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Abstract
A new construction of the associahedron was recently
given by Arkani-Hamed, Bai, He, and Yan in connec-
tion with the physics of scattering amplitudes. We show
that their construction (suitably understood) can be
applied to construct generalized associahedra of any
simply laced Dynkin type. Unexpectedly, we also show
that this same construction produces Newton polytopes
for all the 𝐹-polynomials of the corresponding cluster
algebras. In addition, we show that the toric variety asso-
ciated to the g-vector fan has the property that its nef
cone is simplicial.
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1 INTRODUCTION

Let 𝑄 be a Dynkin quiver. That is to say, 𝑄 is an orientation of a simply laced Dynkin diagram,
with vertices numbered 1 to 𝑛. Let 𝐵0 be the matrix with the property that the entry (𝐵0)𝑖𝑗 equals
the number of arrows from 𝑖 to 𝑗minus the number of arrows from 𝑗 to 𝑖. Starting from thematrix
𝐵0, one can define a corresponding cluster algebra (𝑄), which is a commutative ring with a
distinguished set of generators, known as cluster variables, grouped together into overlapping sets
of size 𝑛, known as clusters. Because of our particular choice of 𝑄, there are only finitely many
cluster variables. Each cluster variable has an associated vector in ℤ𝑛, its g-vector. The g-vectors
are the rays of the g-vector fan, the maximal-dimensional cones of which correspond to clusters.
This fan is complete, in the sense that the union of its cones is all of ℝ𝑛.
Considerable attention has been given to the problem of constructing polytopes whose outer

normal fan is the g-vector fan. Such polytopes are called generalized associahedra. The question
of whether the g-vector fan can be realized in this way was first raised by Fomin and Zelevinsky
in [16], and first solved by Chapoton, Fomin, and Zelevinsky [10]. In fact, g-vectors had not yet
been defined at the time of these two papers, but the fan that they study would subsequently be
recognized as the g-vector fan associated to a particular orientation of each Dynkin diagram. Sub-
sequently, [18] gave a construction that solves the problem as described here. [19] solves a more
general problem, where the initial quiver is assumed only to be mutation-equivalent to a Dynkin
quiver, and not necessarily Dynkin itself. The papers we have cited actually work in greater gen-
erality, in that they also treat Dynkin types that are not simply laced. In this paper, we focus on
the simply laced case because it is technically easier.
The prehistory of this problem goes back much further. The combinatorics of the face lattice of

a generalized associahedron is not sensitive to the orientation of𝑄. When𝑄 is of type𝐴𝑛, the face
lattice is that of the associahedron, as originally defined, as a cell complex, by Stasheff [33]. The
first polytopal realization to appear in the literature is due to Lee [23], and many others followed.
An excellent overview is provided by [8]. One particular realization of the associahedron has been
studied bymany authors [24, 28, 30, 32] (see also [27]), including Loday, whose name is most often
associated to it. The associahedra constructed in this way turn out to be generalized associahedra
corresponding to the linear orientation of the 𝐴𝑛 diagram. Recently, yet another construction of
this associahedron was given in the physics literature by Arkani-Hamed, Bai, He, and Yan [1],
in connection with scattering amplitudes for bi-adjoint scalar 𝜑3 theory. We refer to this as the
ABHY construction.
In this paper, we extend the ABHY construction to arbitrary (simply laced) Dynkin quivers. We

further show that, quite surprisingly, this same construction realizes the Newton polytopes of the
𝐹-polynomials of the corresponding cluster algebras. (The 𝐹-polynomials are certain polynomi-
als in 𝑛 variables that are a reparameterization of the cluster variables; in particular, the cluster
variables can be recovered from them.) In fact, the ABHY construction can be seen even more
naturally as constructing Newton polytopes of certain universal 𝐹-polynomials, which we define.
The universal𝐹-polynomials bear the same relationship to the cluster algebrawith universal coef-
ficients as the usual 𝐹-polynomials do to the cluster algebra with principal coefficients. We also
consider the toric variety associated to the g-vector fan. We show that our results on realizations
of associahedra imply that the nef cone of this toric variety is simplicial.
After the appearance of the first version of this paper in 2018, Palu, Padrol, Pilaud, and Plam-

ondon [26] showed that a very similar construction can be applied to construction of generalized
associahedra for all seeds in all Dynkin-type cluster algebras. The first author of the present paper
also extended the techniques in the present paper in her thesis [5], giving another proof that the
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same construction can be applied to any seed of simply laced Dynkin type, and that this con-
struction also gives Newton polytopes of 𝐹-polynomials in the same generality. Fei [13, 14] takes
a less explicit approach but proves a very general result, to the effect that if 𝐴 is any algebra with
finitely many 𝜏-rigid indecomposable modules, then a polytope dual to the 𝜏 tilting fan of 𝐴 can
be constructed as theMinkowski sum of the submodule polytopes of the 𝜏-rigid indecomposables.
Our result that our polytopes also yield Newton polytopes of 𝐹-polynomials has subsequently

been extended to nonsimply laced types by Arkani-Hamed, He, and Lam [2], by using a folding
argument to reduce to the case we consider.

