) where θ is an indetermi-

nate over Fq and the place∞ which is the pole of θ. Then A = Fq[θ], K∞ = Fq(( 1
θ )).

The main result of [14] is the following remarkable theorem on sums over irreducible
polynomials (see [14, Theorem 1.4]):
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2 B. ANGLÈS, H. H. LE, AND T. NGO DAC

Theorem 1.1. For k ∈ N and k ≡ 0 (mod q − 1), we have∑
P∈P+

Gp

(
1

P k

)
∈ K

where P+ denotes the set of monic irreducible polynomials in Fq[θ] and Gp is the
rational function given by

Gp(X) =
(1−Xp)− (1−X)p

p(1−X)p
∈ Fp(X).

We note that the numerator of Gp(X) is a polynomial in Z[X] with coefficients
that are multiples of p. Hence Gp(X) is well-defined as a rational function in Fp(X).

Further, Speyer computed the previous sum for some small values of k. In
particular, he proved a vanishing result for the first sum (see [14, Theorem 1.7]):

Theorem 1.2. We keep the notation of Theorem 1.1. Then∑
P∈P+

Gp

(
1

P q−1

)
= 0.

1.2. Statement of the main results.

The aim of this paper is to generalize Theorem 1.1 of Speyer for an arbitrary
coefficient ring A.

Theorem 1.3. Let k ∈ N and k ≡ 0 (mod qd∞ − 1). We consider the rational
function Gp as in Theorem 1.1. Then we have∑

P∈P
Gp

(
1

[P ]k

)
∈ F.

Here P denotes the set of prime ideals of A, [.] is the Goss’s map given as in Section
2.1, and F is a finite extension of K defined as in Eq. (2.5).

We also prove some surprising results for the first sum:

Theorem 1.4. We keep the notation as above. We suppose that d∞ = 1. Let h be
the class number of A (i.e., h = |Pic(A)| where Pic(A) is given as in Section 2.1).

(1) If h = 1, then ∑
P∈P

Gp

(
1

[P ]q−1

)
= 0.

(2) There exists a base ring A with h = 2 such that∑
P∈P

Gp

(
1

[P ]q−1

)
6= 0.

Our approach is based on two main ingredients. First, we use Goss’s map [.]
and Goss’s zeta values ζA(.) introduced by Goss in [8] (see also [9]), which play
a primordial role in recent work on zeta values for arbitrary A (see for example
[1–7, 10, 11]). Second, another important ingredient is the theory of class field
theory for function fields via Drinfeld-Hayes modules as developed by Hayes (see
[12,13] and also [9]).

This paper is organized as follows. Section 2 is devoted to presenting some
background on Goss’s zeta values and Drinfeld-Hayes modules. In Section 3, we
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briefly recall basic facts about symmetric polynomials and introduce sums over
ideals. In Sections 4 and 5, we prove Theorems 1.3 and 1.4 (see Theorems 4.10, 5.3
and 5.4).

1.3. Acknowledgments.

T. Ngo Dac was partially supported by the Excellence Research Chair “L-
functions in positive characteristic and applications” funded by the Normandy Re-
gion and the ANR Grant COLOSS ANR-19-CE40-0015-02. T. Ngo Dac would
also like to thank to the Institut des Hautes Études Scientifiques (IHES) for the
hospitality and excellent working conditions during the preparation of this work.

2. Goss’s zeta values and Drinfeld-Hayes modules

In this section we review Goss’s map and Goss’s zeta values associated to A.
Then we briefly recall the theory of Drinfeld-Hayes modules or rank one Drinfeld
A-modules related to the class field theory developed by Hayes. We refer the reader
to [13] and also [2; 9, Chapters 4 and 7] for more details.

2.1. Goss’s map and Goss’s zeta values.

We denote by I(A), IA, and P respectively the group of non-zero fractional
ideals of A, the set of non-zero ideals of A, and the set of prime ideals of A.

We denote by deg : I(A) → Z the natural homomorphism of groups such that
for every prime ideal P of A, we have

deg(P ) = dimFq (A/P ).

In particular, for a ∈ A \ {0}, deg a = dimFq (A/aA) and further for x ∈ K×,
deg(xA) = −d∞v∞(x).

