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Learning-based Nonlinear Model Predictive Control Using Deterministic
Actor-Critic with Gradient Q-learning Critic

Amine Salaje, Thomas Chevet, and Nicolas Langlois

Abstract— In this paper, we present an off-policy reinforce-
ment learning (RL) method used to tune the optimal weights
of a nonlinear model predictive control (NMPC) scheme. The
objective is to find the optimal policy minimizing the closed-
loop performance of point stabilization with obstacle avoidance
control task. The parameterized NMPC scheme serves to
approximate the optimal policy and update the parameters
via compatible off-policy deterministic actor-critic with gradient
Q-learning critic (COPDAC-GQ). While efficient, this algorithm
requires a heavy computational complexity when combined with
NMPC, as two optimal control problems have to be solved at
each time instant. We therefore propose two different methods
to reduce the real-time computational cost of the algorithm.
First, a neural network is used to learn the subsequent state-
action features of the advantage function. Then, we propose
to use the information delivered by the NMPC scheme to
approximate the subsequent state-action features in the critic.
Whichever method is used removes the need of a secondary
NMPC, significantly improving the training speed. The results
show that there is no difference between the original method
and the proposed methods in terms of the learned policy and
the control performance, whereas the real-time computational
burden is almost halved with the proposed methods.

I. INTRODUCTION

When addressing complex control objectives, nonlinear
model predictive control (NMPC) has proven to be an efficient
control method [1]. Its capability in managing nonlinear
systems and constraints renders it well-suited for numerous
applications, one of them being mobile robotics [2]. NMPC
generates control signals at each control time step by solving
a so-called optimal control problem (OCP), i.e., a constrained
nonlinear optimization problem. The OCP formulation hinges
on the selection of parameters for which reliable tuning
methods are highly sought [3]. A way to address this issue
is to consider reinforcement learning (RL).

RL has gained widespread popularity due to its remarkable
ability to achieve optimal performance across a multitude of
fields as varied as games and the control of robotic systems
[4]–[6]. RL addresses problems where an agent interacts
with an environment, learns from its experience, and aims to
make the best decisions over time by learning optimal value
functions and optimal policies underlying a Markov decision
process (MDP) [7].
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The deterministic policy gradient (DPG) [8] is an RL
method seeking to estimate the optimal policy through a
parameterized function approximator. It achieves this by
directly optimizing the policy parameters via gradient descent
steps of the RL performance [7]. When dealing with problems
with large state spaces in high dimensions, modern RL
methods aim to estimate the policy function using, among
others, deep neural networks (DNN) as nonlinear function
approximators [9]. However, DNN-based RL often lacks
capabilities in closed-loop stability analysis, and can be
difficult to formally analyze [10], leading to lingering critical
concerns in effectively managing constraints and ensuring
safety when controlling systems. To address these limitations,
the notion of using model predictive control (MPC)-based
RL has been proposed and justified in [10]. This approach
advocates for employing MPC as the function approximator
for the optimal policy in RL. Unlike DNNs, MPC-based
policies inherently satisfy state/input constraints and safety
requirements due to their construction.

Recently, numerous works have been using DPG to
improve the closed-loop performance of MPC. In [11], a
least squares temporal difference-based deterministic policy
gradient method is used to learn the MPC parameters for a
simplified freight mission of autonomous surface vehicles.
The same RL optimization method has been used in battery
storage applications [12], [13], as well as in polytopic LPV
systems [14], and for peak power management within smart
grids in [15].

Another approach consists in using compatible determinis-
tic actor-critic with gradient Q-learning critic (COPDAC-GQ)
[8]. With this technique, the gradient Q-learning is used
in the critic [16]. Consequently, the critic parameters are
updated towards the true gradient descent and convergence
is thus ensured [17]. To the best of our knowledge, the
only work where an MPC-based COPDAC-GQ approach
has been implemented was in [18] for the application to
home energy management systems. One of the drawbacks
of this approach is the significant computational demand for
real-time implementation. Indeed, in the context of updating
the critic parameters, it requires to solve two OCPs at
each sampling time, one for estimating the current state-
action features function and another for approximating the
subsequent state-action features in the compatible critic
function approximation.