2 CONSTRUCTION

In the interests of self-containedness, wewill beginwith a completely explicit, if somewhat unmo-
tivated, description of our construction. We will then provide a more representation-theoretic
description, which is needed for the proof of correctness. Statements that are not proved in this
section will be proved in the following section (or will turn out to be equivalent to well-known
facts from the theory of quiver representations).
We write 𝑄0 for the set of vertices of 𝑄 and 𝑄1 for the set of arrows. We assume that 𝑄0 =

{1, … , 𝑛}. We write 𝑄𝑜𝑝 for the opposite quiver of 𝑄, all of whose arrows are reversed compared
to 𝑄.
Draw ℤ⩾0 many copies of 𝑄. The vertices in this quiver are denoted (𝑖, 𝑗) where 𝑖 ∈ ℤ⩾0 and

𝑗 ∈ 𝑄0. We also add arrows between the copies of 𝑄: if there is an arrow from 𝑗 to 𝑘 in 𝑄, we put
an arrow from (𝑖, 𝑘) to (𝑖 + 1, 𝑗). This infinite quiver we denote by ℤ⩾0𝑄. See Example 1 for an
example of the initial part of the quiver ℤ⩾0𝑄 for 𝑄 the quiver 1 ���→ 2 ←��� 3.
We associate to each vertex (𝑖, 𝑗) a vector in ℤ𝑛, which we call the dimension vector, and which

we denote dim(𝑖, 𝑗). (What exactly it is the dimension of will be explained in the following section.
For now, it is simply an integer vector.) To (0, 𝑗), we associate the dimension vector dim(0, 𝑗)

obtained by putting a 1 at every vertex that can be reached from 𝑗 by following arrows of 𝑄𝑜𝑝

(including the vertex 𝑗 itself), and 0 at all other vertices. For (𝑖, 𝑗) with 𝑖 > 0, we associate the
dimension vector that satisfies:

dim(𝑖, 𝑗) + dim(𝑖 − 1, 𝑗) =
∑

(𝑖−1,𝑗)→(𝑖′,𝑗′)→(𝑖,𝑗)

dim(𝑖′, 𝑗′).

Here, the sum on the right-hand side runs over all vertices (𝑖′, 𝑗′) on a path of length two
from (𝑖 − 1, 𝑗) to (𝑖, 𝑗). Starting with the dimension vectors already defined for (0, 𝑗), these
equations allow us to deduce the value of dim(𝑖, 𝑗) for all (𝑖, 𝑗) in ℤ⩾0𝑄 inductively.
It turns out that the dimension vectors calculated in this way have the property that they

are nonzero and sign-coherent, in the sense that each dim(𝑖, 𝑗) either has all entries nonnega-
tive or all entries nonpositive. In these two cases, we simply say that dim(𝑖, 𝑗) is nonnegative or
nonpositive, respectively.
A certain subset of the vertices of ℤ⩾0𝑄 are in natural correspondence with the clus-

ter variables of (𝑄). For 1 ⩽ 𝑗 ⩽ 𝑛, define 𝑖𝑗 to be the maximal index such that all of
dim(0, 𝑗), dim(1, 𝑗), … , dim(𝑖𝑗, 𝑗) are nonnegative.
Define

+ = {(𝑖, 𝑗) ∣ 1 ⩽ 𝑗 ⩽ 𝑛, 0 ⩽ 𝑖 ⩽ 𝑖𝑗}

 = {(𝑖, 𝑗) ∣ 1 ⩽ 𝑗 ⩽ 𝑛, 0 ⩽ 𝑖 ⩽ 𝑖𝑗 + 1}.
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4 of 27 BAZIER-MATTE et al.

There is a natural bijection between the elements of  and the cluster variables of 𝐴(𝑄). We
recall the details of the correspondence in Section 4. We write 𝑥𝑖𝑗 for the cluster variable asso-
ciated to (𝑖, 𝑗) ∈ . We say that two cluster variables are compatible if there is some cluster that
contains both of them. We say that two elements of  are compatible if the corresponding cluster
variables are.
Consider a real vector space with basis indexed by the elements of , say𝑉 = ℝ . For (𝑖, 𝑗) ∈ ,

we write 𝑝𝑖𝑗 for the coordinate function on 𝑉 indexed by (𝑖, 𝑗).
Fix a collection of positive integers 𝑐 = (𝑐𝑖𝑗)𝑖𝑗∈+ . We construct an associahedron for each

choice of 𝑐.
Consider the following collection of equations, one for each (𝑖, 𝑗) ∈ +.