From now on we fix a uniformizer π ∈ K∞ and consider the sign function

(2.1) sgn : K×∞ → F×∞

given by sgn
(∑

i≥i0 aiπ
i
)

= ai0 , for i0 ∈ Z, ai ∈ F∞, ai0 6= 0. We set

Pic(A) :=
I(A)

{xA, x ∈ K×}

and

Pic+(A) :=
I(A)

{xA, x ∈ K×, sgn(x) = 1}
.

We define

h := |Pic+(A)|.

We recall a lemma which will be necessary in the sequel.

Lemma 2.1. For x ∈ 1 + πF∞[[π]], there exists a unique y ∈ K∞ such that
v∞(y − 1) > 0 and yh = x.

Proof. See [9, Lemma 8.2.2]. �
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Let π′ ∈ K∞ such that π′d∞ = π. We define Goss’s map

[·] : I(A)→ K∞

as follows. For I ∈ I(A), there exists a unique x ∈ K× such that sgn(x) = 1 and

Ih = xA. Note that x
πv∞(x) ∈ 1 + πF∞[[π]]. Thus,

(
x

πv∞(x)

) 1
h is well-defined by

Lemma 2.1. We define

[I] := (π′)− deg I
( x

πv∞(x)

) 1
h

.

We present some basic properties of Goss’s map.

Proposition 2.2. For all I, J ∈ I(A), we have

(1) [I][J ] = [IJ ].
(2) If a ∈ K× and I = aA, then

[I] =
a

sgn(a)
.

(3) [·] is injective.

Proof. See [9, Section 8.2]. �

We now define Goss’s zeta values associated to A. Let k ∈ N. As for all n ∈ Z≥0,
|{I ∈ IA : deg I = n}| < +∞ and for all I ∈ IA, v∞([I]) = −deg I

d∞
, the sum∑

I∈IA
1

[I]k
converges in K∞.

Definition 2.3. The Goss’s zeta value at k ∈ N associated to A is given by

ζA(k) :=
∑
I∈IA

1

[I]k
∈ K∞.

We note that for k ∈ N, the value ζA(k) is a 1-unit, i.e., v∞(ζA(k) − 1) > 0.
Hence ζA(k) is always non-zero.

2.2. Drinfeld-Hayes modules.

2.2.1. Drinfeld modules.

First, we recall the definition of Drinfeld A-modules and its related objects (see
[9, Chapter 4]). Let τ : C∞ → C∞ be the Frobenius map given by τ(x) = xq

for all x ∈ C∞. A Drinfeld A-module over C∞ is an Fq-algebra homomorphism
φ : A→ C∞{τ} such that

φa = a+ a1τ + . . .+ adτ
d

for some d ≥ 1, a1, . . . , ad ∈ C∞, ad 6= 0. By [9, Lemma 4.5.1], there exists r ∈ N
such that degτ φa = r deg a for all a ∈ A. This number r is called the rank of φ.

The exponential of φ is the unique element expφ ∈ C∞{{τ}} such that expφ ≡ 1

(mod τ) and expφ a = φa expφ for all a ∈ A. If we write expφ =
∑
i≥0 eiτ

i, ei ∈ C∞,
then expφ induces a homomorphism C∞ → C∞ such that for all x ∈ C∞, we have

expφ(x) =
∑
i≥0

eix
qi .

We denote by Λφ ⊂ C∞ the kernel of expφ : C∞ → C∞.
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Proposition 2.4. Recall that r is the rank of φ. Then Λφ is an A-lattice, i.e., Λφ
is discrete in C∞ and Λφ is a finitely generated A-module of rank r.

Further, for all x ∈ C∞, we have the following factorization of the exponential
expφ:

expφ(x) = x
∏

λ∈Λφ\{0}

(
1− x

λ

)
.

Proof. See [9, Theorems 4.6.9 and 2.14]. �

2.2.2. Action of ideals on Drinfeld modules.

This section follows closely [9, Section 4.9]. We keep the notation of the previous
section and work with a Drinfeld A-module φ : A→ C∞{τ} of rank r ∈ N.

Let I ∈ IA. We denote by Iφ the left ideal generated by {φa}a∈I . As C∞{τ} is
a principal ideal domain, the ideal Iφ is generated by one element. We denote by
φI ∈ C∞{τ} the monic polynomial in τ generating Iφ, i.e.,∑

a∈I
C∞{τ}φa = C∞{τ}φI .

We denote by ψ(I) the constant coefficient of φI .

