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Genetics Selection Evolution

Marker effect p-values for single-step GWAS 
with the algorithm for proven and young 
in large genotyped populations
Natália Galoro Leite1*  , Matias Bermann1, Shogo Tsuruta1, Ignacy Misztal1 and Daniela Lourenco1 

Abstract 

Background Single-nucleotide polymorphism (SNP) effects can be backsolved from ssGBLUP genomic estimated 
breeding values (GEBV) and used for genome-wide association studies (ssGWAS). However, obtaining p-values 
for those SNP effects relies on the inversion of dense matrices, which poses computational limitations in large 
genotyped populations. In this study, we present a method to approximate SNP p-values for ssGWAS with many 
genotyped animals. This method relies on the combination of a sparse approximation of the inverse of the genomic 
relationship matrix ( G−1

APY
 ) built with the algorithm for proven and young ( APY ) and an approximation of the predic-

tion error variance of SNP effects which does not require the inversion of the left-hand side (LHS) of the mixed model 
equations. To test the proposed p-value computing method, we used a reduced genotyped population of 50K 
genotyped animals and compared the approximated SNP p-values with benchmark p-values obtained with the direct 
inverse of LHS built with an exact genomic relationship matrix ( G−1) . Then, we applied the proposed approximation 
method to obtain SNP p-values for a larger genotyped population composed of 450K genotyped animals.

Results The same genomic regions on chromosomes 7 and 20 were identified across all p-value computing meth-
ods when using 50K genotyped animals. In terms of computational requirements, obtaining p-values with the pro-
posed approximation reduced the wall-clock time by 38 times and the memory requirement by ten times compared 
to using the exact inversion of the LHS. When the approximation was applied to a population of 450K genotyped 
animals, two new significant regions on chromosomes 6 and 14 were uncovered, indicating an increase in GWAS 
detection power when including more genotypes in the analyses. The process of obtaining p-values with the approxi-
mation and 450K genotyped individuals took 24.5 wall-clock hours and 87.66GB of memory, which is expected 
to increase linearly with the addition of noncore genotyped individuals.

Conclusions With the proposed method, obtaining p-values for SNP effects in ssGWAS is computationally feasible 
in large genotyped populations. The computational cost of obtaining p-values in ssGWAS may no longer be a limita-
tion in extensive populations with many genotyped animals.

Background
The single-step genomic best linear unbiased predic-
tion (ssGBLUP) has been successfully implemented in 
the routine genetic evaluation of several livestock spe-
cies [1–3]. The vast adoption of ssGBLUP is associated 
with the straightforward and simultaneous evaluation of 
populations composed of genotyped and non-genotyped 
animals, the non-requirement of pseudo phenotypes, 
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the decrease in biases attributed to double counting and 
genomic preselection, and reliable estimation of breeding 
values for complex genetic models [4].

Although ssGBLUP is a breeding value-based method 
that provides genomic estimated breeding values 
(GEBVs), obtaining single-nucleotide polymorphism 
(SNP) effects from this method may also be valuable 
when investigating how genome segments are associated 
with important traits. When that is the case, SNP effects 
can be easily obtained from a linear transformation of 
GEBVs following formulas presented by VanRaden [5], 
Strandén and Garrick [6], and Wang et  al. [7]. Besides 
SNP effects, the proportion of genetic variance explained 
by single SNPs or by SNP windows can help identify 
important regions of the genome in single-step genome-
wide association studies (ssGWAS) [8–10]. However, this 
procedure does not consider the uncertainty of the SNP 
effect estimation, making it more difficult to replicate 
findings from ssGWAS [9, 10]. To overcome this prob-
lem, Aguilar et al. [11] presented formulas for obtaining 
frequentist p-values for ssGWAS as an extension of the 
ideas previously presented by Gualdrón Duarte et al. [12], 
Bernal Rubio et al. [13], and Lu et al. [14] in the ssGBLUP 
context. The authors also showed that p-values could be 
successfully obtained within a reasonable computational 
time for a large Angus population accounting for roughly 
1M phenotyped individuals, 1500 genotyped sires, and 
about 1.8M animals in the pedigree.

The formulas presented by Aguilar et  al. [11] require 
obtaining the prediction error variance of the SNP effects 
( var

(
âi
)
 ) which relies on obtaining the breeding value pre-

diction error (co)variance for genotyped animals ( Cu2u2 ) 
through the inversion of the left-hand side (LHS) of the 
mixed model equations. The inversion of such a matrix 
becomes challenging as the number of traits and genotyped 
animals increases. With genomic information, the LHS 
is associated with a very dense block represented by the 
inverse of the genomic relationship matrix ( G−1 ), which 
is hard to obtain directly for more than 100K genotyped 
animals [4]. One approach to deal with the computation 
limits with large genotyped populations is to use a sparse 
approximation of G−1 created by the algorithm for proven 
and young (APY) [15]. In APY, the genotyped individuals 
are split into two sets. The set of genotyped animals rep-
resenting all genomic variation is called “core” (non-redun-
dant information); the remaining animals are “noncore” 
(redundant information). Then, the GEBVs of noncore ani-
mals are conditioned on the GEBVs of core animals, mak-
ing G−1 very sparse. Apart from increasing the sparseness 
of G−1 , Bermann et al. [16] showed that, with APY, obtain-
ing var

(
âi
)
 can be reduced to components only associated 

with the prediction error covariance of GEBVs for the core 
set ( Cu2Cu2C ), drastically reducing the dimensionality of 

matrices involved in calculations to obtain var
(
âi
)
 . How-

ever, in the formulas shown by Bermann et al. [16], obtain-
ing Cu2Cu2C still requires a direct inversion of the LHS with 
all genotyped animals. Even though G−1 is sparser with 
APY, components in the LHS of single-step equations such 
as the inverse of the pedigree relationship matrix for geno-
typed animals ( A−1

22  ) are still dense, thus implying that com-
putation limits for the inversion of LHS might still exist.