The main objective of this paper is to reduce the real time
computational complexity of the algorithm without affecting
the learned policy and the control performance. To do so, we
propose two different approaches:



(i) We use a neural network (NN) to learn the state-action
features. The NN is then trained to solve a regression
problem using the states and the NMPC parameterized
policy as input, whereas the output is the current state-
action features, obtained at previous time instants.

(ii) We approximate the state-action features using the result
of the OCP since, according to [10], the NMPC scheme
can be used as an action-value function approximator.

In both cases, only one OCP has to be solved at each time
instant, thus reducing the computational burden of the learning
task.

The remainder of this paper is organized as follows.
Section II recalls some background on predictive control
and reinforcement learning. Then, Section III presents the
algorithm on which our work is based, while Section IV
details our contributions. Section V showcases the efficiency
of our methods on numerical simulation examples. Finally,
Section VI draws concluding remarks.

II. BACKGROUND

This section aims to provide some background on the RL
methods and the control algorithms we use. We start by
giving some elements on Markov decision processes before
presenting how a model predictive controller is parameterized.

A. Markov decision process

Consider a finite Markov decision process (MDP) defined
by a tuple (S,A,P, ℓ, ρ, γ) where S ⊆ Rn is the state space,
A ⊆ Rm the action space, P the probability law underlying
the state transition dynamics so that the state s at time k + 1
depends on the state sk and action ak at time k following

sk+1 ∼ P(·|ak, sk). (1)

Depending on the context, this transition can be either stochas-
tic or deterministic. A more control oriented representation
of the state transition would be

sk+1 = f(ak, sk) (2)

where f is a deterministic case of (1). The other elements
of the tuple describing the MDP are the cost function ℓ
associated with a state-action pair, the initial state distribution
ρ, and the discount factor γ ∈ (0, 1). This discount factor
determines the importance of future rewards.

The primary goal of RL is to find a policy, denoted
by π : S → A, that effectively minimizes a closed-loop
performance objective [7]. Given an objective J(π) on the
expected cumulative cost, the RL problem aims to find the
optimal policy π∗ satisfying π⋆ = argminπ J(π) where

J(π) = Es∼ρπ

[
K∑

k=0

γkℓ (sk,ak)

∣∣∣∣∣a = π(s)

]
(3)

where K ∈ N ∪ {+∞} is a (possibly infinite) horizon,
ρπ is the state distribution resulting from policy π and
Es∼ρπ denotes the expected value computed over this state
distribution.

B. Parameterized NMPC-Based Policy Approximation

A solution to a finite horizon MDP can be provided
by a nonlinear model predictive controller under certain
assumptions, as elaborated in [10]. Therefore, we consider
the following parameterized NMPC scheme

min
ui,xi,
∀i∈0,N

N−1∑
i=0

γiL (xi,ui,θX ,θU ) + γNW (xN ,θf ) (4a)

s.t. x0 = sk, (4b)

xi+1 = f(ui,xi), ∀i ∈ 1, N , (4c)

xi ∈ S, ∀i ∈ 1, N , (4d)

ui ∈ A, ∀i ∈ 0, N − 1, (4e)

g(xi) + θc ≤ 0, ∀i ∈ 1, N , (4f)

where L is called the stage cost, W the terminal cost, N ∈ N
the prediction horizon that may be shorter than K from the
performance measure (3), and γ is as in (3). The deterministic
dynamic model driven by the NMPC scheme (4) is denoted
by f as in (2). The function g is used to impose constraints
on the state at each time step over the prediction horizon N .
Finally, θX , θU , θf , and θc are vectors of real parameters,
usually chosen a priori based, e.g., on the dynamics f or the
control objective for the system. However, in this paper, they
are tuned through an RL algorithm.

In order to enhance the closed-loop performance of the
NMPC scheme, as evaluated by the RL cost, it can be
advantageous to parameterize the NMPC cost function, model,
and constraints. RL then adjusts these parameters in a
way to improve the closed-loop performance. Theoretically,
according to [10, Theorem 1], we know that, under certain
assumptions, and if the parameterization is rich enough, the
MPC scheme is capable of capturing the optimal policy π⋆.