Since φI is monic, it is stable under the right multiplication with φa for all a ∈ A.
Thus, for each a ∈ A, there exists a unique element in C∞{τ}, denoted by I ∗ φa,
such that

φIφa = (I ∗ φa)φI .

The map

I ∗ φ : A −→ C∞{τ}
a 7−→ I ∗ φa

is a Drinfeld module of rank r. The kernel of its exponential map (see [9, Corollary
4.9.5]) equals

ΛI∗φ = ψ(I)I−1Λφ.

By [9, Theorem 2.14] we have

(2.2) expI∗φ(X) = X
∏

λ∈I−1Λφ\{0}

(
1− X

ψ(I)λ

)
.

2.2.3. Standard Drinfeld-Hayes modules.

We review the notion of standard Drinfeld-Hayes modules, also called standard
sgn-normalized Drinfeld modules of rank one. We follow closely [9, Chapter 7].

We recall that the sign function sgn is given as in Eq. (2.1).

Definition 2.5. 1) A Drinfeld-Hayes module also called sgn-normalized Drinfeld
A-module of rank one is a homomorphism of Fq-algebras ρ : A→ C∞{τ} such that
there exists i ∈ N satisfying

∀a ∈ A \ {0}, ρa = a+ . . .+ sgn(a)q
i

τdeg(a).

2) We say that a sgn-normalized rank one Drinfeld A-module ρ is standard if
ker expρ is a free A-module of rank one.
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There always exists a standard sgn-normalized rank one Drinfeld A-module (see
[9, Chapter 7]). If d∞ = 1, then the standard module is unique. In general, this is
not true.

From now on, we fix a standard sgn-normalized Drinfeld A-module of rank one
φ and denote by expφ the exponential of φ. We can write

(2.3) expφ =
∑
n≥0

enτ
n, with en ∈ C∞.

There exists π̃ ∈ C∞ such that

(2.4) ker expφ = π̃A.

We set

H+
A := K(en, n ≥ 0),

and

(2.5) F = H+
A ([I], I ∈ I(A)).

We recall the following property of H+
A related to the class field theory developed

by Hayes.

Proposition 2.6. The extension H+
A/K is a finite abelian extension which is ram-

ified outside ∞.

Proof. See [9, Proposition 7.4.4]. �

We set G := Gal(H+
A/K) and let σ : I(A)→ G be the Artin map. Recall that if

P ∈ P is a prime ideal of A, then the Frobenius map σP ∈ G is the map such that

∀b ∈ OH+
A
, σP (b) ≡ bq

deg(P )

(mod POH+
A

)

where OH+
A

is the integral closure of A in H+
A .

Proposition 2.7. 1) Let I ∈ IA. Then σI(φ) = I ∗ φ. In particular, we have

expI∗φ = σI(expφ)

where σI(expφ) :=
∑
n≥0 σI(en)τn.

2) The Artin map induces an isomorphism of groups Pic+(A) ∼= G.

Proof. See [9, Theorem 7.4.8 and Corollary 7.4.7]. �

3. Symmetric polynomials

In this section we will discuss some combinatorial results about symmetric poly-
nomials. We will represent some symmetric polynomials as expressions of elemen-
tary symmetric polynomials.
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3.1. Symmetric polynomials.

Let S be a finite set of variables. We set s := |S|. For n ∈ Z≥0, we denote by
sn(X)X∈S or sn the elementary symmetric polynomial of degree n in the variables
{X}X∈S . In particular, s0 = 1.

Let f(X)X∈S or f be a homogeneous symmetric polynomial of degree ` in the
variables {X}X∈S . Recall that the ring of symmetric polynomials is generated by
elementary symmetric polynomials sn, n ≥ 0. Hence, we can write f as

f =
∑
|λ|=`

cλsλ,

where |λ| := λ1 + . . . + λr with λ = (λ1, . . . , λr) ∈ Nr, λ1 ≥ . . . ≥ λr ≥ 1 and
sλ := sλ1

· · · sλr .

3.2. The polynomials pn.

We keep the notation of Section 3.1. Let n ∈ N. We set

pn = pn(X)X∈S :=
∑
X∈S

Xn.