𝑝𝑖,𝑗 + 𝑝𝑖+1,𝑗 = 𝑐𝑖𝑗 +
∑

(𝑖,𝑗)→(𝑖′,𝑗′)→(𝑖+1,𝑗)

𝑝𝑖′,𝑗′

We call these equations the 𝑐-deformed mesh relations. They define an 𝑛-dimensional affine
space 𝔼𝑐 inside 𝑉.
Write 𝕌𝑐 for the region inside 𝔼𝑐 all of whose coordinates 𝑝𝑖𝑗 are nonnegative. That is to say, 𝕌𝑐

is the intersection of the positive orthant in 𝑉 with 𝔼𝑐.

Example 1. Let us consider the quiver 𝑄 ∶ 1 ���→ 2 ←��� 3. The following shows the part of ℤ⩾0𝑄

whose vertices are in , labeled by the elements of .

The corresponding dimension vectors are:

We fix a six-tuple of positive integers 𝑐 = (𝑐𝑖𝑗)(𝑖,𝑗)∈+ . The region 𝔼𝑐 is cut out by the following
equations:

𝑝01 + 𝑝11 = 𝑝02 + 𝑐01

𝑝03 + 𝑝13 = 𝑝02 + 𝑐03

𝑝02 + 𝑝12 = 𝑝11 + 𝑝13 + 𝑐02
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ABHY ASSOCIAHEDRA AND NEWTON POLYTOPES OF 𝐹-POLYNOMIALS 5 of 27

𝑝11 + 𝑝21 = 𝑝12 + 𝑐11

𝑝13 + 𝑝23 = 𝑝12 + 𝑐13

𝑝12 + 𝑝22 = 𝑝21 + 𝑝23 + 𝑐12.

Notice that, by construction, the dimension vectors satisfy the 0-deformed mesh relations
(which are generally called the mesh relations), that is to say, the deformed mesh relations with
the deformation parameters set to zero. There is another important collection of vectors that sat-
isfy these equations: the g-vectors. By definition, g(0, 𝑗) is the 𝑗th standard basis vector, and the
other g-vectors are determined by the mesh relations. The g-vector fan is the fan whose rays are
the g-vectors, and such that a collection of rays generates a cone of the fan if and only if the
corresponding collection of cluster variables is compatible.

Example 2. We continue Example 1. In this case, the corresponding g-vectors are as follows:

Note that, in the example, the g-vectors corresponding to the elements of ⧵ + are the negative
standard basis vectors. This is a general phenomenon, and allows us to define an important projec-
tion 𝜋 ∶ 𝑉 → ℝ𝑛: the 𝑘th coordinate of the projection toℝ𝑛 is given by 𝑝𝑖𝑗 for (𝑖, 𝑗) ∈  ⧵ + such
that g(𝑖, 𝑗) = −𝑒𝑘. This projection defines a bijection between 𝔼𝑐 and ℝ𝑛. We define 𝔸𝑐 = 𝜋(𝕌𝑐).
Given a full-dimensional polytope 𝑃 inℝ𝑛, there is a fan associated to it called the outer normal

fan of 𝑃, denotedΣ𝑃. For each facet𝐹 of 𝑃, let 𝜌𝐹 be the ray pointing in the direction perpendicular
to 𝐹 and away from 𝑃. The collection of rays {𝜌𝐹 ∣ 𝐹 is a facet of 𝑃} are the rays of Σ𝑃; the set of
rays {𝜌𝐹1 , … , 𝜌𝐹𝑗 } generates a cone in Σ𝑃 if and only if there is a face 𝐺 of 𝑃 such that the facets of
𝑃 containing 𝐺 are exactly 𝐹1, … , 𝐹𝑗 .
The following is our main theorem about realizing generalized associahedra.

Theorem 1.

(1) Each facet of 𝕌𝑐 is defined by the vanishing of exactly one coordinate of 𝑉.
(2) The map sending the face 𝐺 of 𝕌𝑐 to the set

{𝛼 ∈  ∣ 𝐺 lies on the hyperplane 𝑝𝛼 = 0}

is an order-reversing bijection from the nonempty faces of 𝕌𝑐 to the faces of the cluster complex.
(3) Under the map defined in the previous point, the vertices of 𝕌𝑐 correspond to clusters.
(4) 𝜋 is an isomorphism of affine spaces between 𝔼𝑐 and ℝ𝑛. Consequently, the faces of 𝔸𝑐 also

correspond bijectively to compatible sets in .
(5) If 𝐹𝑖𝑗 is the facet of 𝕌𝑐 given by 𝑝𝑖𝑗 = 0, the normal to 𝜋(𝐹𝑖𝑗) oriented away from 𝔸𝑐 is the ray

generated by g(𝑖, 𝑗).
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6 of 27 BAZIER-MATTE et al.

F IGURE 1 Associahedron corresponding to 1 → 2 ← 3.