When solving (4) at time k ∈ N, we obtain the optimal
control sequence u⋆(sk,θ) = {u⋆

0(sk,θ), . . . ,u
⋆
N−1(sk,θ)},

with θ =
[
θX θU θf θc

]
, driving system (2) towards

its objective over the prediction horizon N . We define, for
all k ∈ N, the parameterized deterministic policy πθ(sk) and
the action ak as

πθ(sk) = u⋆
0(sk,θ), (5)

ak = πθ(sk) + ckρρ (6)

where ρ is a Gaussian term introducing weighted exploration
of the action space A decreasing exponentially during training
because of the coefficient cρ ∈ (0, 1). In the learning process,
we apply ak given by (6) to system (2) at time k to get sk+1.

III. COMPATIBLE DETERMINISTIC ACTOR-CRITIC WITH
GRADIENT Q-LEARNING

In this section we present the original COPDAC-GQ
algorithm as presented in [8]. To simplify the notations, the
time dependence is dropped for states s ∈ S and actions
a ∈ A. The state at the next time instant is denoted s+ ∈ S .

The policy parameters θ can be directly optimized by
gradient descent on the performance J(πθ) given in (3). The



update rule is then

θ ← θ − α∇θJ(πθ) (7)

where α < 0 is the step size. Based on the DPG theorem
proposed in [8], the policy gradient equation is

∇θJ (πθ) = E [∇θπθ(s)∇aQπθ
(s,a)|a = πθ(s)] (8)

where Qπθ (s,a) is the action-value function associated to
the policy πθ. The sensitivity analysis of ∇θJ(πθ) and
∇aQπθ (s,a) is discussed in the following.

A. Gradient of the policy function

This paragraph describes how to compute ∇θπθ(s) ap-
pearing in the policy gradient equation (8). This method is
inspired by the work of [10]. Let Lθ, the Lagrange function
associated to the NMPC scheme (4), be

Lθ(z) = Ωθ + µ
⊤Hθ, (9)

where Ωθ is the parameterized NMPC cost function (4a) and
Hθ is a vector stacking vertically the inequality constraints
appearing in problem (4). The real vector µ is the Lagrange
multiplier associated to the inequality constraint, having the
size of Hθ.

Let ζ = {x,u} and z = {ζ,µ} be the primal variables
and the primal-dual variables of the NMPC (4), respectively.
Consequently, the sensitivity of the policy with respect to the
policy parameters, can be obtained by using the implicit
function theorem on the Karush-Kuhn-Tucker conditions
written as

∂z⋆

∂θ
= −∂κθ

∂z

−1 ∂κθ
∂θ

where z⋆ is the primal-dual solution of problem (4), and

κθ =

[
∇ζLθ

diag(µ)Hθ

]
. (10)

Finally, ∇θπθ(s) can be extracted from the columns of
∂z⋆/∂θ.

B. Gradient of the action-value function

Following the conditions in [8], we can substitute the true
action-value function Qπθ (s,a) by a class of compatible
function approximators Qw(s,a). Such approximators satisfy
Qw(s,a) ≈ Qπθ (s,a) without affecting the deterministic
policy gradient in (8). The compatible function is

Qw(s,a) = (a− πθ(s))⊤∇θπθ(s)⊤︸ ︷︷ ︸
Ψ(s,a)⊤

w + Vv(s), (11)

where Ψ(s,a) is the state-action features vector weighted by
w, and Vv(s) is the baseline value function approximating
the true value function Vπθ (s), taking the form

Vv(s) = v⊤ϕ(s), (12)

where the state features ϕ(s) is designed in this paper to
constitute all monomials of the state with degrees less than or
equal to 2 and v is the corresponding weight vector. Finally,
∇aQπθ (s,a) appearing in (8) is computed as

∇aQπθ (s,a) ≈ ∇aQw(s,a) = ∇θπθ(s)⊤w. (13)

C. Parameter update

To update the parameters θ of the policy and v and w of the
action-value function, we use the COPDAC-GQ optimization
method [8]. The critic updates the action-value and value
functions parameters v and w using the gradient Q-learning
technique [16], thus ensuring the critic’s convergence towards
the true gradient descent [17]. Let δ, the temporal difference
(TD) error, be