One way to overcome this problem is to obtain an 
approximated prediction error (co)variance of GEBVs for 
the APY core set (Cu2Cu2Capprox ) that does not require the 
inversion of the LHS. For that, an extension of the algo-
rithm proposed by Misztal and Wiggans [17] that accounts 
for genomic information with APY was presented by Ber-
mann et  al. [18]. In this algorithm, Bermann et  al. [18] 
showed that Cu2Cu2Capprox can be obtained with a block-
sparse inversion of G−1 with APY ( G−1

APY ) plus a diagonal 
matrix of contributions from phenotypes and pedigree 
relationships. Empirical results shown by the authors dem-
onstrate that Cu2Cu2Capprox is obtained in a few minutes 
for an Angus population with about 300K genotyped 
animals. Moreover, they showed that, although compu-
tation complexity increases cubically with the number 
of core animals, that remains linear for the noncore set. 
Thus, combining APY and Cu2Cu2Capprox should enable the 
approximation of p-values for ssGWAS for large genotyped 
populations within a feasible amount of time and computa-
tional resources. Therefore, this study presents a method to 
approximate SNP p-values for large genotyped populations 
based on APY. The performance of the proposed method 
was tested against the regular way to compute p-values 
using the exact inverse of LHS with G−1 or G−1

APY with 50K 
genotyped animals. Then, the final test involved apply-
ing the proposed approximation method to a dataset with 
450K genotyped animals.

Methods
Theory
In ssGBLUP, SNP effects can be obtained from backsolving 
GEBV using a linear transformation [5–7]:

where â is the vector of SNP effects, β is the blending 
parameter (5%) to avoid singularity problems in G [5]; b 
is a tuning parameter [19], σ2u is the genetic variance, σ2a 
is SNP variance, Z is a matrix of SNP content centered 
by two times the allele frequency (p), û is the vector of 
GEBVs, and G−1 is the inverse of the genomic relation-
ship matrix, with G constructed as the type I of Van-
Raden [5]:

(1)â = (1− β) b
σ2u

σ2a
Z′G−1û,
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where α and b are tuning parameters to assure the com-
patibility between G and A22 [19], and other elements 
were defined above.

Once SNP effects ( ̂a) are estimated, the p-value for the 
ith SNP can be obtained as shown by Aguilar et al. [11]:

where sd(âi) is the square root of the variance of the ith 
SNP effect estimate obtained as [12]:

  with Cu2u2 referring to the matrix of GEBV prediction 
error (co)variance for genotyped animals, and other 
parameters are defined above. The computation of var

(
âi
)
 

is restrained by the costs associated with obtaining G−1 
and Cu2u2 . Those components result from the inversion 
of dense matrices of high dimension, and obtaining them 
becomes unfeasible with large genotyped populations 
[11, 20].

The computational limitations of obtaining G−1 can be 
overcome by replacing this matrix with a sparse approxi-
mation built with APY [15]. With APY, a small set of 
genotyped animals (core) is chosen, and the relationship 
of the remaining animals (noncore) is obtained by recur-
sions on the core set with linear computing cost. The 
inverse of the genomic relationship matrix with APY is 
constructed as follows:

  where G−1
cc  and M−1

nn are the inverses of the full genomic 
relationship matrix for core and diagonal for noncore 
animals, respectively, and Gcn is the genomic relationship 
matrix between core and noncore animals. The elements 
of the matrix M−1

nn are obtained as:

(2)

G = (1− β)

(
11

′

α + b
ZZ

′

2
∑

pi
(
1− pi

)
)

+ βA22,

(3)p− valuei = 2

(
1− φ

(∣∣∣∣
âi

sd(âi)

∣∣∣∣

))
,

(4)

var
(
âi
)
=

1

2
∑

pi
(
1− pi

) (1− β)bz′iG
−1

(
Gσ2u − Cu2u2

)

G−1zi(1− β)b
1

2
∑

pi
(
1− pi

) ,

G−1
APY =

[
G−1
cc 0
0 0

]
+

[
−G−1

cc Gcn

I

]
M−1

nn

[
−GncG

−1
cc I

]

(5)

=

[
G−1
cc +G−1

cc GcnM
−1
nnGncG

−1
cc −G−1

cc GcnM
−1
nn

−M−1
nnGncG

−1
cc M−1

nn

]
=

[
Gcc Gcn

Gnc M−1
nn

]
,

where gjj is the diagonal element of Gnn for the jth ani-
mal, and gjc is the relationship between the jth noncore 
animal with core animals. With APY, the need to invert a 
dense and high dimensional G is reduced to only invert-
ing the genomic relationship matrix for core animals 
(Gcc ) [Eq. (5)], which for most livestock species or breeds 
contains less than 15K animals [21, 22].