Example 3. We continue Example 2.
In Figure 1we show an illustration of𝔸𝑐 in this case. At each vertex, we have drawn a small copy

of the quiver with vertex set  (with the arrows omitted) on which we have marked the cluster
corresponding to the vertex.
To represent the vertices of 𝕌𝑐 in 𝑉, it is convenient to write the values of 𝑝𝑖𝑗 at position (𝑖, 𝑗),

with the value 𝑐𝑖𝑗 positioned between (𝑖, 𝑗) and (𝑖 + 1, 𝑗). We write 𝑐𝑖𝑗 in red to make clear the
distinction between the two kinds of entries. To see 𝔸𝑐, we forget everything in each row except
the last entry.
In the above example, we set all the 𝑐𝑖𝑗 = 1. The vertices are as follows:
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ABHY ASSOCIAHEDRA AND NEWTON POLYTOPES OF 𝐹-POLYNOMIALS 7 of 27

3 PROOF OF CORRECTNESS

Since the foundational work of [7, 25], it has been clear that representations of quivers are
extremely useful in understanding the combinatorics of cluster algebras. We will use a setting
that is inspired by [7], though described in somewhat different terms.
The quiver ℤ⩾0𝑄 restricted to the vertices of +, gives the Auslander–Reiten quiver for the cat-

egory of representations of 𝑄𝑜𝑝. If we restrict to  instead, we get 𝑛 additional vertices added to
the right-hand end. We understand this as the Auslander–Reiten quiver of a full subcategory of
𝐷𝑏(rep𝑄𝑜𝑝), whose vertices correspond to the indecomposable quiver representations together
with the 𝑃𝑗[1] where 𝑃𝑗 is the projective representation at vertex 𝑗 and [1] is the shift functor. We
write 𝑊𝑖𝑗 for the object in 𝐷𝑏(rep𝑄𝑜𝑝) corresponding to the vertex (𝑖, 𝑗) ∈ . The indecompos-
able projective 𝑃𝑗 is 𝑊0𝑗 . As is well-known, dim(𝑖, 𝑗), as defined in the previous section, is the
dimension vector of𝑊𝑖𝑗 if (𝑖, 𝑗) ∈ +; to include the cases of (𝑖, 𝑗) ∈  ⧵ + as well, we can say
that dim(𝑖, 𝑗) is the class in the Grothendieck group of 𝐷𝑏(rep𝑄𝑜𝑝) of𝑊𝑖𝑗 .
As it will be useful later in the paper, we will begin by weakening the hypothesis on the tuple 𝑐:

we will begin by assuming that its entries are nonnegative, rather than all being strictly positive.
Let

𝑀𝑐 =
⨁

(𝑖,𝑗)∈+

𝑊
⊕𝑐𝑖𝑗
𝑖𝑗

.

Representation theory gives us a natural point 𝑣
𝑐
in𝑉. The coordinates of this point are defined

by:

𝑣𝑖𝑗 = dimHom(𝑊𝑖𝑗,𝑀𝑐).

Lemma 1. The point 𝑣
𝑐
is in 𝔼𝑐 .

Proof. Suppose that (𝑖, 𝑗) ∈ +. Let 𝐸𝑖𝑗 be the direct sum of all the 𝑊𝑖′𝑗′ for (𝑖′, 𝑗′) on a path
of length two between (𝑖, 𝑗) and (𝑖 + 1, 𝑗). We therefore have an Auslander–Reiten triangle in
𝐷𝑏(rep𝑄):

𝑊𝑖𝑗 → 𝐸𝑖𝑗 → 𝑊𝑖+1,𝑗 → 𝑊𝑖𝑗[1]

We must verify, for each (𝑖, 𝑗) ∈ + that

dim(Hom(𝑊𝑖𝑗,𝑀𝑐)) − dim(Hom(𝐸𝑖𝑗,𝑀𝑐)) + dim(Hom(𝑊𝑖+1,𝑗,𝑀𝑐)) = 𝑐𝑖𝑗 (1)

We know that the following sequence is exact except at the right-hand end:

0 = Hom(𝑊𝑖𝑗[1],𝑀𝑐) → Hom(𝑊𝑖+1,𝑗,𝑀𝑐) → Hom(𝐸𝑖𝑗,𝑀𝑐) → Hom(𝑊𝑖𝑗,𝑀𝑐)

Thus, the left-hand side of (1) is nothing but the dimension of the quotient of Hom(𝑊𝑖𝑗,𝑀𝑐) by
the image of Hom(𝐸𝑖𝑗,𝑀𝑐). By the definition of Auslander–Reiten triangles, any map from 𝑊𝑖𝑗

to a summand of𝑀𝑐 which is not an isomorphism factors through 𝐸𝑖𝑗 . The left-hand side of (1) is
therefore the multiplicity of𝑊𝑖𝑗 in𝑀𝑐, which is exactly 𝑐𝑖𝑗 . □
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8 of 27 BAZIER-MATTE et al.