We express

pn(X)X∈S =
∑

dλsλ(X)X∈S

where the sum runs through λ = (λ1, . . . , λr) ∈ (Z≥0)r, r ∈ Z≥0, λ1 ≥ λ2 ≥ . . . ≥
λr ≥ 1 and λ1 + · · ·+λr = n. The coefficients dλ are determined as follows (see for
example [14, page 1240]).

Proposition 3.1. Let n ∈ N. Recall that S is a finite set of s variables. Then we
have

(3.1) pn(X)X∈S = n
∑

i1,...,is≥0
i1+2i2+...+sis=n

(−1)n+i1+...+is

i1 + . . .+ is

(
i1 + . . .+ is
i1, i2, . . . , is

)
si11 · · · siss .

Proof. Let Z be an indeterminate. We write∑
X∈S

∑
j≥1

(−1)j−1XjZj

j
=
∑
X∈S

log(1 +XZ).

Hence ∑
j≥1

(−1)j−1pj(X)X∈SZ
j

j
= log

(∏
X∈S

(1 +XZ)

)
.

We note that
∏
X∈S(1+XZ) = 1+

∑s
i=1 siZ

i. Expanding the log on the right-hand
side as a Taylor series, we get∑

j≥1

(−1)j−1pj(X)X∈SZ
j

j

=
∑
j≥1

(−1)j−1

j

(
s∑
i=1

siZ
i

)j

=
∑
j≥1

(−1)j−1

j

∑
i1,...,is≥0
i1+...+is=j

(
j

i1, . . . , is

)
si11 si22 . . . siss Z

i1+2i2+···+sis .
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We consider the coefficients of Zn in both sides. It follows that

(−1)n−1pn(X)X∈S
n

=
∑

i1,...,is≥0
i1+2i2+...+sis=n

(−1)i1+...+is−1

i1 + . . .+ is

(
i1 + . . .+ is
i1, . . . , is

)
si11 · · · siss .

Hence, we have

pn(X)X∈S = n
∑

i1,...,is≥0
i1+2i2+...+sis=n

(−1)n+i1+...+is

i1 + . . .+ is

(
i1 + . . .+ is
i1, i2, . . . , is

)
si11 · · · siss . �

3.3. The polynomial gp.

We keep the notation of Section 3.1. We consider the following symmetric poly-
nomials

(3.2) gp = gp(X)X∈S :=
1

p

((∑
X∈S

X

)p
−
∑
X∈S

Xp

)
∈ Z[X].

We want to express this polynomial in terms of elementary symmetric polynomials
sn, n ≥ 0.

As a consequence of Proposition 3.1, we have the following corollary.

Corollary 3.2. We have

gp(X)X∈S =
∑

i1,...,is≥0
i1+2i2+...+sis=p

i1<p

(−1)p+i1+...+is−1

i1 + . . .+ is

(
i1 + . . .+ is
i1, i2, . . . , is

)
si11 · · · siss .

In particular, we have g2 = s2.

Proof. We see that gp = 1
p (sp1 − pp). The coefficient of sp1 in pp in Eq. (3.1)

corresponds to i1 = p, i2 = . . . = is = 0. The corollary follows immediately. �

3.4. Sums over ideals.

We now describe the values of a homogeneous symmetric polynomial f at the
value of Goss map. We denote by IA,≤n the set of non-zero ideals of A of degree

less than or equal to n. As |IA,≤n| < +∞ and for all I ∈ IA, v∞([I]) = −deg I
d∞

, the

sequence {f
(

1

[I]q
d∞−1

)
}I∈IA,≤n converges in C∞. Thus we can define

f

(
1

[I]qd∞−1

)
I∈IA

:= lim
n→+∞

f

(
1

[I]qd∞−1

)
I∈IA,≤n

.

Similarly, we can define

s`

(
1

[I]qd∞−1

)
I∈IA

:= lim
n→∞

s`

(
1

[I]qd∞−1

)
I∈IA,≤n

∈ C∞

and

(3.3) gp

(
1

[I]k

)
I∈IA

:= lim
n→∞

gp

(
1

[I]k

)
I∈IA,≤n

∈ C∞.

Thus, as a consequence of Corollary 3.2, when passing to the limit, we obtain the
following proposition.
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Proposition 3.3. We have

gp

(
1

[I]k

)
I∈IA

=
∑

i1,...,is>0
i1+2i2+...+sis=p

i1<p

(−1)p+i1+...+is−1

i1 + . . .+ is

(
i1 + . . .+ is
i1, i2, . . . , is

)
si11

(
1

[I]k

)
I∈IA

· · · siss
(

1

[I]k

)
I∈IA

.

