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Abstract. The simulation of planetary flows at all the scales that have
a significant impact on the climate system is unachievable with nowadays
computational resources. Parametrization of the scales smaller than the
simulation resolution is thus crucial to correctly resolve the ocean dy-
namics. In this work, a novel parametrization of the subgrid scales by
means of the wavelet transform is introduced in the shallow water and
primitive models within the so-called Location Uncertainty framework.
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1 Introduction

The global climate system is strongly depending on the Ocean’s state, as the
interaction with the Atmosphere in the forms of mutual exchange of energy
fluxes of different natures and global heat redistribution plays a crucial role in
the climate regulation [1]. While observations are crucial for understanding the
current state of the global ocean, numerical simulation remains the only way to
forecast the system and assess future states. This is fundamental for predicting
meteorological and climatological events and related hazards. Large-scale simu-
lations of the Ocean (as well as of the Atmosphere) remain the primary tool of
investigation while high resolution simulations can be obtained only for small ge-
ographical domains or short integration periods. The complex interdependence
of mesoscale and sub-mesoscale dynamics, however, is lost in state-of-the-art
simulations when performed at scales that are too large to capture these phe-
nomena. Most of the modeling challenges arise from the representation of these
effects in a parametrized manner [2]. A novel research trend involves incorporat-
ing perturbations and noise terms into the dynamics. The goal is to enhance the
variability and parameterize sub-grid processes, turbulence, boundary value un-
certainty, and account for numerical and discretization errors. Along this path,
two companion methodologies have been introduced by Mémin [3] and Holm [4],
providing rigorously justified methodologies to define stochastic large scales rep-
resentations of the Navier-Stokes equations [5] conserving energy and circulation,
respectively. These two models rely on a stochastic decomposition of the La-
grangian trajectory into a smooth-in-time component induced by the large-scale
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velocity and a random fast-evolving uncorrelated displacement noise, following
ideas proposed by [6–8]. The solid theoretical background allows the definition
of a large-scale representation with a stochastic component representing the
subgrid contribution, introducing additional degrees of freedom to be exploited
in the modelling of specific phenomena (such as large scale components [10, 11],
small-scale turbulence [12, 13], boundary layer effects [14] or convection processes
[15]) or to devise intermediate models [17–19, 13, 14]. The Location Uncertainty
(LU) model [3] has been applied to the barotropic quasi-geostrophic model [17,
20], the baroclinic quasi-geostrophic model [27], the single-layered shallow water
model [22], the surface quasi-geostrophic [21], hydrostatic primitive equations
[10, 11] and recently non hydrostatic Boussinesq equations [16], proving its effi-
cacy in structuring the large-scale flow [17], reproducing long-term statistics [20]
and providing a good trade-off between model error representation and ensem-
ble spread [21, 22]. In this work, the efficacy of a wavelet representation [23, 24]
for the small scale turbulence is assessed in the context of stochastic hydrostatic
primitive equations following [10, 11] and in a novel stochastic multi-layered shal-
low water model, based on the derivation of [22] and a modified implementation
of [25].

2 Location uncertainty (LU)

Location Uncertainty is based on a stochastic decomposition of the Lagrangian
trajectory Xt of the fluid particle, so that the displacement is represented by
means of the stochastic differential equation (SDE)

dXt = vt dt+ σtdBt, (1)

where X : S × IR+ → Ω is the fluid flow map, i.e. the trajectory followed
by fluid particles starting at initial map X|t=0 = x0 of the bounded domain

S ⊂ IRd (d = 2, 3). The trajectory is thus split into a smooth-in-time (La-
grangian) velocity, vt, and a stochastic contribution σtdBt, referred to as noise,
that is non-smooth in time. The first component in equation (1) is associated
to the resolved velocity in the integration of the equations of motions, while the
second component accounts for processes that are either neglected or not repre-
sentable at a given resolution. In order to specify the characteristic of this last
(martingale) term, let H be the Hilbert space, H =