Beyond the reductions in computing costs of obtain-
ing G−1 , Bermann et al. [16] showed that, with APY, esti-
mating the var

(
âi
)
as in Eq (4) is reduced to components 

only associated with the core animals:

where zcj is the jth column of the Z matrix for core ani-
mals, and Cu2Cu2C is the prediction error (co)variance 
matrix of GEBVs for core animals, and other elements 
are as defined before. However, obtaining Cu2Cu2C , still 
depends on the inversion of a high dimension LHS, 
which might yet limit computations as model complex-
ity and the number of genotyped animals increase. To 
overcome this limitation, an approximation of the predic-
tion error (co)variance matrix of GEBVs for core animals 
( Cu2Cu2Capprox ) can be obtained as follows [18]:

where � =

σ2e
σ2u

 , σ2e is the residual variance, and Dc and Dn 
are the blocks for core and noncore animals from the 
diagonal matrix D constructed as [17, 23]:

where W and X are incidence matrices for animal and 
fixed effects. Therefore, when combining APY and 
C
u2Cu2Capprox the var

(
âi
)
 can be approximated as:

(6)mnn,j = diag
{
gjj − g′jcG

−1
cc gcj

}
,

(7)

var
(
âi
)
=

1

2
∑

pi
(
1− pi

) (1− α)bz′cjG
−1
CC

(
GCCσ

2
u − Cu2Cu2C

)

G−1
CCzcj(1− α)b

1

2
∑

pi
(
1− pi

) ,

(8)

C
u2Cu2Capprox

=

(
Dc + �Gcc

− �Gcn
(
�M−1

nn +Dn

)
−1

�Gnc

)
−1

,

(9)D ≈ W′

(
I− X(X′X

)
−1

X′)W,

(10)

var
(
âi
)
≈

1

2
∑

pi
(
1− pi

) (1− α)bz
′

cj

G−1
CC

(
GCCσ

2
u − C

u2Cu2Capprox

)

G−1
CCzcj(1− α)b

1

2
∑

pi
(
1− pi

) ,
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where all parameters were defined above. Equation  (10) 
implies that when APY and Cu2Cu2Capprox are combined, 
SNP p-values can be calculated with matrices only 
associated with core animals and without the require-
ment of inverting the LHS, thus potentially lifting the 
current computational limitations for large genotyped 
populations.

Therefore, the proposed method to approximate 
p-values for SNP involves the following steps:

1. Save G−1
APY and components of A−1

22  [24] in disk 
(PREGSF90 from BLUPF90 software suite; Misztal 
et al. [25]);

2. Obtain GEBVs based on APY by reading the saved 
matrices (BLUP90IOD3 from BLUPF90 software 
suite);

3. Compute Cu2Cu2Capprox using block sparse inversion 
as in Bermann et  al. (2022b) (ACCF90GS2 from 
BLUPF90 software suite);

4. Use Cu2Cu2Capprox and G−1
cc  from G−1

APY to compute 
var

(
âi
)
 as in Eq.  (10) (POSTGSF90 from BLUPF90 

software suite);
5. Backsolve SNP effects from GEBVs obtained in step 2 

as in Eq. (1) with G−1
APY ; compute SNP p-valuesi as in 

Eq. (3) by using the square root of var
(
âi
)
 obtained in 

step 4 (POSTGSF90 from BLUPF90 software suite).

Dataset
The American Angus Association (Saint Joseph, MO) 
provided the dataset to test the proposed method to 
approximate p-values for SNP. A total of 844,726 animals 
born from 2012 to 2017 were scored for post-weaning 
gain (PWG). Phenotyped animals were produced by 
93,161 sires and 812,292 cows and were distributed into 
64,889 contemporary groups. Genomic information 
on 39,744 SNP (after quality control) was available for 
450,673 animals born from 2012 to 2018. Of the geno-
typed animals, 217,434 were also phenotyped, whereas 
the remaining animals only contributed with genotypes 
and pedigree. Pedigree information was available for all 
phenotyped and genotyped animals up to 3 generations 
of relationships, summing up 1,837,789 records.

Reduced dataset
In this study we aimed to compare different p-value com-
puting methods, where p-values obtained from a direct 
inversion of the LHS were used as benchmark (see Statis-
tical analyses for more details). Due to the computational 
limitations of inverting the LHS, a reduced genomic 
subset of 50K randomly selected genotyped animals was 
created. As the subset of 50K genotyped animals were 

selected randomly, the sampling process was repeated 
three times, thus three reduced genotype subsets were 
created. Phenotypic information was kept complete for 
all replicates. However, the number of animals in the 
pedigree varied slightly (from 1,576,112 to 1,576,738). 
This small variation is due to the creation of the pedigree 
in a way that it traces back three generations for pheno-
typed and genotyped animals in the dataset, and for the 
reduced datasets, genotyped animals varied because of 
sampling.

Statistical model
A single-trait animal model was used for the estimation 
of PWG GEBVs as follows:

where y is the vector of PWG phenotypes; β is the vec-
tor containing the fixed effect of contemporary groups; 
u is the vector of random additive genetic effects; e 
is the vector of random residuals; and X , and W are 
incidence matrices for the effects contained in β and 
u , respectively. Random effects were distributed as 
e ∼ N (0, Iσ 2

e ) and u ∼ N (0,Hσ 2
u ) , where I is an iden-

tity matrix, and H is the realized relationship matrix for 
genotyped and non-genotyped animals in ssGBLUP, with 
inverse constructed as shown by Aguilar et al. [26]:

 where A−1 is the inverse of the pedigree relationship 
matrix and T−1 is equal to G−1

APY[Eq. (5)] for genetic anal-
yses with APY, and equal to G−1 [Eq. (2)] otherwise. The 
A−1
22  was built as defined before.

Statistical analyses
Comparison between p‑value computing methods in a small 
genotyped population
In this set of analyses, we aimed to compare exact p-val-
ues obtained with a regular G−1 and Cu2u2 (Exact_ Ginv ) 
as a benchmark [Eqs. (3) and (4)], with p-values with 
G−1
APY and exact Cu2Cu2C (Exact_GinvAPY) [Eqs. (3) and 

(7)], and p-values obtained with G−1
APY and Cu2Cu2Capprox 

(Approx_GinvAPY) [Eqs. (3) and (10)]. Because the 
p-values from Exact_ Ginv and Exact_GinvAPY require 
obtaining the inverses of the genomic relationship matrix 
and of the LHS, a reduced subset of 50K was used to 
ensure computation feasibility and fair comparisons.

