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CO2 storage in subsurface formations, such as saline aquifers, has emerged as a promising alternative 

to reduce greenhouse gas emissions and mitigate their impacts on global warming [1]. Ensuring the 

reliability of CO2 leakage risk assessment remains critical in the context of carbon capture and storage 

(CCS) technologies and raises significant concerns for predicting long-term behaviours. Various 

potential sources of leakage, such as geological faults and fractures or mineralogical changes of the 

rock matrix due to the acidification of the medium, may compromise the integrity of the seal and 

caprock. On the one hand, fault damage zones characterized by a fracture network can become high-

conductive flow pathways, where the permeability needs to be investigated to assess fault-related 

leakage rates [2]. On the other hand, the mineral reactivity of the reservoir structure with the injected 

CO2 may result in mainly carbonate dissolution under acidic conditions, locally impacting the flow 

paths, porosity and permeability [3]. 

Investigating the effects of these two phenomena is, therefore, crucial to ensure reliable management of 

CCS facilities. However, several uncertainties are associated with modelling these geochemical and 

structural mechanisms at the reservoir scale. Subsurface uncertainties arise from missing geological 

features and data sparsity regarding macro-properties distributions such as permeability and porosity. 

This necessitates sensitivity analyses in terms of the macroscopic description of the porous structures 

to ensure reliable management of CO2 storage in natural reservoirs. However, the parametrization of 

geological distributions is often left to the user’s discretion [4]. 

At the same time, laboratory studies and pore-scale modelling of reactive processes and fluid transport 

within complex fracture geometries provide insights into the local interactions of these processes, 

enabling the analysis of a Representative Elementary Volume of an extracted rock core. At this scale, 

the 3D porous geometry is explicitly described through X-ray microtomography (X-ray 𝜇CT) 

experiments, a non-destructive imaging technique that can subsequently be combined with pore-scale 

modelling and direct numerical simulations [3]. This renders pore-scale analyses an interesting 

interplay between laboratory experiments and mathematical modelling, providing valuable insights for 

upscaling reliable characteristics. However, uncertainties also arise at the small scales both from the 

imaging and modelling sides. X- ray 𝜇CT reconstruction suffers from artefacts such as noise and 

unresolved morphological features, which disrupt the description of the pore space. Capturing the 

heterogeneous features that are below the characteristic voxel size, especially sub-resolved porosity, 

and assessing their impact on pore-scale modelling remains challenging and requires imaging 

uncertainty quantification (UQ) [5, 6]. Moreover, modelling uncertainty plays an important role in the 

calibration of reactive pore-scale models, regarding the estimation of mineral reactivities and kinetic 

parameters that can suffer from wide discrepancies or be difficult to estimate from laboratory 

measurements [7].  

Therefore, incorporating uncertainty quantification in pore-scale modelling is crucial for applications 

to CO2 leakage risk assessment. In particular, the knowledge gained from understanding the 

uncertainties at the pore scale can be upscaled, enabling a propagation of uncertainty quantification 

across the scales to provide macro-properties distributions based on pore scale estimations of the 

uncertainties. Our ongoing research will explore these uncertainty considerations regarding the 

potential sources of leakage identified by fault damage zones and carbonate dissolution in CSS 

facilities. 

A robust deep learning data assimilation framework for uncertainty quantification 

Incorporating UQ into pore scale modelling requires dedicated and robust deep learning approaches 

embedded within a Bayesian inference framework. A Bayesian Physics-Informed Neural Networks 
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(BPINNs) paradigm provides the opportunity to simultaneously evaluate prediction confidence, 

measurement uncertainty, and model adequacy through posterior distributions of neural network 

predictions [8]. To achieve this, the Hamiltonian Monte Carlo process is commonly used to sample 

from a target posterior distribution in high dimension, involving the laboratory data and model 

constraints as different objectives or tasks. The sampling approach thus introduces a weighted multi-

task posterior distribution, whose weights reflect uncertainties across the tasks; however, they mostly 

remain hand tuned. Unsuitable choices of these weighting parameters can lead to biased predictions, 

vanishing tasks behaviour or instabilities, rendering the sampling inoperative, as in the PINNs 

framework [9]. 