(
L2 (S) ,Rd

)
, the space

of square integrable functions over S with value in Rd, with inner product

⟨f , g⟩H =
∫
S(f

Tg) dx and induced norm ∥f∥H = ⟨f ,f⟩1/2H and let T be a
finite time, T < +∞. In this context, {Bt}0≤t≤T is a cylindrical Wiener process
defined on H [26]:

Bt =
∑
i∈N

β̂iei, (2)

where (ei)i∈N is a Hilbertian orthonormal basis of the space H and (β̂i)i∈N is
a sequence of independent standard Brownian motions on a stochastic basis
(Ω,F , (Ft)t∈[0,T ],P). The application of a Hilbert-Schmidt symmetric integral
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kernel σtf (x) =
∫
S σ̆ (x,y, t)f (y) dy to the Wiener processB onH constitutes

the theoretical definition of the noise term:

(σtdBt)
i
(x) =

∫
S
σ̆ik (x,y, t) dB

k
t (y) dy, (3)

where the Einstein convention for summation over repeated indices is adopted.
The kernel σ̆ is a Hilbert-Schmidt integration kernel, assumed to be bounded in
space and time. It follows that the convolution of σ̆ with Bt is Hilbert-Schmidt,
compact, self-adjoint, positive definite and thus, by Mercer’s theorem, it admits
eigenfunctions and eigenvalues decreasing toward zero. This defines a centred
Gaussian process∫ t

0

σsdBs (Xs) ∼ N
(
0,

∫ t

0

Q (Xs,Xs, s, s) ds

)
, (4)

where the covariance tensor Q is defined as

Qij (x,y, t, s) = IE
[
(σtdBt (x))

i
(σtdBs (y))

j
]

= δ (t− s) dt

∫
S
σ̆ik (x, z, t) σ̆kj (z,y, s) dz,

with the integral kernel σ̆ modelled in such a way that a spatial correlation to
the fast/small scale components is imposed. The strength of the noise is mea-
sured by the diagonal components of the covariance tensor per unit of time,
a(x, t)δ(t− t′)dt = Q(x,x, t, t′), also referred to as the variance tensor. Notably,
the variance tensor has the dimension of a viscosity in m2s−1 and is symmet-
ric and positive definite. Furthermore, the covariance operator Q is a compact
self-adjoint positive definite operator on H, that thus admits a set of orthonor-
mal eigenfunctions {ξn (·, t) , n ∈ N} with (strictly) positive eigenvalues λn (t)
decreasing toward zero and satisfying

∑
n∈IN λn (t) < +∞. Consequently, the

noise term and the variance tensor can be expressed with respect to the ba-
sis provided by the eigenfunctions randomized by a series of scalar Brownian
variables, βt,n, as

σtdBt (x) =
∑
n∈IN

λ1/2 (t) ξn (x, t) dβt,n, (5)

a (x, t) =
∑
n∈IN

λ (t) ξn (x, t) ξ
T
n (x, t) . (6)

The noise term defined above is centred, but as introduced in [27, 28] and applied
in [11, 29], a modification can be applied through Girsanov transformation in
order to consider a Lagrangian displacement of the form

dXt = [vt − σtYt] dt+ σtdBt, (7)

where a correlated component σtYt can be introduced to model phenomena
displaying a non-zero time average like in the case of ocean eddies and gyres.
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The transition from the Lagrangian point of view to the Eulerian point of
view is provided by the stochastic Reynolds transport theorem (SRTT), intro-
duced in [3]. It describes the rate of change of a random scalar q transported by
the stochastic flow (1) within a flow volume Vt:

d

∫
Vt

q (x, t) dx =

∫
Vt

{Dtq + q∇ · [v⋆ dt+ σtdBt]} (x, t) dx, (8)

with the operator

Dtq = dtq + [v⋆ dt+ σt dBt] ·∇q − 1

2
∇ · (a∇q) dt, (9)

defining the stochastic transport operator. Each term of this operator has a
physical interpretation. Proceeding in order, the first term of the right-hand
side of (9) is the increment in time at a fixed location of the random process
q, that is dtq = q (x, t+ dt) − q (x, t). This contribution plays the role of the
partial time derivative for a process that is not time differentiable. In the square
brackets it is enclosed the stochastic advection displacement. It involves a time
correlated modified advection velocity,