4. A generalization of Speyer’s theorem

In this section we prove Theorem 1.3 (see Section 4.3).

4.1. Speyer’s identity.

For j ∈ Z≥0, we set

ϕ(j) :=

∣∣∣∣∣{(m1, . . . ,mp) ∈ Zp :

p∑
i=1

mi = j, min{mi, i = 1, . . . , p} = 0}

∣∣∣∣∣ .
Then we have the following equality in Z[[X]] (see [14, page 1237]):

∞∑
j=0

ϕ(j)Xj =
1−Xp

(1−X)p
.

Thus, ϕ(0) = 1 and for j ≥ 1, we have

(4.1) ϕ(j) ≡ 0 (mod p).

As a corollary, we get

Proposition 4.1. We have

Gp(X) =
∑
j≥1

ϕ(j)

p
Xj in Z[[X]].

For I ∈ IA \ {A}, we set

(4.2) N(I) := |{(I1, . . . , Ip) ∈ IpA, gcd(I1, . . . , Ip) = A, I1 · · · Ip = I}| .

We see that if I = P k11 · · ·P krr , Pi ∈ P, ki ∈ Z is the prime decomposition of I,
then

(4.3) N(I) = ϕ(k1) · · ·ϕ(kr).

As a consequence of Proposition 4.1, we obtain the following corollary (see [14, page
1237]).

Corollary 4.2. We have the following equality in C∞:∑
I∈IA\{A}

N(I)/p

[I]k
=
∑
P∈P

Gp

(
1

[P ]k

)
.

Proof. We consider Eq. (4.3). If r ≥ 2, by Eq. (4.1), p2 divides ϕ(k1)ϕ(k2). Hence
N(I)/p = 0 in Fp. It implies∑

I∈IA\{A}

N(I)/p

[I]k
=
∑
P∈P

∑
j≥0

N(P j)/p

[P j ]k



10 B. ANGLÈS, H. H. LE, AND T. NGO DAC

=
∑
P∈P

∑
j≥0

ϕ(j)/p

[P k]j

=
∑
P∈P

Gp

(
1

[P ]k

)
.

The last equality follows from Proposition 4.1. �

We deduce the following equality in C∞.

Proposition 4.3. With the notation in Eq. (3.3), for every k ∈ N, we have

(4.4)
∑
P∈P

Gp

(
1

[P ]k

)
=

gp

(
1

[I]k

)
I∈IA

ζA(pk)
.

Proof. For all n ∈ N, we set ∆n := {(I, . . . , I) ∈ IpA,≤n}. Let C be the cyclic group

of degree p that acts on IpA,≤n by rotating coordinates. We have

gp

(
1

[I]k

)
I∈IA,≤n

=
∑

(I1,...,Ip)∈(IA,≤n\∆n)/C

1

[I1]k · · · [Ip]k

=
∑

D∈IA,≤n

1

[D]pk
×

∑
(I1,...,Ip)∈(IA,≤n\{(A,...,A)})/C

gcd(I1,...,Ip)=A

1

[I1]k · · · [Ip]k
.

Letting n→ +∞, we get

gp

(
1

[I]k

)
I∈IA

= ζA(pk)×
∑

(I1,...,Ip)∈(IA\{(A,...,A)})/C
gcd(I1,...,Ip)=A

1

[I1]k · · · [Ip]k

= ζA(pk)×
∑

I∈IA\{A}

N(I)/p

[I]k

= ζA(pk)×
∑
P∈P

Gp

(
1

[P ]k

)
.

Here N(I) is given as in Eq. (4.2) and the last equality follows from Corollary 4.2.
We note that ζA(pk) 6= 0 by the discussion just after Definition 2.3. Thus, the proof
follows. �

4.2. A rationality result.

In this section we first prove a rationality result (see Proposition 4.5). Then
we use this rationality result to show that both the numerator and denominator of
(4.4) are rational up to a suitable power of π̃ (see Corollaries 4.8 and 4.9).

The following proposition will be necessary in the sequel.

Proposition 4.4. Let I ∈ IA. Recall that ψ(I), F are given as in Section 2. We

denote by OF the integral closure of A in F . Then the element ψ(I)
[I] belongs to O×F

and depends only on the class of I in Pic+(A).

