
HAL Id: hal-04677313
https://hal.science/hal-04677313v1

Submitted on 26 Aug 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fuel Cell Stack Magnetic Tomography with Adjoint
Method

Leonard Freisem, Olivier Chadebec, Gilles Cauffet, Yann Bultel, Sébastien
Rosini

To cite this version:
Leonard Freisem, Olivier Chadebec, Gilles Cauffet, Yann Bultel, Sébastien Rosini. Fuel Cell Stack
Magnetic Tomography with Adjoint Method. 21st Biennial Conference on Electromagnetic Field
Computation (CEFC 2024), Jun 2024, Jeju, South Korea. �10.1109/CEFC61729.2024.10585971�. �hal-
04677313�

https://hal.science/hal-04677313v1
https://hal.archives-ouvertes.fr


Fuel Cell Stack Magnetic Tomography with
Adjoint Method

Leonard Freisem
Univ. Grenoble Alpes, CNRS

Grenoble INP, G2Elab
Grenoble, France

leonard.freisem@g2elab.grenoble-inp.fr

Olivier Chadebec
Univ. Grenoble Alpes, CNRS

Grenoble INP, G2Elab
Grenoble, France

olivier.chadebec@g2elab.grenoble-inp.fr

Gilles Cauffet
Univ. Grenoble Alpes, CNRS

Grenoble INP, G2Elab
Grenoble, France

gilles.cauffet@g2elab.grenoble-inp.fr

Yann Bultel
Univ. Grenoble Alpes, Univ. Savoie-Mont Blanc, CNRS

Grenoble INP, LEPMI
Grenoble, France

yann.bultel@grenoble-inp.fr

Sebastien Rosini
Univ. Grenoble Alpes

CEA LITEN
Grenoble, France

sebastien.rosini@cea.fr

Abstract—To diagnose Fuel Cell stacks (FC-stacks) and aug-
ment their durability, this paper presents a novel approach
with an inverse algorithm based on magnetic tomography. The
goal is to determine internal local resistivities of the stack from
external magnetic measurements in order to provide a diagnosis.
The inverse problem is solved by minimizing the difference
between simulated and measured magnetic field. Sensitivities
are computed with the adjoint state method and first numerical
results are presented.

Index Terms—Fuel Cell, magnetic tomography, inverse
problem-solving, adjoint state method, non-linear optimization

I. INTRODUCTION

A Proton Exchange Membrane (PEM) Fuel Cell (FC) stack
is an environmentally friendly power generator as a possible
alternative to fossil fuel-based systems. A FC-stack consists
of several FCs connected in series. Beside others, aging is a
major problem of FC-stacks and must be diagnosed to adapt
controls or exchange single cells to ensure the continuous
power supply same as durability and lifetime [1], [2]. The
magnetic tomography (MT) can be found in literature as
non-invasive FC-stack diagnostic method to obtain the local
current densities (J). For the MT, the external magnetic field
(Bmes) is measured with sensors placed around the stack,
while the FC-stack is generating an electrical current and thus
a magnetic field. Subsequently, numerical inverse methods are
applied to calculate the local current densities in the stack [1]–
[3].

In this paper, we introduce an innovative non-invasive
method for assessing the physical properties within a FC-
stack. While most works propose methods for determining
current densities, the originality of our approach lies in the
direct identification of local resistivities using a non-linear
optimization algorithm.

The Authors would like to thank the Institute Carnot - Energies du futur
for funding this project.

II. METHODOLOGY

A. Data acquisition and inverse problem parametrization

To measure the magnetic field Bmes, we use the experiment
environment firstly presented by Ifrek et al. (see Fig. 1a) [2].
60 magnetic field sensors are placed around the FC-stack
(see arrows in Fig. 1b). The active region of the FC-stack is
mapped into 25 volume regions along the current flow (z-axis)
(see Finite Element Method (FEM)-model in Fig. 1b) with
different resistivities. Let us notice that this inverse problem
parametrization only allows determining 2D faults, such as
flooding, which affect the whole lenght of the stack. For 3D
faults, like catalyst poisoning, additional layers of volume
regions must be complemented. Solving the inverse problem
involves the determination of the local resistivities ρlocal.