δ = ℓ(s,a) + γQw

(
s+,πθ

(
s+

))
−Qw(s,a). (14)

The action-value and value function approximators Qw and
Vv are updated using gradient Q-learning. We also define a
set of weights β using the weight-doubling trick [17] so that

w← w + αwδΨ(s,a)

− αwγΨ
(
s+,πθ

(
s+

)) (
Ψ(s,a)⊤β

) (15a)

v← v + αvδϕ (s)− αvγϕ
(
s+

) (
ϕ (s,a)

⊤
β
)

(15b)

β ← β + αβ

(
δ − ϕ (s,a)

⊤
β
)
ϕ (s,a) , (15c)

where αw, αv, and αβ are the critic’s learning rates.
Then, the actor updates the policy function’s parameters θ

following the rule

θ ← θ − αθ∇θπθ(s)∇θπθ(s)⊤w, (16)

where αθ is the actor’s learning rate.

IV. PROPOSED METHODS

This section presents the main contributions of this paper,
aiming to reduce the real-time complexity of the algorithm
we described above.

A. Subsequent state-action features approximation with neu-
ral network

In the calculation of the TD error in (14), the subsequent
action-value function Qw(s+,πθ(s

+)) can be expressed as

Qw(s+,πθ(s
+)) =(

a− πθ(s+)
)⊤∇θπθ(s+)⊤︸ ︷︷ ︸

Ψ(s+,πθ(s+))⊤

w + Vv(s
+), (17)

where a remains the same action given by (6), the target
policy πθ(s+) is, according to (5),

πθ(s
+) = u⋆

0(s
+,θ). (18)

It follows that obtaining πθ(s+) and ∇θπθ(s+) requires
solving a second NMPC problem (4) at the next state s+.
However, solving two constrained nonlinear optimization
problems at each time step makes the real-time complexity
higher, leading to a longer training time, specifically when
the length of the prediction horizon N is larger or the state
space has a high dimension.

Our first contribution consists in approximating the state-
action features Ψ(s,a) using a neural network in order to omit
the need of solving a second NMPC problem. To train the NN,
we store, at each learning step, the tuple {s,πθ(s),Ψ(s,a)}



into a replay buffer D. The current state s and the policy
πθ(s) are the NN input while Ψ(s,a) is the regression target.

Then, a mini-batch B ⊂ D of a selected size card(B) is
randomly sampled and we update the NN parameters ω using
the Adam algorithm [19] with a learning rate αω to minimize
the cost function

CNN(ω) =
1

card(B)
∑

{ς,ϖ,ψ}∈B
(Ψω(ς,ϖ)−ψ)2 , (19)

where Ψω(ς,ϖ) for {ς,ϖ,ψ} ∈ B is the output of the NN
with parameters ω and inputs ς and ϖ, whereas ψ is the
regression target.

After updating the neural network, the subsequent state-
action features Ψ(s+,πθ(s

+)) in (17) can be estimated by
passing the next state s+ and the new target policy to the
neural network, where it is approximated by

πθ(s
+) = u⋆

1(s,θ) (20)

where u⋆
1(s,θ) is the second element of the optimal control

sequence when solving the primary NMPC (4). It follows
that only one constrained optimization problem is solved at
each time step along the NN optimization. Consequently, the
subsequent action-value function in (17) can be rewritten as

Qw(s+,πθ(s
+)) = Ψω(s

+,πθ(s
+))⊤w + Vv(s

+). (21)

B. Subsequent state-action features approximation with
NMPC scheme

In addition to the parameterization of the policy given by
(4), the NMPC scheme can also deliver the optimal action-
value function under some assumptions given in [10]. We
then have

Qθ (s,a) = (4). (22)

Following this observation, we can assume that the sub-
sequent action-value function in the TD error (14) can be
estimated using information delivered by (22) instead of using
a neural network as in the previous paragraph. Particularly, our
second contribution consists in approximating Ψ(s+,πθ(s

+))
using

ΨMPC(s
+,πθ(s

+)) = Qθ (s,a) +∇θQθ(s,a), (23)

which provides useful features to construct the subsequent
state-action features function. As proved in [10], the sensitivity
∇θQθ(s,a) is obtained as

∇θQθ(s,a) = ∇θLθ(z), (24)

where Lθ(z) is as defined in (9). Then, the subsequent action-
value function in (17) can be rewritten

Qw(s+,πθ(s
+)) = ΨMPC(s

+,πθ(s
+))⊤w+Vv(s

+). (25)

As in the previous paragraph, we only solve one NMPC
problem (4) at each time step, therefore reducing the overall
computation time.