Proof. This proposition is a combination of results in [9, Lemma 4.9.2, Theorems
7.4.8 and 7.6.2, Proposition 8.2.10]. �
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Let g ∈ G and I ∈ IA such that g = σI . By Proposition 4.4 the following element
is well-defined:

α(g) :=
ψ(I)

[I]
∈ O×F .

Proposition 4.5. For I ∈ IA, we denote the class of I in Pic+(A) by I and put
g = σI ∈ G. Let X be an indeterminate, then∏

ξ∈F×∞/F×q

g(expφ)(ξα(g)X)

ξα(g)X
=

∏
J∈IA∩[I]

(
1−

(
X

π̃[J ]

)qd∞−1
)
.

Proof. We set

Fg(X) :=
g(expφ(α(g)X))

α(g)X
.

Then Fg(X) belongs to F [[X]].

As g = σI , by Proposition 2.7 and Eq. (2.2), we have

Fg(X) =
∏

a∈I−1\{0}

(
1− α(g)X

π̃ψ(I)a

)
.

Replacing α(g) = ψ(I)
[I] yields

Fg(X) =
∏

a∈I−1\{0}

(
1− X

π̃[I]a

)
.

By Proposition 2.7, σ : I(A) → G induces an isomorphism Pic+(A)
∼→ G. We see

that if σI = σJ , then J = Ia for some a ∈ K×, sgn(a) = 1. On the other hand, for
a, b ∈ I−1 \ {0}, then Ia = Ib if and only if a

b ∈ F×q . Hence

Fg(X) =
∏

J⊂A,J=Ia

∏
δ∈F×q

(
1− X

π̃[I]δa

)
.

It follows that ∏
ξ∈F×∞/F×q

Fg(ξX) =
∏

J⊂A,J=Ia

∏
δ∈F×∞

(
1− X

π̃[I]δa

)

=
∏

J∈IA∩I

∏
δ∈F×∞

(
1− X

π̃[J ]δ

)

=
∏

J∈IA∩I

(
1−

(
X

π̃[J ]

)qd∞−1
)
.

�

Proposition 4.6. With above notation we have∏
I∈IA

(
1−

(
X

π̃[I]

)qd∞−1
)
∈ F [[X]].
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Proof. We have

∏
I∈IA

(
1−

(
X

π̃[I]

)qd∞−1
)

=
∏

I∈Pic(A)

∏
J∈IA∩I

(
1−

(
X

π̃[J ]

)qd∞−1
)
.

The proposition follows from Proposition 4.5. �

Corollary 4.7. For all ` ∈ Z≥0, we have

s`

(
1

[I]qd∞−1

)
I∈IA

∈ π̃`(q
d∞−1)F.

Proof. We have

∏
I∈IA

(
1−

(
X

π̃[I]

)qd∞−1
)

=
∑
`≥0

(−1)`

π̃`(qd∞−1)
s`

(
1

[I]qd∞−1

)
I∈IA

X`(qd∞−1).

By Proposition 4.6, the left-hand side of Eq. (4.2) is in F [[X]]. Hence, we have

(−1)`

π̃`(qd∞−1)
s`

(
1

[I]qd∞−1

)
I∈IA

∈ F.

The proof follows. �

Corollary 4.8. Recall the notation in Eqs. (3.2) and (3.3). For k ≥ 0, k ≡ 0
(mod qd∞ − 1), we have

gp

(
1

[I]k

)
I∈IA

∈ π̃pkF.

Proof. The corollary follows from Corollary 4.7 and the fact that the polynomial

gp

(
1

[I]k

)
I∈IA

is symmetric in the variables

{
1

[I]q
d
∞−1

}
I∈IA

. �

To end this section we recall a rationality result concerning Goss’s zeta values.

Proposition 4.9. For k ∈ N such that k ≡ 0 (mod qd∞ − 1), we have

ζA(k) ∈ π̃kF.

Proof. See [9, Theorem 8.19.4]. �

4.3. The rationality result.

We prove the main result of this section which generalizes the work of Speyer
[14].

Theorem 4.10. Let k ∈ N such that k ≡ 0 (mod qd∞ − 1). Then we have∑
P∈P

Gp

(
1

[P ]k

)
∈ F.