v⋆ = v − 1

2
∇ · a+ σT

t (∇ · σt) , (10)

and a fast evolving, uncorrelated noise σt dBt. The advection of the process q
by this term leads to a multiplicative noise which is non Gaussian. This noise is
referred to as transport noise in the literature. The second term in Equation (10)
represents the effective transport velocity induced by statistical inhomogeneities
of the noise term, and it is referred to as Itô-Stokes drift in [17]. In the following
it is denoted as vs = 1

2∇ · a. The last term of the transport operator is a
dissipation term that depicts the mixing mechanism due to the unresolved scales.
In the following, the Location Uncertainty principle will be applied to a set of
two-dimensional equations, the Shallow Water system, and to a set of three-
dimensional equations, the Primitive Equations model. The stochastic transport
operator Dt has thus to be intended as built with two-dimensional differential
operators in the former case, and with three dimensional differential operators
in the latter.

3 Noise modelling with wavelets

The modelling of the noise is chosen to enhance the accuracy and the variability
of a (large-scale) simulation in representing the effect of the truncated scales
through random variables. Many data-driven approaches referenced previously
have been proposed to that end (see for instance [10, 11, 21, 27]). Here, our goal
is to propose a model-based approach for the noise definition relying only on
the current state of the simulation. Opposite to data-driven technique, the noise
hence depends only on the solution. It is important to outline that this does not
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violate any principle of the LU derivation. Let us note however, that the noise
needs to remain smooth enough in space to guarantee the existence of martin-
gale solution [5]. A wavelet is a compactly supported wave-like oscillation that
is localized in time [23, 24]. Wavelet processing has the characteristic of com-
bining data processing in the time domain and in the frequency domain, with
a reasonable trade-off. The forward wavelet transform decomposes the signal u
from the time domain to its representation in the wavelet basis, an oscillatory
waveform that reveal many signal properties and provide a sparse representa-
tion. Conversely, the inverse transform reconstructs the signal from its wavelet
representation back to the time domain. The result of this operation is a set of
details ⟨u,ψj,k⟩L2 and a large scale component ⟨u,ϕC,k⟩L2 . These fields are then
randomised with a Brownian field Bt defined on each point of the computational
wavelet coefficients grid, so that the noise wavelet ansatz can be defined as

σtdBt (x) =

2C−1∑
k=0

⟨u(n),ϕC,k⟩L2dBt,C,k ϕC,k (x)

+

F∑
j=C

2j−1∑
k=0

⟨u(n),ψj,k⟩L2dBt,j,k ψj,k (x) . (11)

In the previous equation, F and C are indexes that divide the details and
the large scale component. The superscript (n) emphasizes that the wavelet
processing is applied to the current-state n of the simulation. The first component
of the noise represents the randomised large scale dynamics, and is set to zero
to represent the small scale features only and perform a spatial Reynolds-like
decomposition. The definition of the variance tensor can then be based on the
definition of the details. Such type of noise terms can easily be shown to be well
defined. They are spatially regular and their regularity is given by the choice
of the wavelet basis. The wavelet transform conveys a natural multi-resolution
structure to the noise as well as a natural notion of spatial scale at each level of
the multi-resolution hierarchy.

4 Stochastic shallow water model

A sketch of the stacked shallow water system is depicted in Figure 1. In the
framework of location uncertainty, the governing equations for the k-th layer
(k = 1, . . . , N) are formulated as follows:

Horizontal momentum:

Dtuk + fu⊥
k dt = (−∇Pk + F k) dt, (12)

Mass conservation:

Dthk + hk∇ · uk dt = 0, (13)

where uk = (uk, vk) denotes the horizontal velocity with u⊥
k = (−vk, uk),

hk stands for the variable layer thickness, f is the Coriolis frequency, Pk =
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ℓ=0 g′ℓηℓ is the Montgomery potential, ηℓ = ηb +