(a) Test bench with FC-stack and
sensor array

(b) FEM-Model of FC-stack and
sensors

Fig. 1: FC-stack on test bench (a) FEM-Model with magnetic
field sensors (arrows) around (b)

B. FEM Forward Problem-Solving

In this section, the numerical method used to compute the
external magnetic field from the resistivity map is briefly
described. A FEM model (Fig. 1b) is used for the resolution of
an electrokinetic problem to calculate the current distribution



in the FC-stack. The used FEM-Model is divided in 27 volume

regions thereof, two for the end plates and 25 for each

local resistivity of the FC-stack itself, which is discretized

to 9960 finite elements in total. Fig. 1b shows the 25 volume

regions and the 60 sensors around the stack. In the context

of optimization, it is very important to operate at a constant

current supply, even if the resistivity changes. A J-conform

finite element method with an imposed value of the total

current flowing through the stack is then chosen. Face shape

functions are used for the current density interpolation. It

ensures strongly the free divergence of the current, leading

to an accurate evaluation of the external magnetic field [4].

After calculating the local current densities, the magnetic

field Bsim on each sensor is computed with a numerical

integration of the Biot-Savart law.

C. Inverse Problem-Solving

The original part of this paper is the novel inverse method

to determine the local resistivities in the FC-stack by using

the gradient descent method [5] to fit Bmes. Therefore, we

define the objective function as followed:

r(ρ) = ||Bmes −AJ(ρ)||2 + α||Lρ||2, (1)

where r(ρ) represents the residual which must be minimized

by varying the resistivity vector ρ containing the ρlocal,
A the discretized Biot-Savart matrix and J(ρ) the current

densities depending on the local resistivities in the stack.

This problem is ill-posed, so it needs to be regularized. We

assume a quite regular resistivity among the surface of the FC-

stack, so a regular gradient between adjacent volume regions.

Consequently, we add the regularization term α||Lρ||2, with

α as regularization factor and L as normalized neighbor reg-

ularization matrix. Beside the objective function, we provide

its gradients with the following equation:

dr(ρ,J(ρ))

dρ
= 2(ATAJ(ρ)− (BmesA

T ))
∂J(ρ)

∂ρ
+ 2αLTLρ,

(2)

where
∂J(ρ)
∂ρ is the key term to compute. To avoid its com-

putation for each volume region, which would lead to the

solving of many FEM-Models at each iteration, we apply

the adjoint state method to obtain the gradients solving only

one FEM-like matrix system [7]. The comprehensive calcu-

lations will be given in the full paper. The gradient descent

optimization algorithm varies ρ to minimize the residual by

using an interior-point optimization algorithm coupled with a

Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm for the

hessian approximation [6]. To obtain a unique solution, we use

prior knowledge from the current and voltage measurements

to constraint the admittance of the stack.

III. APPLICATION ON A NUMERICAL EXAMPLE

For the validation, we defined a numerical resistivity map

(see Fig. 2a) with a constant gradient from the left to the

right-hand site. The result, obtained with our novel method,

an α = 4−12 and I = 100 A, can be observed in Fig. 2b. We

can see a smoother resistivity map, compared to the searched

one. The relative error of each volume region can be observed

(a) Initial resistivities (b) Reconstructed resistivities

Fig. 2: Numerical test map (a) and result of reconstructed

resistivities (b)

in Fig. 3a. In our example, the error is below 10% and shows

a symmetry along the x-axis. The smoother map in 1b and the

latter mentioned error can be explained by the regularization

term. The Fig. 3b shows the convergence of the residual. This

(a) Reconstruction error in % (b) Convergence of the residual

Fig. 3: Relative error (a) and convergence of the residual (b)

first numerical test demonstrates quite good convergence and

accuracy for our novel MT approach for the diagnostics of FC-

stacks. For the conference, we will present results obtained

with measurements from a real FC-stack and compare our

reconstructions with the results from past works [2].
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