Developing an efficient data-assimilation framework to address multi-objective and multi-scale 

problems involving uncertainty quantification, therefore, remains challenging. We proposed a novel 

automatic and adaptive weighting strategy for the BPINNs, leveraging the gradient information of the 

different tasks to reach unbiased UQ. This ensures enhanced stability and convergence, reduces 

sampling bias and avoids hand-tuning of the weighting parameters [10]. We thus obtain reliable 

uncertainty estimates on the measurement data and the modelling constraints arising from potentially 

coupled and non-linear Partial Differential Equations (PDEs). This has extended the applicability of the 

BPINNs to more complex inference problems, such as multi-task and multi-scale reactive inverse 

problems of carbonate dissolution. The ongoing work thus relies on this newly developed framework 

to achieve robust Bayesian inference for CCS applications. 

 Quantifying uncertainties from reactive inverse problems at the pore scale 

Reactive inverse problems of calcite dissolution offer the opportunity to investigate both imaging and 

modelling uncertainties at the pore scale. In this context, we proposed a data-assimilation framework 

combining dynamical 𝜇CT data of calcite dissolution (Figure 1, on the left) along with physics-informed 

PDE system modelling the reaction-diffusion process for diffusive dominated regimes (with low Peclet 

numbers) [11]. This results in a multi-task formulation of the reactive inverse problems and enables us 

to simultaneously quantify morphological uncertainties in the micro-porosity field 𝜀 but also to estimate 

reliable ranges of the reactive parameters in the prescribed PDE model.  

A Bayesian Model Average of the surrogate micro-porosity field 𝜀Θ as well as its local uncertainty are

obtained from sampling the posterior distribution with our adaptive weighting strategy for the BPINNs 

(Figure 1). This brings insights into the sub-resolved morphological features and provides an accurate 

description of the porous material initial state by observing its dissolution. We identified enhanced 

uncertainties on the calcite core edges, which confirm the challenges and discrepancies associated with 

estimating mineral reactivities through purely differential imaging techniques [7]. Finally, we ensure 

reliable calibration of the pore-scale PDE model parameters by identifying posterior distributions of the 

corresponding dimensionless numbers in the inverse problem formulation. Overall, combining data-

driven and physics-based AI approaches allows to effectively address robust UQ at the pore-scale and 

to propagate the uncertainties for CO2 leakage risk assessment due to carbonate dissolution in acidic 

fluids. 

Propagating uncertainties on hydraulic conductivity based on fracture roughness  

Fault conductivity in natural damage zones remains uncertain and sensitive to geometrical 

characteristics such as fracture aperture distributions and roughness. This queries the validity of the 

Cubic Law approximation for estimating fracture permeability, especially considering the discrepancies 

that roughness can induce between the mechanical and effective hydraulic apertures [12]. While 

assuming smooth fracture walls is a common assumption at the reservoir scale, uncertainties associated 

with such model mis-specification or falsification need to be investigated to support decision-making 

processes in fault-related leakage [13].     
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We propose an AI-driven propagation of the uncertainties on the hydraulic conductivity of fractures, 

accounting from their roughness at the pore and laboratory scales, by identifying the relevant hydraulic 

aperture through the combination of data-driven and physics-based formulations. This aims to mitigate 

the uncertainties associated with both, the Cubic Law modelling approximation and the measurement 

data of the mechanical aperture field obtained from X-ray 𝜇CT. Permeability deviations due to the 

fracture roughness can then be upscaled to provide meaningful ranges of fault conductivities at the 

larger scales. 

Figure 1 Predictions of the surrogate micro-porosity field 𝜀Θ along the dissolution process of a calcite

core using the AI-driven data assimilation framework developed in [10, 11]. Synthetic 𝜇CT dynamical 

images, corrupted by strong noise, at the initial state and several dissolution times, on the left. The grey 

level intensities ℐ𝑚, depicting the material local attenuation, are related to the micro-porosity field by 

the mapping ℐ𝑚 = 1 − 𝜀𝛩 + 𝜉, with 𝜉 the measurement uncertainty arising from the noise. Bayesian

Model Average predictions on 𝜀𝛩 with the local uncertainties along the dissolution times, in the middle.

Mean Squared errors between the micro-porosity 𝜀 and the surrogate field 𝜀𝛩, on the right. 

Conclusions 

Uncertainty quantification plays a crucial role in the sustainable management of CCS technologies and 

in the risk assessment of potential CO2 leakage. The multi-scale considerations of the phenomena 

involved in CO2 storage, either related to mineral reactivity or complex flow behaviours, affect the 

uncertainties at different levels. Investigating the propagation of uncertainties across the scales is 

therefore of great importance to achieve reliable predictions. AI approaches offer such a promising 

support to ensure reliable decision-making, especially when using experimental data and mathematical 

modelling through the combination of data-driven and physics-based approaches.  
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