We can now say

𝔼𝑐 = 𝑣
𝑐
+ 𝔼0.

Here, by 𝔼0, we mean the points of 𝑉 satisfying the (0-deformed) mesh relations. We see
that 𝔼0 is an 𝑛-dimensional vector space. For 1 ⩽ 𝑘 ⩽ 𝑛, define a vector 𝑑𝑘 = (𝑑𝑘

𝑖𝑗
)𝑖𝑗∈ by setting

𝑑𝑘
𝑖𝑗
= dim(𝑖, 𝑗)𝑘. Then 𝑑

1, … , 𝑑𝑛 are a basis for 𝔼0.
Similarly, for 1 ⩽ 𝑘 ⩽ 𝑛, and (𝑖, 𝑗) ∈ , let g𝑘

𝑖𝑗
be the signed multiplicity of 𝑃𝑘 in a projective

resolution for𝑊𝑖𝑗 . That is to say, we take a resolution

𝑃1 → 𝑃0 → 𝑊𝑖𝑗 → 𝑃1[1] (2)

and take g𝑘
𝑖𝑗
to be the multiplicity of 𝑃𝑘 in 𝑃0 minus its multiplicity in 𝑃1. Now define the vec-

tor g𝑘 = (g𝑘
𝑖𝑗
)𝑖𝑗∈ . Then the set of g𝑘 are also a basis for 𝔼0. This is clear because (2) implies

that dim𝑊𝑖𝑗 = dim𝑃0 − dim𝑃1, from which we see that we can calculate the g-vector of𝑊𝑖𝑗 by
expressing dim𝑊𝑖𝑗 in the basis dim𝑃1, dim𝑃2, … , dim𝑃𝑛 of ℤ𝑛. It follows that the collection of
vectors {g𝑘} are related to the vectors {𝑑𝑘} by a change of basis.
As we have already mentioned, there is a relation of compatibility of cluster variables, which

we can take as defining a notion of compatibility for elements of . Two elements 𝛼, 𝛽 of  are
compatible if and only if Ext1(𝑊𝛼,𝑊𝛽) = 0 = Ext1(𝑊𝛽,𝑊𝛼). See [25, eq. (3.3)] and [7, Corollary
4.3].
The following is the key lemma.

Lemma 2. Suppose the tuple 𝑐 consists of strictly positive integers. Let 𝛼, 𝛽 ∈ . If they are
incompatible, then there is no point of 𝕌𝑐 lying on the intersection of the hyperplanes 𝑝𝛼 = 0 and
𝑝𝛽 = 0.

Proof. If 𝛼 and 𝛽 are incompatible, then Ext1(𝑊𝛼,𝑊𝛽) ≠ 0 or Ext1(𝑊𝛽,𝑊𝛼) ≠ 0. Without loss of
generality, suppose the former. This implies, in particular, that 𝛽 ∈ +. Choose a nonsplit triangle

𝑊𝛽 → 𝐸 → 𝑊𝛼 → 𝑊𝛽[1].

Suppose that 𝑥 = (𝑥𝛾)𝛾∈ ∈ 𝔼𝑐. As 𝔼𝑐 = 𝑣
𝑐
+ 𝔼0, and 𝑑

1, … , 𝑑𝑛 span 𝔼0, there is some 𝑛-tuple

(𝑚1, … ,𝑚𝑛) such that 𝑥 = 𝑣
𝑐
+
∑𝑛

𝑘=1 𝑚𝑘𝑑
𝑘 or in other words, for all 𝛾 ∈ , we have

𝑥𝛾 = dimHom(𝑊𝛾,𝑀𝑐) +

𝑛∑
𝑘=1

𝑚𝑘dim(𝛾)𝑘.

Now suppose that 𝑥𝛼 = 𝑥𝛽 = 0. Note that dim𝐸𝑖 = dim(𝑊𝛽)𝑖 + dim(𝑊𝛼)𝑖 . Also note that we
have the Hom long exact sequence

Ext−1(𝑊𝛽,𝑀𝑐) → Hom(𝑊𝛼,𝑀𝑐) → Hom(𝐸,𝑀𝑐) → Hom(𝑊𝛽,𝑀𝑐) → Ext1(𝑊𝛼,𝑀𝑐)

On the left-hand end Ext−1(𝑊𝛽,𝑀𝑐) = Hom(𝑊𝛽,𝑀𝑐[−1]) = 0.
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ABHY ASSOCIAHEDRA AND NEWTON POLYTOPES OF 𝐹-POLYNOMIALS 9 of 27

As 𝑐𝛽 > 0, the map from Hom(𝑊𝛽,𝑀𝑐) to Ext1(𝑊𝛼,𝑀𝑐) is nonzero. Thus, dimHom(𝐸,𝑀𝑐) <

dimHom(𝑊𝛼,𝑀𝑐) + dimHom(𝑊𝛽,𝑀𝑐).
Therefore,

dimHom(𝐸,𝑀𝑐) +

𝑛∑
𝑘=1

𝑚𝑘 dim𝐸𝑘

< dimHom(𝑊𝛼,𝑀𝑐) + dimHom(𝑊𝛽,𝑀𝑐) +

𝑛∑
𝑘=1

𝑚𝑘(dim(𝑊𝛼)𝑘 + dim(𝑊𝛽)𝑘)

= 𝑥𝛼 + 𝑥𝛽 = 0.