The COPDAC-GQ-based scheme to tune the parameters
of a nonlinear model predictive controller is summarized in
Algorithm 1.

Algorithm 1: COPDAC-GQ-based NMPC parameter
tuning.

1 Input: θ, w, v, β, dynamical system f , an NMPC (4)
2 Output: θ⋆

3 Initialization: D ← ∅, an initial state s0 ∈ S
4 for k ← 1 to selected number of episodes Nep do
5 s← s0
6 for t← 0 to K do
7 Solve (4) to obtain πθ(s)
8 Get the action a from (6)
9 Observe s+ = f(a, s) and get the reward ℓ

10 if method from paragraph IV-A used then
11 D ← D ∪ {s,πθ(s),Ψ(s,a)}
12 if card(D) ≥ card(B) then
13 Randomly sample a mini-batch of

card(B) elements of D
14 Get ω from (19)
15 Compute δ with (14) using the

modified Qw(s+,πθ(s
+)) from (21)

16 else if method from paragraph IV-B used then
17 Compute δ with (14) using the modified

Qw(s+,πθ(s
+)) from (25)

18 Update the critic parameters w,v, β by (15)
19 Update the actor parameters θ by (16)
20 s← s+

V. NUMERICAL SIMULATIONS

In this section, we apply in simulation the proposed
COPDAC-GQ-based NMPC to solve setpoint tracking prob-
lems with static obstacle avoidance for a differential drive
mobile robot. These simulations show the clear improvement
in training the control scheme compared with [18].

A. Simulation Model

For simulation purposes, we consider a differential drive
robot having for continuous-time dynamics [20]

ẋ = v cosφ (26a)
ẏ = v sinφ (26b)
φ̇ = ν (26c)

where (x, y) denote the robot’s coordinates in a two-
dimensional plane, φ is its orientation in the plane, v its
linear speed, and ν its rotation speed. These dynamics are
discretized at a sampling period Ts = 0.2 s using the Runge-
Kunta 4 method [20] and are denoted, in the following, by

sk+1 = f(uk, sk) (27)

where s⊤k =
[
xk yk φk

]
and u⊤

k =
[
vk νk

]
.

The goal of the robot is to reach an equilibrium point
(sref,uref) of the dynamics (27), with given state vector sref,
from a given initial position. To do so, it is driven with a
nonlinear model predictive controller as defined in (4). The



TABLE I
CONTROLLER AND COPDAC-GQ CONFIGURATION.

Parameter Value
αw , αv , αβ , αθ 10−5, 10−5, 10−5,10−7

θinit, winit, vinit, βinit 10−4, 0, 0, 0
Law of ρ, γ N (0, 10−2), 0.97
N , K, Nep 10, 129, 30
c, dt, d0 100, 4, 0.25
q1, q2, q3 1, 1, 0.1
Mini-batch size card(B) , αω 128, 10−2

Hidden layers, neurons per layer 3, 64

cost function (4a) is such that, for any i ∈ 0, N − 1,

L(xi,ui, θX , θU ) =
∥∥xi − sref

∥∥2
diag(θX)2

+
∥∥ui − uref

∥∥2
diag(θU )2

,

W (ξN ,θf ) =
∥∥xN − sref

∥∥2
diag(θf )2

where diag(θ) is a diagonal matrix having for elements the
components of θ, with θX =

[
θx θy θφ

]
, θU =

[
θv θν

]
,

and θf =
[
θxf

θyf
θφf

]
, and ∥x∥2Q = x⊤Qx.

The action space is A = [−0.6, 0.6] × [−π/2, π/2]. The
state space is S = [−4, 4]× [−4, 4]×R. The robot has to stay
at a given distance from an obstacle located at (xobs, yobs) by
satisfying

1− 4
(xi − xobs)

2 + (yi − yobs)
2

(drob + dobs)2︸ ︷︷ ︸
Ξ(xi)

+θc ≤ 0, (28)

where (xobs, yobs) = (0, 0), and drob = 0.5m and dobs =
2m are the diameters of a safety circle around the robot
and the obstacle, respectively. Parameter θc is a tightening
variable used to adjust the strength of the collision avoidance
constraint.