For methods involving APY (i.e., Exact_GinvAPY and 
Approx_GinvAPY), the APY core was composed of 
13,030 genotypes, which corresponded to the number 
of eigenvalues explaining 98% of the genetic variance in 

(11)y = Xβ+Wu + e,

(12)H−1
= A−1

+

[
0 0

0 T−1
− A−1

22

]
,
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G . This was obtained applying the singular value decom-
position of Z composed of all genotypes available (i.e., 
450  K) [22]. The selection of core animals was made at 
random. This decision was supported by previous stud-
ies showing the performance of random core selection in 
comparison to alternative selection strategies [3, 27, 28]. 
Moreover, as the genotyped set was reduced to 50K for 
this set of analyses, that also reduced opportunities to 
high contrasts for the core-noncore compositions (i.e., 
core composed of sires with high accuracies or with large 
number of genotyped progeny).

After all analyses performed, p-value computing meth-
ods were compared based on the Pearson correlation of 
computed p-values, SNP effects, var

(
âi
)
 , in addition to 

the inspection of Manhattan and QQ plot results. Wall-
clock time and Resident Set Size (RSS) memory require-
ments were also recorded.

Application of Approx_GinvAPY in a large genotyped 
population
In the second set of analyses, we aimed to calculate 
p-values with G−1

APY and Cu2Cu2Capprox with the full set of 
450K genotyped animals (Approx_GinvAPY450K). Note 
that, Approx_GinvAPY and Approx_GinvAPY450K 
comprised the same p-value computing method, the 
only difference is the size of the genotype set (50K vs. 
450K, respectively). For straightforward interpretations, 
within the same replicate, the core sets in Approx_Gin-
vAPY450K were composed of the same set of animals as 
with the analyses with the reduced dataset. For exam-
ple, within each replicate, the core set in Exact_ Ginv , 
Approx_GinvAPY, and Approx_GinvAPY450K consisted 
of the same genotyped animals.

To evaluate the robustness of the proposed p-value 
computing method regarding core composition, we ran 
an extra scenario where the APY core of Approx_Gin-
vAPY450K was composed of genotyped animals with 
the highest estimated breeding value (EBV) accuracies 
in the population (Approx_GinvAPY450K_high-acc). 
EBV accuracies were obtained in a previous step without 
including genomic information, which means their merit 
was mainly based on progeny contributions. The core 
dimension was kept constant at 13,030 genotypes.

Elapsed wall-clock time and RSS memory require-
ments were recorded. The inspection of Manhattan and 
QQ plots results were used to evaluate the soundness 
of the approximation applied to the full genotype set. 
A summary of the information available for all analyses 
with reduced or full genotype sets is displayed in Table 1.

For all GWAS analyses performed in this study, a 
significance level of 5% adjusted by multiple testing 
via Bonferroni correction was used as a SNP rejection 

threshold, i.e., -log(0.05/m); where m (39,744) is the 
number of markers in the SNP panel. As the SNP panel 
density was kept constant throughout this study, this 
implies a fixed rejection threshold for all sets of analy-
ses and comparisons. Moreover, all analyses were per-
formed with software from the BLUPF90 software 
suite [25] on an Intel(R) Xeon(R) CPU E5-2650 v4 @ 
2.20  GHz server with 24 threads. New implementa-
tions for obtaining p-values with G−1

APY and Cu2Cu2Capprox 
were available in modified versions of BLUP90IOD3 and 
ACCF90GS2 [29].

Results and discussion
Using ssGWAS for association studies in farm animal 
populations increases the detection power because it 
considers phenotypic information from non-genotyped 
individuals, allows for complex models involving multiple 
traits and environmental and genetic correlated effects, 
and does not rely on pseudo phenotypes [10, 30, 31]. 
However, computing SNP p-values from ssGWAS still 
depends on the inversion of the LHS and should become 
prohibited with increasing data dimensionality. In this 
study, we approach the challenge of computing p-value 
in populations with an increasing number of genotyped 
individuals with APY. For that, we compared three meth-
ods to calculate p-values, which consisted of obtaining 
p-values with (1) a regular G−1 and Cu2u2 (Exact_ Ginv ), 
(2) with G−1

APY and exact Cu2Cu2C (Exact_GinvAPY), and 
(3) an efficient method combining G−1

APY and Cu2Cu2Capprox 
(Approx_GinvAPY). We later evaluated the performance 
of the Approx_GinvAPY method when applied to a large 
genotyped population comprised of around 450K indi-
viduals with a random core composition (Approx_Gin-
vAPY450K) and with a core composed of genotyped 
animals with the highest EBV accuracies in the popula-
tion (Approx_GinvAPY450K_high-acc).

