Combined effect of Cu0 and oxygen vacancies in Cu-based zeolites enables highly efficient photo-Fenton-like performance for water purification
Résumé
The Cu-based heterogeneous photo-Fenton-like process has emerged as a promising technology in wastewater treatment, but efficient light harvesting and sufficient utilization of photogenerated electrons are still core issues. Herein, a dual strategy was proposed to achieve the high-efficiency removal of refractory organic pollutants using a Cu-doped zeolite with Cu0 and oxygen vacancies (Cu0@CuZ) in the photo-Fenton-like reaction. This is the first time that such a strategy employing Cu-based zeolites has been used. Cu0@CuZ can completely degrade 20 mg/L phenol within 15 min under visible-light irradiation, and the rate constant was 40, 55, and 65 times higher than Cu2O, CuO, and Cu0 , respectively. Cu0@CuZ also presented excellent degradation performance for other typical refractory organic pollutants, surpassing most of the reported Cu-based catalysts to date. This superior performance highly depends on oxygen vacancies (Vo) and plasmonic Cu nanoparticles. The introduction of Vo and the creation of the surface plasmon resonance effect greatly enhanced the visible-light harvesting ability of the catalyst. Impressively, Vo and Cu0 nanoparticles served as dual-channels for efficient electron transfer by enriching and then transferring photogenerated electrons to Cu(II), greatly expediting the reduction of Cu(II) to Cu(I). The synergistic effects of the dual-channel electron transfer and light-harvesting ability achieved sustained Cu(II)/Cu(I) cycling, thereby promoting H2O2 activation to produce more active species for organic pollutant degradation. This work provides an ingenious strategy to rationally establish a high-efficiency photo-Fenton-like catalyst for water remediation.
Environmental significance
Refractory organic pollutants with high toxicities in wastewater, especially residual toxic organic pollutants, seriously endanger the human health and aquatic ecosystems. The Cu-based heterogeneous photo-Fenton-like process as a promising technology is an effective solution for wastewater remediation. Herein, we developed an environment-friendly Cu-based heterogeneous catalyst for the degradation of refractory organic pollutants. The coexistence of Cu0 nanoparticles and oxygen vacancies boosted the visible light absorbability of the catalyst and served as electron transfer dual-channels to transfer more photogenerated electrons for Cu(II)/Cu(I) redox cycles, thereby greatly promoting H2O2 activation to produce reactive oxygen species. The catalyst showed exceptional proficiency in the photo-Fenton-like degradation of various organic pollutants, and their degradation pathway was also evaluated as a safe detoxification process, ensuring meaningful environmental impact. Moreover, the catalyst possessed a wide pH tolerance and trace Cu leaching, which is conducive for practical applications.
Origine | Fichiers produits par l'(les) auteur(s) |
---|---|
Licence |
Domaine public
|