Proof. The proof follows directly from Proposition 4.3, Corollaries 4.8 and 4.9. �
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5. Vanishing and non-vanishing results for the first sum

In this section, we will find an explicit formula of Theorem 4.10 in the case
d∞ = 1 and k = q − 1 (see Proposition 5.2). Then we show Theorem 1.4 (see
Theorems 5.3 and 5.4) which proves some vanishing and non-vanishing results in
several examples presented in [11,12,14,15].

5.1. An explicit formula for d∞ = 1 and k = q − 1.

We suppose that d∞ = 1, k = q − 1. It follows that Pic(A) = Pic+(A). Recall
that h = |Pic+(A)| = |Pic(A)|.

For g ∈ G and I ∈ IA such that σI = g, by Proposition 4.5, we have

g(expφ)(α(g)X)

α(g)X
=

∏
J∈IA∩I

(
1−

(
X

π̃[J ]

)q−1
)
.

Here I is the class of I in the group Pic(A). Hence∏
g∈G

g(expφ)(α(g)X)

α(g)X
=
∏
I∈IA

(
1−

(
X

π̃[I]

)q−1
)
.

Expanding the right-hand side, we get∏
g∈G

g(expφ)(α(g)X)

α(g)X
=
∑
`≥0

(−1)`
1

π̃`(q−1)
s`

(
1

[I]q−1

)
I∈IA

X`(q−1).

Recall that
expφ =

∑
i≥0

eiτ
i

as in Eq. (2.3). We have∏
g∈G

∑
i≥0

g(ei)α(g)q
i−1Xqi−1 =

∑
`≥0

(−1)`
1

π̃`(q−1)
s`

(
1

[I]q−1

)
I∈IA

X`(q−1).

Comparing the coefficients of X`(q−1) in both sides, we have the following lemma.

Lemma 5.1. For all ` ∈ N, we have

s`

(
1

[I]q−1

)
I∈IA

= (−1)`π̃`(q−1)
∑

i1,...,ih≥0
(qi1−1)+...+(qih−1)=`(q−1)

h∏
j=1

gj(eij )α(gj)
qij−1.

In particular, we have

s1

(
1

[I]q−1

)
I∈IA

= −π̃q−1
∑
g∈G

g(e1)α(g)q−1.

Proposition 5.2. Suppose that d∞ = 1, k = q − 1. We have∑
P∈P

Gp

(
1

[P ]q−1

)
=

∑
i1,...,is>0

i1+...+sis=p
i1<p

(−1)p+i1+...+is−1

i1 + . . .+ is

(
i1 + . . .+ is
i1, i2, . . . , is

)si22

(
1

[I]q−1

)
I∈IA

· · · siss
(

1
[I]q−1

)
I∈IA

sp−i11

(
1

[I]q−1

)
I∈IA

∈ F.
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Proof. On one hand,

gp

(
1

[I]q−1

)
I∈IA

=
∑

i1,...,is>0
i1+...+sis=p

i1<p

(−1)p+i1+...+is−1

i1 + . . .+ is

(
i1 + . . .+ is
i1, i2, . . . , is

)
si11

(
1

[I]q−1

)
I∈IA

· · · siss
(

1

[I]q−1

)
I∈IA

.

On the other hand,

ζA(p(q − 1)) = ζA(q − 1)p = sp1

(
1

[I]q−1

)
I∈IA

.

Thus,

∑
P∈P

Gp

(
1

[P ]q−1

)
=

gp

(
1

[I]q−1

)
I∈IA

ζA(p(q − 1))

=
∑

i1,...,is>0
i1+...+sis=p

i1<p

(−1)p+i1+...+is−1

i1 + . . .+ is

(
i1 + . . .+ is
i1, i2, . . . , is

)si22

(
1

[I]q−1

)
I∈IA

· · · siss
(

1
[I]q−1

)
I∈IA

sp−i11

(
1

[I]q−1

)
I∈IA

.

Since i1 + . . . + sis = p, the factor π̃ in the above formula is canceled when we
substitute Lemma 5.1 into Proposition 5.2. The remaining terms are in F , so∑
P∈P Gp

(
1

[P ]q−1

)
∈ F . �

5.2. The genus 0 example.

The first example is studied by Speyer in [14]. We consider the rational function
field K = Fq(θ) with an indeterminate θ. Let ∞ be the infinity place of degree
d∞ = 1. Then A = Fq[θ], which is a principal ideal domain, thus h = 1. The set P
of prime ideals of A is in bijection with the set of monic irreducible polynomials in
A. We choose π = 1

θ and K∞ = Fq(( 1
θ )) equipped with the discrete valuation v∞.