∑N
j=ℓ+1 hj represents the

vertical position of interface ℓ with ηb indicating the position of the bottom to-
pography, g′ℓ = g(ρℓ+1 − ρℓ)/ρ1 is the reduced gravity with layer density ρℓ and
gravity value g, and F k = ∂zτ |k ≈ (τ k−1 − τ k)/hk is the vertical stress diver-
gence. In particular, we consider only a steady surface wind stress τ 0 and a linear
bottom drag stress τN . Moreover, when discussing the shallow water model the
stochastic transport operator has to be understood as a two-dimensional op-
erator. Derivation of this model can be found in [22] while a discussion of its
analytical properties has been done in [31].

H1

H2

H3

h1(x, y, t)

h2(x, y, t)

h3(x, y, t)

z = η0(x, y, t)

z = η1(x, y, t)

z = η2(x, y, t)

z = ηb(x, y, t)

z

0

ρ1

ρ2

ρ3

u1(x, y, t)

u2(x, y, t)

u3(x, y, t)

Fig. 1. Illustration of a three-layer ocean shallow water model. Each layer k has a
uniform density ρk and background height Hk, a horizontal momentum uk and a
variable thickness hk = ηk−1 − ηk, where ηk represents the position of the interface
between layers k and k + 1.

For numerical studies, we consider a three-layer shallow water system with
a steady symmetric zonal wind stress τx0 = (τ0/ρ1) cos(2π(y − Y/2)/Y ), a flat

bottom ηb = −
∑N

k=1 Hk, and a linear bottom drag τN = (δekf0/2)uN . The
common parameters for all the simulations are listed in Table 1. Time integra-
tion is performed with a third order Strong Stability Preserving Runge-Kutta
(SSPRK3) method [32] for the deterministic part and a Milstein scheme (without
Levy area) for the stochastic part [33, 34]. The time step is set to 0.6∆x/

√
−gηb

for a given grid spacing∆x. The unresolved external gravity waves are filtered us-
ing the method proposed by [35]. Advection of deterministic fluxes is performed
with a fifth order Weighted Essentially Non-Oscillatory (WENO) scheme, while
a second order centred scheme is applied to transport noise. The numerical im-
plementation of this configuration follows tightly that of MQgeometry-1.0 [25].

Three simulation are performed following a spin-up run as described below: a
deterministic high resolution simulation at 5km, filtered and subsampled at 10km
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Table 1. Common parameters for all the models

Parameters Value Description

X × Y (5120,5120) km Domain size
Hk (400,1100,2600) m Mean layer thickness
g′k (0.025,0.0125) m s−2 Reduced gravity
f0 9.375× 10−5 s−1 Mean Coriolis
β 1.754× 10−11 m−1 s−1 Coriolis gradient
τ0 0.08 Pa Wind stress magnitude
δek 2 m Bottom Ekman layer thickness

resolution, is taken as a reference (and thus named REF); a deterministic coarse
simulation at 10km (named DET) is taken as a reference for the low resolution
model. Finally, a stochastic simulation (named STO) is performed at 10km.
Considering Figure 2 it is noticeable that the proposed localised basis enhances
the presence of filaments and small eddies along the meandering eastward jet.
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Fig. 2. Comparison of instantaneous surface vorticity (top) with the zoomed version
in the jet region (bottom) provided by different models at 10 km.

This result can be further highlighted by the temporal standard deviation of
the surface relative vorticity (ω1 = ∇× u1), as shown in the top row of Figure
3. We observe that the STO model produces greater low-frequency variability in
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the most energetic zonal jet region than the DET model at the same resolution.
However, the latter allows the jet to extend further east than the former. To
maintain the jet further east for the STO model, a time-correlated unresolved
flow component can be added onto the uncorrelated noise through Girsanov
transformation, as successfully demonstrated in our previous works [10, 11, 27,
28]. This could be performed in future work. Additionally, as illustrated in the
bottom row of Figure 3, we also observe a homogenization effect of the ocean
middle layer potential (PV) in the central area for both models, which corre-
sponds well to oceanographic theory [39, 40]. Note that the PV in the middle
layer is defined as q2 = H2(ω2 + f)/h2, and the magnitude of the gradient of its
temporal mean (|∇q2|) is evaluated to measure the homogeneity.
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Fig. 3. Comparison of the (top row) temporal standard deviation of surface layer rela-
tive vorticity and (bottom row) homogenization of time-averaged potential vorticity in
the middle layer, using 10-year data provided by different models (grouped by columns).
The area-integrated values of σ(ω1)/f0 in the most energetic zonal jet regions (high-
lighted by red boxes) for the DET, STO and REF models are 0.024, 0.025 and 0.032,
respectively.