Table 1 Number of records per source of information for all 
p-value computing methods

a SNP p-values obtained from a data set of 50K genotyped with G−1 and Cu2u2 
(Exact_Ginv), G−1

APY
 and Cu2C u2C(Exact_GinvAPY), and G−1

APY
  and Cu2C u2Capprox

(Approx_GinvAPY). Approx_GinvAPY450K refers to the Approx_GinvAPY 
method applied to a genotyped population of 450K animals
b Because pedigree traced back three generations of relationships from 
phenotyped and genotyped animals, the number of animals in the pedigree 
slightly varied from 1,576,112 to 1,576,738 between replicates

Methoda Genotypes Core Pedigree Phenotypes

Exact_Ginv 50,000 13,030 1,576,738b 844,726

Exact_GinvAPY 50,000 13,030 1,576,738b 844,726

Approx_GinvAPY 50,000 13,030 1,576,738b 844,726

Approx_GinvAPY450K 450,673 13,030 1,837,789 844,726
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Comparison between p‑value computing methods 
in a small genotyped population
Manhattan and QQ plots for all investigated p-value 
computing methods in replicate 1 are shown in Figs.  1 
and 2, respectively. Manhattan and QQ plots for repli-
cates 2 and 3 are provided in Additional file 1: Figures S1, 
S2, S3, and S4. Across all methods and replicates, two 
significant peaks were identified on chromosomes 7 and 
20 for PWG. For the peak on chromosome 7, the same 
top three SNPs were identified across all methods. How-
ever, for the peak on chromosome 20 only the first top 
SNP was consistent across p-value computing meth-
ods; the second and third top SNP slightly varied across 

neighboring SNPs within a 2Mb window (Fig.  1, Addi-
tional file 1: Figures S1 and S2).

Despite the overall correct identification of the same 
SNPs with all p-values computing methods, the Approx_
GinvAPY method resulted in a higher deviation of p-val-
ues from the null hypothesis in comparison to results 
from Exact_Ginv (Fig.  2, Additional file  1: Figures  S3 
and S4). Across replicates, the slope of the QQ plot for 
Exact_Ginv and Exact_GinvAPY was nearly constant at 
0.99 (0.99 ± 0.01 and 0.99 ± 0.02, respectively), while the 

Fig. 1 Manhattan plots for all p-value computing methods 
with a reduced data set in replicate 1. Single-step genome-wide 
association study for post-weaning weight with p-values obtained 
from a data set of 50K genotyped animals with (A) G−1 and Cu2u2 
(Exact_Ginv), (B) G−1

APY
 and Cu2C u2C(Exact_GinvAPY), and (C) G−1

APY
  

and C
u2C

u2Capprox(Approx_GinvAPY) in replicate 1; SNPs highlighted 
in green represent the three most significant SNP in the two peaks 
found with Exact_Ginv (benchmark) Fig. 2 QQ plots for all p-value computing methods with a reduced 

data set in replicate 1. QQ plots for p-values obtained from a data set 
of 50K genotyped animals with A G−1 and Cu2u2 (Exact_Ginv), B G−1

APY
 

and Cu2C u2C(Exact_GinvAPY), and C G−1

APY
  and C

u2C
u2Capprox(Approx_

GinvAPY) in replicate 1
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slope of the QQ plot for Approx_GinvAPY increased to 
1.25 ± 0.03, indicating an overestimation of -log10(p-val-
ues) with our proposed method. In practice, this overesti-
mation can be corrected by the genomic control method 
proposed by Devlin and Roeder [32]

Correlations of p-values, SNP effects, var
(
âi
)
 across 

p-value computing methods are displayed in Table  2. 
Between APY-based methods and Exact_Ginv, correla-
tions were, on average across replicates, constant at 0.82 
for p-values, 0.88 for SNP effects, and ranged from 0.91 to 
0.92 for var

(
âi
)
 . When only significant p-values were con-

sidered, the correlation was increased to 0.91 (Table  2). 
In contrast, between APY-based methods, the correla-
tion for all p-values, significant p-values, SNP effects, 
and var

(
âi
)
 , and p-values approached unity (from 0.99 

to 1.00) (Table  2). Those results demonstrate the good-
ness of the approximation of Cu2Cu2C ( Cu2Cu2Capprox ) (i.e., 
Exact_GinvAPY vs. Approx_GinvAPY), but also indicate 
an increase in noise mostly sourced from the use of APY 
(Exact_Ginv vs. Exact_GinvAPY and Approx_GinvAPY). 
When approximations are used, errors can be accumu-
lated, especially when multiple steps are involved. For 
example, for obtaining SNP effects with ssGBLUP, GEBVs 
are backsolved into SNP effects [Eq. (1)]. For APY-based 
methods, GEBVs have small changes compared to using 

G−1 [33]. Then, the GEBVs are backsolved with a formula 
that also involves G−1

APY . Therefore, potential errors can 
be accumulated, especially for Approx_GinvAPY, where 
approximation algorithms are involved. A result from 
this increase in noise with approximated methods can 
be demonstrated in Figs. 1, S1, and S2, where few SNPs 
on chromosomes 22, 23, 26, and 29 achieved significance 
level without a clear linkage disequilibrium trail with 
Approx_GinvAPY [34].

When obtaining p-values with Approx_GinvAPY esti-
mation noise can be associated with two uncertainty 
measurements, the first being APY. The algorithm for 
proven and young is based on the theory that genomic 
information is limited, and that all genetic variation is 
contained in a set of independent chromosome segments 
within a population. Given that a core group of animals 
would contain those segments, the GEBVs of noncore 
animals in the population could be estimated from the 
GEBVs of core animals in addition to an error term �n 
( un = GncG

−1
cc uc +�n ), which is expected to approach 

zero when the core size approaches the rank of G [16, 
35]. Note that, when p-values are backsolved with Eq. (1), 
G−1 is replaced by G−1

APY and û  is the vector of GEBVs 
obtained with G−1

APY composing the LHS. Therefore, those 
two components are affected by the approximation with 
APY. The second measurement of uncertainty comes 
from computing Cu2Cu2Capprox . As shown by Misztal and 

Table 2 Person correlation between all (above diagonal) and 
 significanta (below diagonal) p-values, SNP effects, and variance 
of estimated SNP effects across methods

a Significant SNPs were defined based on Exact_Ginv across replicates. bMethods 
refer to SNP p-values obtained from a data set of 50K genotyped animals with 
G
−1 and Cu2u2 (Exact_Ginv), G−1