To train the RL agent, the robot’s initial state and objective
are s⊤0 =

[
−2 −2 0

]
and sref =

[
4 4 0

]⊤
so that

uref = 0. The vectors s0 and sref remain the same over all
the training episodes. The RL stage cost ℓ used in the TD
error (14) and the RL performance (3) is defined as

ℓ =

{∥∥sk − sref
∥∥2
Q
+ ∥uk∥2 if

∥∥sk − sref
∥∥
2
< dt∥∥sk − sref

∥∥2
Q
+Υ(sk) if

∥∥sk − sref
∥∥
2
≥ dt

, (29)

where Q = diag(q1, q2, q3) allow assigning different weights
to each error term, dt > 0 is a constant distance threshold,
and Υ(sk) is the obstacle penalty collision

Υ(sk) = cmax{0,Ξ(sk) + do}, (30)

where Ξ is as defined as in (28) and do > 0 are the distance
and the desired safe distance between the robot and the
obstacle, respectively, and c is a penalty weight. If a collision
occurs, Υ(sk) adds a positive penalty to the stage cost ℓ.

The numerical computation is performed using the Ipopt
solver provided by the CasADi software framework [21] on
a PC equipped of 16 GB of RAM. The initial and constant
parameters of the COPDAC-GQ-based NMPC algorithm are
provided in Table I.
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B. Simulation results

To showcase the computational efficiency of our algorithms,
we train θ in three ways: one using the method from [18], one
using method from Paragraph IV-A, and finally one using
the method from Paragraph IV-B. The learning algorithm
from [18] update parameters using batch (offline) learning,
whereas our methods update the parameters continuously
using incremental (online) learning. We note that our proposed
methods are valid in both cases.

For all methods, the closed-loop performance improves
significantly across the learning episodes, converging to the
optimal (or sub-optimal) parameters within just the first
6 episodes (for a total of 780 training steps), as depicted
in Figure 1. Figure 2 displays the variation of the static
error between the robot final position and the reference. The
behavior presented in this figure confirms the conclusions we
got from Figure 1.

Figures 3 and 4 present a comparison of the control signals
and robot’s trajectories obtained with the different methods.
We see that from a control point of view, we get the same
performance with all the methods, showing that our proposed
algorithms do not affect the control performance.

Table II presents the real-time training duration of the three
methods for 30 learning episodes. As we can see, the proposed
method from Paragraph IV-A reaches the final episode in half
the time required for the method from [18]. In addition, since
it does not require to train a neural network, the method from
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TABLE II
TRAINING TIME COMPARISON.

Method based aproximation Training time (min)
COPDAC-GQ from [18] 15.42
NN-based COPDAC-GQ 8.04
NMPC-based COPDAC-GQ 7.85

Paragraph IV-B is even faster. Finally, figure 5 depicts the
evolution of the NMPC parameters θ over the last training
episode using the method from Paragraph IV-B.

The robustness of the COPDAC-GQ-based NMPC is clearly
demonstrated in the results in terms of speed of convergence,
learning stability, and the learned optimal policy. The results
also show that the proposed methods do not affect the overall
performance of the algorithm while reducing the training
time, making it useful for more complicated control tasks
with high-dimensional spaces.

VI. CONCLUSION

This paper presents a reinforcement learning-based (RL)
nonlinear model predictive control (NMPC) method for
mobile robot to accomplish a point stabilization with obstacle
avoidance mission. We use a parameterized NMPC scheme as
the policy approximation function, and adopt the compatible
deterministic actor-critic with gradient Q-learning (COPDAC-
GQ) RL method to update the parameters such that the closed-
loop performance gets improved with learning. We propose
two methods in order to reduce the real-time computation

complexity. While we succeed in halving the overall training
time, we do not affect the closed loop performance. In future
work, the COPDAC-GQ value function will be improved
since it can be approximated by the NMPC scheme.
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