We then investigate the ensemble statistical properties of the proposed stochas-
tic model by performing 20 random realizations. Figure 4 shows the establish-
ment of an enstrophy transfer mechanism from the large scale mean flow towards
the small scale turbulent eddies. This can be seen from the top row where the
progressive decrease of the ensemble average of surface vorticity is associated to
an increase of its ensemble variance.
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Fig. 4. Time evolution (from left to right) of ensemble mean (top) and standard devi-
ation (bottom) of surface vorticity provided by the stochastic model at 10 km with 20
realizations.

We next focus on the ensemble decomposition of kinetic energy (KE) and
available potential energy (APE) for the random shallow water system. Recall
that the KE and APE densities for the k-th layer (k = 1, . . . , N) and ℓ-th
interface (ℓ = 0, . . . , N − 1) are defined as follows:

KEk =
1

2
hk|uk|2, APEℓ =

1

2
g′ℓζ

2
ℓ , ζℓ =

ℓ+1∑
j=N

(hj −Hj), (14)

where ζℓ represents the deviation of the interface. We decompose the random
thickness into hk = hk+h′

k, where h = E[h] denotes the ensemble mean thickness.
Consequently, ζℓ = ζℓ+ζ ′ℓ, allowing us to define the mean potential energy (MPE)
and eddy potential energy (EPE) densities as follows:

MPEℓ =
1

2
g′ℓζℓ

2
, EPEℓ =

1

2
g′ℓ(ζ

′
ℓ)

2. (15)

Decomposing next the momentum by uk = ûk + u′′
k with ûk = hkuk/hk the

thickness-weighted momentum, we define the mean kinetic energy (MKE) and
eddy kinetic energy (EKE) densities by

MKEk =
1

2
hk|ûk|2, EKEk =

1

2
hk|u′′

k |2. (16)

Figure 5 shows the behaviour in time of these energy components. Both KE and
PE (MPE is not shown as it has a different order of magnitude, but follows similar
profile to MKE) are first transferred from the mean to the eddy components
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within the initial integration period (2 years approximately). After this balancing
time, the mean and eddy components exchange energy with each other (as can
be observed from their opposite phases). This phenomenon is found to be valid
both locally in the jet region and globally across the entire domain.
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Fig. 5. Ensemble energy decomposition. Left: integrated over the whole domain; Right:
integrated over the jet region.

Figure 6 shows that the ensemble generated by the proposed stochastic model
covers efficiently (within a short time) the reference solution (as checked at dif-
ferent spatial locations), even though the ensemble forecasts and reference start
from different states (which is a normal occurrence when comparing simulation
of different resolution, due to the different levels of energy sustained).
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Fig. 6. Spread of moderate-term forecast for ensemble runs (20 members, 10 km) com-
pared to reference run (5 km).
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5 Stochastic Primitive model

Within the stochastic framework of location uncertainty the Boussinesq equa-
tions can be written as

Horizontal momentum:

Dtu+ fe3 × (udt+ σtdBH
t ) = ∇H

(
−p′ +

ν

3
∇ · v

)
dt−∇Hdp

σ
t , (17)

Vertical momentum:

Dtw =
∂

∂z

(
−p′ +

ν

3
∇ · v

)
dt− ∂

∂z
dpσt + bdt, (18)

Temperature and salinity:

DtT = κT∆T dt, (19)

DtS = κS∆S dt, (20)

Incompressibility:

∇ · [v − vs] = 0, ∇ · σtdBt = 0, (21)