Speyer showed that the sum
∑
P∈P Gp

(
1

[P ]q−1

)
vanishes (see [14, Theorem 1.7]).

In the next section, we will generalize this vanishing result for all base rings A whose
class number is 1.

5.3. The class number 1 examples.

We consider an important class of rings A consisting of principal ideal domains,
i.e., h = 1. In particular, d∞ = 1. Besides the polynomial ring A = Fq[θ] mentioned
above, there are only four other rings (see for example [5, 7, 11,15]).

(1) A = F3[x, y]/(y2 − x3 + x+ 1).
(2) A = F4[x, y]/(y2 + y − x3 − α). Here α is an element of F4 satisfying

α2 + α+ 1 = 0.
(3) A = F2[x, y]/(y2 + y − x3 − x− 1).
(4) A = F2[x, y]/(y2 + y − x5 − x3 − 1).

We prove that

Theorem 5.3. The sum
∑
P∈P Gp

(
1

[P ]q−1

)
vanishes.
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Proof. Since h = 1, the Galois group G is trivial and F = K. By Lemma 5.1, for
all ` ∈ N, we have

s`

(
1

[I]q−1

)
I∈IA

= (−1)`π̃`(q−1)
∑
i≥0

qi−1=`(q−1)

ei.

In particular, s`

(
1

[I]q−1

)
I∈IA

= 0 for all 2 ≤ ` ≤ q. We recall that s1

(
1

[I]q−1

)
I∈IA

=

ζA(q − 1) 6= 0. Hence, Proposition 5.2 implies
∑
P∈P Gp

(
1

[P ]q−1

)
= 0. �

5.4. The class number 2 examples.

In this section, we consider the class of rings A such that d∞ = 1 and h = 2.
We suppose that q > 2. We recall that k = q − 1. By Lemma 5.1, for all ` ∈ N, we
have

s`

(
1

[I]q−1

)
I∈IA

= (−1)`π̃`(q−1)
∑

i1,i2≥0
(qi1−1)+(qi2−1)=`(q−1)

g1(ei1)α(g1)q
i1−1g2(ei2)α(g2)q

i2−1.

By [16], we know that e1 6= 0. Thus

s1

(
1

[I]q−1

)
I∈IA

= ζA(q − 1) 6= 0,

s2

(
1

[I]q−1

)
I∈IA

= π̃2(q−1)g1(e1)α(g1)q−1g2(e1)α(g2)q−1 6= 0,

s`

(
1

[I]q−1

)
I∈IA

= 0, for all 3 ≤ ` ≤ q.

Proposition 5.2 implies

∑
P∈P

Gp

(
1

[P ]q−1

)
=

∑
i1,i2>0
i1+2i2=p
i1<p

(−1)p+i1+i2−1

i1 + i2

(
i1 + i2
i1, i2

) si22

(
1

[I]q−1

)
I∈IA

sp−i11

(
1

[I]q−1

)
I∈IA

.

5.5. A non-vanishing result.

There exists a global function field K such that d∞ = 1, q = 3, and h = 2. An
example is given in [12, Example 11.7] (see also [11, Example 9.2]): we consider the
elliptic curve y2 = θ3 − θ2 − 1 over F3 equipped with the rational point ∞.

Since q = 3, we get

G3(X) =
1−X3 − (1−X)3

3(1−X)3
=

X

(1−X)2
.

Theorem 5.4. We keep the notation as above. Then

∑
P∈P

G3

(
1

[P ]2

)
=

s2

(
1

[I]2

)
I∈IA

s2
1

(
1

[I]2

)
I∈IA

6= 0.

Proof. The proposition follows immediately from the calculations given in Section
5.4. �
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Nicolas Oresme (LMNO), UMR 6139, 14000 Caen, France.

Email address: bruno.angles@unicaen.fr

Email address: lehuyhung94@gmail.com

Email address: tuan.ngodac@unicaen.fr


	1. Introduction
	2. Goss's zeta values and Drinfeld-Hayes modules
	3. Symmetric polynomials
	4. A generalization of Speyer's theorem
	5. Vanishing and non-vanishing results for the first sum
	References