APY
 and Cu2C u2C(Exact_GinvAPY), and G−1

APY
  and 

C
u2C

u2Capprox(Approx_GinvAPY)

Methodb p‑value

Exact_Ginv Exact_GinvAPY Approx_GinvAPY

Exact_Ginv 0.82 ± 0.02 0.82 ± 0.02

Exact_GinvAPY 0.91 ± 0.02 1.00 ± 0.00

Approx_GinvAPY 0.91 ± 0.02 1.00 ± 0.00

var
(
âi

)
p‑value

Exact_Ginv Exact_GinvAPY Approx_GinvAPY

Exact_Ginv Exact_GinvAPY Approx_GinvAPY

Exact_Ginv 0.91 ± 0.00 0.92 ± 0.00

Exact_GinvAPY 0.99 ± 0.00

Approx_GinvAPY

âi p‑value

Exact_Ginv Exact_GinvAPY Approx_GinvAPY

Exact_Ginv Exact_GinvAPY Approx_GinvAPY

Exact_Ginv 0.88 ± 0.01 0.88 ± 0.01

Exact_GinvAPY 1.00 ± 0.00

Approx_GinvAPY

Table 3 Elapsed wall-clock time and Resident Set Size (RSS) 
memory requirement for all p-values computation methods

a SNP p-values obtained from a data set of 50K genotyped with G−1 and Cu2u2 
(Exact_Ginv), G−1

APY
 and Cu2C u2C(Exact_GinvAPY), and G−1

APY
  and Cu2C u2Capprox

(Approx_GinvAPY)
b Resident Set Size (RSS) memory. Values are displayed as average and standard 
deviations among three replicates

Methoda Software Elapsed 
time, 
h:min

SD Peak of 
memory, 
GB

SD

PREGSF90 1:01 0:27 107.28 0.00

Exact_Ginv BLUPF90IOD3 93.13 21:20 159.66 0.88

POSTGSF90 12:31 0:21 145.39 0.58

Total/Max 106:46 159.66

PREGSF90 0:20 0:01 9.07 0.00

Exact_GinvAPY BLUPF90IOD3 108:45 22:33 178.30 0.00

POSTGSF90 1:53 0:39 44.83 0.00

Total/Max 110:59 178.30

PREGSF90 0:39 0:16 9.07 0.00

BLUPF90IOD3 0:54 0:21 4.53 0.00

Approx_GinvAPY ACCF90GS2 0:04 0:02 9.07 0.00

POSTGSF90 1:50 0:06 16.62 0.00

Total/Max 2:50 16.62
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Wiggans [17], the off-diagonal elements are not consid-
ered during the absorption of environmental effects into 
the mixed model equations for constructing D . Thus, is 
expected that, with Approx_GinvAPY, there is a slight 
increase in noise, especially when the core set and data 
are small.

The elapsed wall-clock time and RSS memory require-
ment across p-value computing methods are shown in 
Table  3. Despite ssGWAS results being similar among 
methods, computing times varied considerably. The aver-
age total elapsed wall-clock was 106.76h for Exact_Ginv, 
110.98h for Exact_GinvAPY, and was reduced to 2.83h 
with Approx_GinvAPY (Table  3). Therefore, compared 
to Exact_Ginv, the run time with Approx_GinvAPY was 
reduced by approximately 38 times. The RSS memory 
requirement also varied across p-value computing meth-
ods; its peak was 159.66GB, 178.30GB, and 16.62GB 
for Exact_Ginv, Exact_GinvAPY, and Approx_Gin-
vAPY, respectively. Compared to Exact_Ginv, the peak 
RSS memory requirement for obtaining p-values with 
Approx_GinvAPY was about tenfold smaller.

The most computationally demanding scenario was 
Exact_GinvAPY, with the computation of p-values tak-
ing a total wall-clock time run of 110.98h and a peak of 
RSS memory requirement of 178.30GB. Even though 
APY increases the sparsity of G−1 by ignoring the rela-
tionships between noncore animals, it still requires the 
storage of intermediate matrices and vectors. Moreover, 
the computational advantage with APY comes mainly 
from the block implementation with the preconditioned 
conjugate gradient (PCG) method, as shown by Masuda 
et  al. [36]. However, in Exact_GinvAPY, the LHS is still 
explicitly inverted, which does not use the sparse proper-
ties of G−1

APY [37]. Although Exact_GinvAPY has a similar 
computing performance as Exact_Ginv, results from this 
method are helpful in this study to illustrate the feasibil-
ity of accurately computing p-values with G−1

APY.

Application of Approx_GinvAPY in a large genotyped 
population
Manhattan and QQ plots for p-values obtained with 
Approx_GinvAPY450K and Approx_GinvAPY450K_
high-acc are displayed in Figs.  3 and 4, respectively. 
Across all replicates and scenarios, the two significant 
peaks on chromosomes 7 and 20 observed in the first 
set of analyses with Exact_Ginv (benchmark) were also 
identified with Approx_GinvAPY450K and Approx_Gin-
vAPY450K_high-acc (Fig.  3). For the peak on chromo-
some 7, the same top three SNPs were identified with 
Approx_GinvAPY450K and Approx_GinvAPY450K_
high-acc, which were consistent with benchmark results 
with the reduced dataset (i.e., Exact_Ginv). For the 
peak on chromosome 20, the first two top SNPs were 

consistent across Approx_GinvAPY450K and Approx_
GinvAPY450K_high-acc while the third top SNP on 
chromosome 20 varied slightly across neighboring SNPs 