Equation of state:

b = b (T, S, z) , (22)

with the convention v = (u, w) and with the buoyancy defined as b = −g ρ−ρ0

ρ0
. As

opposed to the shallow water model, within the discussion of the primitive equa-
tions the stochastic transport operator has to be intended as three-dimensional.
These equations where derived in [10] using asymptotic analysis starting from
the stochastic Navier-Stokes of [3]. A more recent derivation starting from com-
pressible Navier-Stokes is provided in [16]. Temperature T and Salinity S are
considered active tracers transported by the stochastic flow, impacting the mo-
mentum equation through the (deterministic) equation of state. Consistency be-
tween the left hand side and the forcing is provided by the term dpσt in equations
(17) and (18), a martingale correction corresponding to a zero-mean turbulent
pressure related to the noise, termed stochastic pressure. Primitive equations are
then obtained from Boussinesq equations introducing the hydrostatic hypothesis
on the vertical acceleration, that provides

[σtdBt − us dt] · ∇w − 1

2
∇ · (a∇w) dt = −∂p

∂z
dt− ∂dpσt

∂z
+ b (23)

so that the pressure and stochastic pressure can be defined in relation to the
vertical component of the diagnosed large scale velocity as

p′ (x) =

∫ z

ηb

b+ us · ∇w +
1

2
∇ · (a∇w) dζ, (24)

dpσt (x) =

∫ z

ηb

σtdBt · ∇w dζ. (25)

The implementation of the stochastic Primitive Equations has been done in
the level-coordinate free-surface primitive equations model NEMO [36] in a wind-
forced double-gyre configuration. This setting, that has already been used in
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Table 2. Parameters of the model experiments.

R27d R9d R9LU

Horizontal resolution 1/27◦ (3.9 km) ∼ 1/9◦ (11.8 km) ∼ 1/9◦ (11.8 km)
Horizontal grid points 540×810 160×256 160×256
Vertical levels 30 30 30
Time step 5 min 15 min 15 min
Eddy viscosity 5×10−9 m4s−1 5×10−9 m4s−1 5×10−9 m4s−1

Eddy diffusivity 5×10−10 m4s−1 5×10−9 m4s−1 5×10−9 m4s−1

previous works on stochastic parameterization [10, 11], consists of a 45◦ degrees
rotated beta plane centred at ∼ 30◦N, 3180 km long, 2120 km wide and 4 km
deep, bounded by vertical walls and with a flat bottom and is fully described
in [37, 38]. Table 2 summarizes the physical parameters used in the simulation,
in agreement to the parameters of original papers. It has to be noticed that the
resolution of the R9 simulation is slightly different from that of the original paper
[37] as the wavelet noise requires the domain to be a multiple of a power of 2
when an MPI z-pencil domain decomposition strategy is employed. To assess the
benefits of the stochastic parametrization two purely deterministic simulations
were run at two different resolutions: 1/27◦ (R27d), a high resolution reference,
and 1/9◦ (R9d), the deterministic reference. These two deterministic simulations
are compared to a stochastic 1/9◦ simulation (R9LU). The R27d simulation
has been spun-up for 100 years before collecting data for the LU framework.
An initial condition for R9 has been generated starting from this simulation
by filtering, downsampling and running a 10 years adjustment period. Each
simulation consists of 5 years of data, collected every 5 days and averaged over
the 5 days.

The effect of the stochastic parametrization is assessed on the gradient of
horizontal velocity. Considering Figure 4 it can be noticed that there is an in-
crease of the small scale structures along the jet structure and in the southern
gyre, where the turbulence generated by the boundary is more intense. This ef-
fect, which is a consequence of the stochastic parametrization and the associated
enhancement of the small scales variability, can be assessed with the symmetric
part of the velocity gradient, the strain tensor. Recall the classical decomposition
of the velocity gradient as ∇u = 1

2 (∇u+ (∇u)T) + 1
2 (∇u− (∇u)T). From the

symmetric part, the normalised strain rate can be defined for the mean flow and
the fluctuations respectively, as