But the quantity on the left-hand side is just a sum of the coordinates of 𝑥 evaluated at the
summands of 𝐸, weighted by their multiplicities. Thus, at least one of the coordinates of 𝑥 is
negative, so 𝑥 is not in 𝕌𝑐. □

Lemma 3. 𝕌𝑐 is bounded.

Proof. If 𝑥 is in 𝕌𝑐 then, as in the previous proof, there is an 𝑛-tuple (𝑚′
1
, … ,𝑚′

𝑛) such that

𝑥 = 𝑣
𝑐
+

𝑛∑
𝑘=1

𝑚′
𝑘
g𝑘.

Consider what this equation says at some coordinate 𝛼 ∈  ⧵ +. Note first that (𝑣
𝑐
)𝛼 = 0. Of

course, 𝑥𝛼 ⩾ 0, as we assumed that 𝑥 ∈ 𝕌𝑐. As the g-vectors of the 𝑃𝑗[1] are negative standard
basis vectors, g𝑘𝛼 is nonpositive, and it follows that the𝑚

′
𝑘
must be nonpositive.

Repeating the same argument with the projectives rather than the shifted projectives, and tak-
ing into account the fact that (𝑣𝑐)0𝑗 > 0, we conclude that each of the 𝑚′

𝑘
is bounded between 0

and some negative number 𝐵. Therefore, 𝕌𝑐 is bounded. □

Proof of Theorem 1. We begin by establishing that the vertices of 𝕌𝑐 correspond bijectively to max-
imal compatible sets in , with the bijection sending the vertex to the indices of the hyperplanes
𝑝𝛼 = 0 on which it lies.
As 𝔼𝑐 is 𝑛-dimensional, a vertex of 𝕌𝑐 must lie on at least 𝑛 facets, and therefore on at least 𝑛

hyperplanes of the form 𝑝𝛼 = 0. By Lemma 2, the collection of hyperplanes corresponding to a
vertex must be compatible. The maximal compatible sets of  are exactly the compatible sets of
size 𝑛. Thus, every vertex of 𝕌𝑐 corresponds to a cluster.
We now argue by induction that every cluster corresponds to a vertex of 𝕌𝑐. Let us suppose that

we have a collection of 𝑛 compatible indices from , such as 𝑇 = {𝛼, 𝛼1, … , 𝛼𝑛−1}, and another
collection of 𝑛 compatible indices 𝑇′ = {𝛼′, 𝛼1, … , 𝛼𝑛−1}. Suppose that 𝕌𝑐 has a vertex 𝑞𝑇 at the
intersection of the facets corresponding to 𝑇. Consider moving along the ray from 𝑞𝑇 where the
facets corresponding to 𝛼1, … , 𝛼𝑛−1 intersect. As 𝕌𝑐 is bounded by Lemma 3, we must eventually
hit another hyperplane bounding𝕌𝑐. By Lemma 2, it must be a hyperplane that is compatible with
𝛼1, … , 𝛼𝑛−1; the only one is the hyperplane corresponding to 𝛼′. This intersection is a vertex of 𝕌𝑐

corresponding to 𝑇′.
We therefore know that 𝑇′ also corresponds to a vertex of 𝕌𝑐. As the clusters are connected by

mutations, every cluster corresponds to a vertex of 𝕌𝑐, and as by following edges, we only ever
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10 of 27 BAZIER-MATTE et al.

get to vertices that correspond to clusters (never to an edge that goes to infinity, or to a vertex
that doesn’t correspond to a cluster), all the vertices of 𝕌𝑐 correspond to clusters. Further, the
one-skeleton of 𝕌𝑐 is the cluster exchange graph.
Wehave therefore established point (3) of the theorem.ByLemma2, each face of𝕌𝑐 corresponds

to a compatible set (necessarily all different), and as all the maximal compatible sets correspond
to vertices of 𝕌𝑐, every compatible set does correspond to a face. This establishes (1) and (2). (4)
is straightforward. Given a point in 𝑦 ∈ ℝ𝑛, we can uniquely find an 𝑥 such that 𝜋(𝑥) = 𝑦 by
inductively solving the 𝑐-deformed mesh relations, working from right to left through the quiver
for .
Finally, we establish (5). Let𝐺 be the 𝑛 × ||matrix whose (𝑖, 𝑗)th column is the g-vector g(𝑖, 𝑗).