Fig. 3 Single-step genome-wide association study for post-weaning 
weight using Approx_GinvAPY450K and Approx_GinvAPY450K_
high-acc. Single-step genome-wide association study 
for post-weaning weight using Approx_GinvAPY450K in A replicate 
1, B replicate 2, C replicate 3, and D using Approx_GinvAPY450K_
high-acc; SNP highlighted in green represent the three most 
significant SNP in the two peaks found in with Exact_Ginv 
with a reduced genotype dataset. Approx_GinvAPY450K refers 
to the method where SNP p-values are obtained from a data 
set of 450K genotyped animals with G−1

APY
  and C

u2C
u2Capprox 

and where the APY core set if chosen at random; Approx_
GinvAPY450K_high-acc refers to the Approx_GinvAPY450K 
when the APY core is composed of animals with the highest EBV 
accuracy in the population
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within a 0.13Mb window (Fig. 3). Results from QQ plots 
were also very similar between Approx_GinvAPY450K 
and Approx_GinvAPY450K_high-acc (Fig.  4). The slope 
of the QQ plot regression was 1.08 for Approx_Gin-
vAPY450K_high-acc and 1.12 ± 0.01 across Approx_Gin-
vAPY450K replicates, thus suggesting small influence of 

core composition on the deviation of p-values from the 
null hypothesis. Despite the consistency of results with 
different core composition shown in this study, previous 
experience with a single breed population showed that, 
especially with datasets with a clear unbalance of pheno-
typic and genotypic information (i.e., phenotypic data-
set with several generations of recording combined with 
only recent generations contributing with genotypes), 
the selection of APY core based on a random selection 
always resulted in the best solutions in comparison to 
benchmark results with the exact inversion of the LHS 
[38]. However, a more informed choice of core animals 
[3, 39] may be used without considerable changes of 
p-values for the significant peaks in well-structured, sin-
gle-breed populations. Note that the optimum core com-
position strategy can change in multi-breed populations, 
especially when breed contributions are highly unbal-
anced [21].

Enlarging the genotype set also uncovered two new 
peaks on chromosomes 6 and 14 that were not observed 
with the reduced dataset (Fig.  3). The new peaks had 
clear linkage disequilibrium trails, illustrating an increase 
in ssGWAS resolution as more genotyped animals are 
included in the analyses. As previously shown, especially 
for populations with a small effective population size 
(Ne) and more polygenic traits, increasing the genotype 
set reduces the estimation error and the shrinkage of SNP 
effects, which increases the power of discovering signifi-
cant variants [34, 40, 41]. The benefit of an increase in 
the genotype set size can also be observed when compar-
ing Approx_GinvAPY with Approx_GinvAPY450K. In 
general, for significant SNPs identified on chromosomes 
7 and 20, the magnitude of p-values on the logarithmic 
scale obtained with Approx_GinvAPY450K increased by 
50% relative to results from Approx_GinvAPY.

In the first set of analyses, when the same amount of 
data was used, an increase in noise was observed with 
Approx_GinvAPY compared to Exact_GinvAPY (Fig.  1, 
Additional file  1: Figures  S1 and S2). However, when 
more genotyped animals were included with Approx_
GinvAPY450K, significant SNPs without a clear linkage 
disequilibrium pattern were no longer observed in all rep-
licates (Fig. 3). This suggests that the benefit of increas-
ing the genotype set overcomes the noise associated with 
an approximation that relies on APY and Cu2Cu2Capprox 
and mitigates potential false positive associations. While 
evaluating two simulated populations with the same Ne, 
Misztal et al. [34] observed that increasing the number of 
individuals contributing with genotypes and phenotypes 
by three times increased the correct identification of sig-
nificant SNPs. Similarly, Jang et al. [40] showed that for 
highly polygenic traits (2000 QTN) with an Ne of 20 and 
a moderate heritability of 0.30, no QTN was accurately 

Fig. 4 QQ plots for p-values obtained with Approx_GinvAPY450K 
and Approx_GinvAPY450K_high-acc. QQ plots for p-values 
obtained with Approx_GinvAPY450K in (A) replicate 1, (B) replicate 
2, (C) replicate 3, and (D) with Approx_GinvAPY450K_high-acc. 
Approx_GinvAPY450K refers to the method where SNP p-values 
are obtained from a data set of 450K genotyped animals with G−1

APY
  

and C
u2C

u2Capprox and where the APY core set if chosen at random; 
Approx_GinvAPY450K_high-acc refers to the Approx_GinvAPY450K 
when the APY core is composed of animals with the highest EBV 
accuracy in the population



Page 10 of 12Leite et al. Genetics Selection Evolution           (2024) 56:59 

identified until a complete genotype set, composed of 
30K genotyped animals, was included in the analyses. For 
livestock populations with even smaller Ne and traits of 
lower heritability, such as reproduction and fitness traits, 
QTN identification may be even more challenging, espe-
cially when limitations exist on the amount of genomic 
information used in the estimation process.

Total wall-clock time for the calculation of p-values 
with Approx_GinvAPY450K was, on average, 24.47h, 
which was divided into building G−1

APY and saving com-
ponents of A−1

22  (6.6h), estimation of breeding values 
(6.67h), estimation of Cu2Cu2Capprox (0.38h), and backsolv-
ing GEBV to SNP effects and approximation of var

(
âi
)
 . 

The entire process required no more than 87.64GB of RSS 
memory (Table 4). In comparison with the same method 
using a reduced set of genotyped animals in the first set 
of analyses (i.e., Approx_GinvAPY), the increase in wall-
clock time was linear with the increase in the number of 
genotypes included added, which was approximately nine 
times. However, the increase in RSS memory require-
ment was only five times.