∥S∥ =
1

∥u∥∞

(∣∣∣∣∂u∂x
∣∣∣∣+ ∣∣∣∣∂v∂x +

∂u

∂y

∣∣∣∣+ ∣∣∣∣∂v∂y
∣∣∣∣) , (26)

∥s∥ =
1

∥u′∥∞

(∣∣∣∣∂u′

∂x

∣∣∣∣+ ∣∣∣∣∂v′∂x
+

∂u′

∂y

∣∣∣∣+ ∣∣∣∣∂v′∂y

∣∣∣∣) . (27)

The integrated total strain rate ∥S∥
t
and turbulent strain rate ∥s∥

t
provide a

metric to assess the effects of the parametrization along the total duration of the
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Fig. 7. Snapshot of vorticity (top) and strain rate (bottom).
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Table 3. Experimental values for total strain rate and turbulent strain rate

R27d R9d R9LU I

∥S∥
t

6.7295 ×10−5 2.0773 ×10−5 2.5314 ×10−5 9.7%

∥s∥
t

6.7295 ×10−5 1.7570 ×10−5 2.2328 ×10−5 9.5%

simulation. Table 3 summarizes the numerical estimation of this improvement,
that is of the order of 10% when bounded by the two deterministic formulations:

I (f) =
f
R9LU

− f
R9d

f
R27d

− f
R9d

. (28)

The left panel of Figure 8 shows that this increase in variability is well captured
by the model across a wide range of spatial scales, leading to an increase of the
turbulent energy content of the flow. Additionally, the stochastic model with the
proposed noise parameterization enhances the intrinsic variability of the flow at
different temporal scales, as demonstrated in the right panel of Figure 8. The de-
terministic large-scale simulation exhibits prominent peaks at certain frequencies
(around 20 and 25 days), indicative of an over-representation of certain eddies.
Additionally, the inertial slope appears to be steeper, suggesting a poor repre-
sentation of the eddies’ distribution within the inertial range. These aspects are
clearly rectified in the stochastic simulation: the slope is significantly weaker,
almost reaching the slope of the reference. Furthermore, the anomalous peaks
are attenuated, indicating a more balanced distribution of eddies within the in-
ertial range. Eddies of larger frequencies are also better represented, suggesting
a more pronounced inverse cascade since no energy is injected at this scale by
the noise.
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Fig. 8. Comparison of turbulent kinetic energy spectra over (left) spatial scales and
(right) temporal scales, provided by different models.
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6 Conclusions

A novel, wavelet based, stochastic parametrization has been implemented in two
different models to test its strengths and weaknesses. The general outcome of
this study is that the addition of this model-based noise term, (that depends on
the current state of the simulation and not on external data), can be beneficial
in facilitating the energy transfer from large scale to small scale. Both the hydro-
static primitive equations model and the shallow water model appear to support
turbulent dynamics at scales smaller than those sustained by the deterministic
model. This enhancement of variability is shown to be successfully exploited in
ensemble-run simulations to create a larger envelope for the spread of the shallow
water model. Similar ensemble experiments with the primitive equations model
will be considered in the future. For future research, we plan to investigate and
incorporate a time-correlated unresolved barotropic flow component by applying
Girsanov transformation to the uncorrelated noise. This addition, coupled with
available observational data, aims to further enhance the accuracy and reliability
of the current random model.
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3. Mémin, E: Fluid flow dynamics under location uncertainty. Geophysical and Astro-
physical Fluid Dynamics 108, 119-197 (2014).

4. Holm, D. D.: Variational principles for stochastic fluid dynamics. Proceedings of the
Royal Society A: Mathematical, Physical and Engineering Sciences, 471(20140963),
2015.
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mesoscale eddy effects in coarse-resolution barotropic models Ocean Modelling,
2020, 151, pp.1-50.
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models in view of defining high order stochastic discrete-time schemes. Foundations
of Data Science. 2023.

35. Roullet, G. and Madec, G.: Salt conservation, free surface, and varying levels:
A new formulation for ocean general circulation models. Journal of Geophysical
Research, 2000.
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