Let 𝜎 be the affine map from ℝ𝑛 to 𝔼𝑐 ⊂ 𝑉 which is a section of 𝜋. This map is given by right
multiplying by −𝐺 and adding 𝑣

𝑐
. This induces a map from the tangent vectors of 𝑉 to tangent

vectors ofℝ𝑛 (whichwe identify with𝑉 andℝ𝑛, respectively, via our fixed bases for each of them).
Linear algebra tells us that themap on tangent vectors is given by leftmultiplying by−𝐺. Write 𝑒

𝑖𝑗

for the standard basis vector corresponding to (𝑖, 𝑗) ∈ . As −𝑒
𝑖𝑗
is orthogonal to the hyperplane

𝑝𝑖𝑗 = 0, and points away from 𝕌𝑐, it image under left multiplication by −𝐺 generates the outer
normal ray corresponding to this facet. But clearly (−𝐺)(−𝑒

𝑖𝑗
) = g(𝑖, 𝑗), as desired. □

Weclose the section by commenting on the implications of Theorem 1 for different assumptions
on 𝑐.
Clearly, if we assume that the constants 𝑐 are positive rational numbers, Theorem 1 still holds.

By continuity, it also holds for positive real numbers. Now consider the case that the some of the
constants 𝑐 are zero.

Corollary 1. If the constants 𝑐 are nonnegative, then every vertex of 𝕌𝑐 lies on a collection of coordi-
nate hyperplanes which is the union of one or more maximal compatible sets in . The facet normals
to the facets of 𝔸𝑐 are a subset of the g-vectors.

Proof. We can imagine what happens if we begin with 𝑐′ where all values are positive, and then
deform gradually to a nearby vector 𝑐, where some values become zero. What can happen is that
some vertices canmerge, and some facets can collapse to something that is no longer codimension
1. The results are as described in the statement of the corollary. □

4 BACKGROUND ON CLUSTER ALGEBRAS

Let 𝑄 be a quiver without loops or oriented two-cycles. As already mentioned, there is an associ-
ated cluster algebra(𝑄), whose cluster variables are in natural bijection with the elements of ,
as we now explain.
A slice in  is a subset  of  such that:

∙ for each 𝑗 with 1 ⩽ 𝑗 ⩽ 𝑛, there is exactly one element of  of the form (𝑖, 𝑗) for some 𝑖, and
∙ if 𝑗 and 𝑗′ are adjacent vertices of 𝑄, and (𝑖, 𝑗) and (𝑖′, 𝑗′) are the corresponding elements of  ,
then (𝑖, 𝑗) and (𝑖′, 𝑗′) are adjacent in .

The collection of all (0, 𝑗) form a slice, corresponding to the projective representations, as does
the collection  ⧵ +, corresponding to the shifted projectives. We refer to {(0, 𝑗)} as the initial
slice and  ⧵ + as the final slice.

 14697750, 2024, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12817 by C

ochrane France, W
iley O

nline L
ibrary on [24/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



ABHY ASSOCIAHEDRA AND NEWTON POLYTOPES OF 𝐹-POLYNOMIALS 11 of 27

Note that any slice in  has at least one element (𝑖, 𝑗) such that all the arrows between it and
the other elements of the slice are oriented from (𝑖, 𝑗). We call such an (𝑖, 𝑗) a source in the slice.
Any slice other than the final slice has a source that is in +.
We assign the initial cluster variable 𝑥𝑗 to (0, 𝑗) ∈ . Suppose we have a slice  that is not the

final slice, and the elements of  are associated to the cluster variables of a cluster. Let (𝑖, 𝑗) be a
source in the slice that is in +. We can therefore replace (𝑖, 𝑗) by (𝑖 + 1, 𝑗) to obtain a new slice
 ′. Mutate the cluster at the variable corresponding to (𝑖, 𝑗), and associate the resulting cluster
variable to the vertex (𝑖 + 1, 𝑗). This provides a cluster associated to the slice  ′. As we proceed
from the initial slice to the final slice, wemay well have choices of source. However, these choices
do not matter. We have the following theorem, essentially from [7]:

Theorem 2. The above procedure results in a well-defined map from  to the cluster variables of
(𝑄), independent of choices.