The efficiency of the proposed approximation method 
(i.e., Approx_GinvAPY) is because var

(
âi
)
 computations 

rely only on the genotypes of core animals, meaning that 
the computational requirement of inverting G in Exact_
Ginv and obtaining G−1

APY in Exact_GinvAPY is reduced 
to inverting a small matrix of relationships between core 
animals ( Gcc ) [16].

The optimal dimension of Gcc is approximately a lin-
ear function of Ne of the population and should not be 
more than 15K for most livestock species or breeds [21, 
22]. Moreover, with the Approx_GinvAPY method, no 
inversion of the LHS is required. Instead, Cu2Cu2Capprox are 
obtained accurately with a lower computational cost by a 
block sparse inversion of G−1

APY that had weights (effective 

record contributions; D in Eq. [9]) added to its diagonal 
[18]. Additionally, because Approx_GinvAPY does not 
require the direct inversion of the LHS, efficient solvers 
such as PCG can be used in combination with the block 
implementation of APY, efficiently exploiting the sparse-
ness of G−1

APY[36, 37].
Even though this study focuses on combining APY and 

C
u2Cu2Capprox[18], any efficient method to approximate 

the GEBV prediction error covariance or SNP predic-
tion error variances in large genotyped populations could 
be applied here. For a comparison of APY against other 
methods, we refer the reader to Bermann et al. [18] and 
Zaabza et al. [42].

Altogether, our results show that the current compu-
tational limitations for obtaining p-values for popula-
tions with many genotyped animals should no longer 
be an issue with the Approx_GinvAPY method. The 
possibility of computing SNP p-values for those large 
genotyped populations should increase the power of 
detection of true variants and prevent future findings 
of ssGWAS from solely relying on SNP effects and vari-
ance explained by SNPs [7, 11]. It is worth noting that 
the results presented herein are based on a single-trait 
model in a purebred population. However, as long as 
reliabilities from more complex models and on popula-
tions with more complex breeding structures are accu-
rately estimated, we expect that p-values will also be 
accurately approximated.

Conclusions
The same genomic regions on chromosomes 7 and 20 
were identified with p-values obtained with G−1 , G−1

APY , 
and the approximation based on G−1

APY with a reduced 
dataset, indicating the soundness of the proposed p-value 
computing method. Even though p-values were similar 
between computing methods, computational require-
ments for the new method were considerably reduced. 
When the approximation based on G−1

APY was applied 
to a genotyped population with almost half a million 
genotyped animals, SNPs on chromosomes 7 and 20 
had stronger signals, and two new regions on chromo-
somes 6 and 14 were uncovered, indicating an increase 
in ssGWAS detection power when more genotypes are 
included in the analyses. Obtaining p-values in ssGWAS 
for such a large genotyped population required 24h, 
which is expected to increase linearly with the addition 
of noncore genotyped individuals. With a combination of 
APY and an approximation of the variance of estimated 
SNP effects, ssGWAS with p-values becomes computa-
tionally feasible for large genotyped populations.

Table 4 Elapsed wall-clock time and Resident Set Size 
(RSS) requirements for p-values computation with  Approx_
GinvAPY450Ka

a SNP p-values obtained from a data set of 450K genotyped animals with G−1

APY
  

and Cu2C u2Capprox(Approx_GinvAPY)
b Resident Set Size (RSS) memory. Values are displayed as average and standard 
deviations between three replicates

Software Elapsed time, 
h:min

SD Peak of 
memory,  GBb

SD

PREGSF90 6:36 0:13 51.37 0.00

BLUPF90IOD3 6:40 0:31 43.82 0.00

ACCF90GS2 0:23 0.02 87.64 0.00

POSTGSF90 10:48 0.40 59.43 0.87

Total/Max 24:28 87.64
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Additional file 1: Figure S1. Manhattan plots for all p-value computing 
methods with a reduced data set in replicate 2. Single-step genome-
wide association study for post-weaning weight with p-values obtained 

from a data set of 50K genotyped animals with (A) G−1 and Cu2u2 

(Exact_Ginv), (B) G−1
APY and Cu2Cu2C(Exact_GinvAPY), and (C) G−1

APY  

and C
u2Cu2Capprox(Approx_GinvAPY) in replicate 2; SNPs highlighted 

in green represent the three most significant SNP in the two peaks found 
with Exact_Ginv (benchmark). Figure S2. Manhattan plots for all p-value 
computing methods with a reduced data set in replicate 3. Single-step 
genome-wide association study for post-weaning weight with p-values 

obtained from a data set of 50K genotyped animals with (A) G−1 and 

Cu2u2 (Exact_Ginv), (B) G−1
APY and Cu2Cu2C(Exact_GinvAPY), and 

(C) G−1
APY  and C

u2Cu2Capprox(Approx_GinvAPY) in replicate 3; SNPs 

highlighted in green represent the three most significant SNP in the two 
peaks found with Exact_Ginv (benchmark). Figure S3. QQ plots for all 
p-value computing methods with a reduced data set in replicate 2. QQ 
plots for p-values obtained from a data set of 50K genotyped animals 

with (A) G−1 and Cu2u2 (Exact_Ginv), (B) G−1
APY and Cu2Cu2C

(Exact_GinvAPY), and (C) G−1
APY  and C

u2Cu2Capprox(Approx_GinvAPY) 

in replicate 2. Figure S4. QQ plots for all p-value computing methods 
with a reduced data set in replicate 3. QQ plots for p-values obtained 

from a data set of 50K genotyped animals with (A) G−1 and Cu2u2 

(Exact_Ginv), (B) G−1
APY and Cu2Cu2C(Exact_GinvAPY), and (C) G−1

APY  

and C
u2Cu2Capprox(Approx_GinvAPY) in replicate 3.
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