Example 4. In the setting of Example 1, the result is the following:

Let us emphasize that any slice in  corresponds to a cluster, though there are also further
clusters that are not slices. Note that if we restrict the quiver on  to the vertices of the initial
slice, we recover 𝑄. In fact, it is easy to show by induction that for any slice, the quiver associated
to that cluster is given by restricting the quiver on  to that slice.
One way to construct a more complicated cluster algebra that is still governed by the same

Dynkin combinatorics is to define a new ice quiver 𝑄ice that is obtained from 𝑄 by adding some
vertices that are designated as frozen. The new vertices may be connected to the vertices of 𝑄 in
any way (provided that there are still no oriented two-cycles). It is standard to assume that there
are also no arrows between frozen vertices, but this is not actually important because such arrows
play no role. The cluster algebra associated to an ice quiver, (𝑄ice) is the algebra generated by
the initial cluster variables and all cluster variables obtained by all sequences of mutations at
nonfrozen vertices only. Note that there is a cluster variable associated to each frozen vertex. To
distinguish the frozen and unfrozen variables, we generally write 𝑥1, … , 𝑥𝑛 for the initial unfrozen
variables and 𝑦1, … , 𝑦𝑚 for the frozen variables. A refined version of the Laurent Phenomenon
says that every cluster variable is contained in ℤ[𝑥±

1
, … , 𝑥±𝑛 , 𝑦1, … , 𝑦𝑚], see [15, Theorem 3.3.6].

The unfrozen cluster variables still correspond to the elements of  and can be calculated in the
same way, by starting with the initial variables associated to the initial slice and then carrying out
mutations as before.
There are two particular ice quivers obtained from 𝑄 that are of special importance, one of

which we will explain now. For each vertex 𝑖 of 𝑄, add a frozen vertex 𝑖′ and an arrow from 𝑖′ to 𝑖.
The resulting quiver is called the framed quiver of 𝑄; we denote it 𝑄prin. To the new vertex 𝑖′ we
associate the frozen cluster variable 𝑦𝑖 . The cluster algebra associated to 𝑄prin is called the cluster
algebra with principal coefficients. We denote itprin(𝑄).
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12 of 27 BAZIER-MATTE et al.

Example 5. The framed quiver of𝑄 fromExample 1 is as follows,where the frozen vertices appear
in squares.

The cluster variables of the corresponding cluster algebraprin(𝑄) are listed in Section 7.

The significance of this choice of coefficients will be explained further in Section 7. Briefly, it
turns out that from the cluster variables for the cluster algebra with principal coefficients, one can
immediately calculate the cluster variables for any system of coefficients. The cluster algebra with
principal coefficients is also essential for defining 𝐹-polynomials, as we shall explain shortly.
An ice quiver with 𝑛 unfrozen vertices and 𝑚 frozen vertices can also be represented as an

(𝑛 + 𝑚) × 𝑛matrix of integers, 𝐵0. We associate the 𝑛 columns and the corresponding first 𝑛 rows
to the 𝑛 unfrozen vertices of 𝑄, and we associate the remaining rows to the frozen vertices. The
entry (𝐵0)𝑖𝑗 is the number of arrows from 𝑖 to 𝑗minus the number of arrows from 𝑗 to 𝑖.We see that
the first𝑛 rows of𝐵0 are simply thematrix𝐵0 thatwe have already seen. Thematrix corresponding
to 𝑄prin consists of 𝐵0 with an 𝑛 × 𝑛 identity matrix below it.

Example 6. For our running example, the extended matrix 𝐵0 corresponding to principal
coefficients is the following:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0

−1 0 −1

0 1 0

1 0 0

0 1 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

5 SUBMODULE POLYTOPES AND TORSION CLASSES

For the duration of this section, we work with an arbitrary finite-dimensional algebra 𝐴, thought
of as a the path algebra of a quiver 𝑄 with relations, where the vertices of 𝑄 are numbered 1 to 𝑛.
We can therefore still consider dimension vectors of such modules.
For 𝑋 an 𝐴-module, we write 𝑋 for the polytope in ℝ𝑛 which is the convex hull of the dimen-

sion vectors of subrepresentations of 𝑋. We call 𝑋 the submodule polytope of 𝑋. Submodule
polytopes for representations of preprojective algebras play an important rôle in the paper by
Baumann, Kamnitzer, and Tingley [4] which we are essentially following in this section.
A torsion class in 𝐴-mod is a full subcategory closed under extensions and quotients. If  is a

torsion class, any 𝐴-module 𝑀 has a unique largest submodule that is contained in  . We call
this the torsion part of 𝑀 with respect to  . See [3, chapter VI] for more background on torsion
classes.
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ABHY ASSOCIAHEDRA AND NEWTON POLYTOPES OF 𝐹-POLYNOMIALS 13 of 27

The key fact about submodule polytopes is that, in order to find the vertices of a submodule
polytope, we do not need to consider all submodules: it suffices to consider those submodules
that are torsion parts with respect to some torsion class. The following proposition is established
in [4, section 3]. Because we need rather less than is established in [4], we give the simple proof
here.

Lemma4 [4]. Let𝑀 be an𝐴-module. Then𝑀 equals the convex hull of the dimension vectors of the
torsion parts of𝑀. This amounts to saying that, for each vertex 𝑥 of𝑀 , there is some torsion class 
with respect to which the dimension vector of the torsion part of𝑀 equals 𝑥. Further, the submodule
of𝑀 with this dimension vector is unique.

Proof. Let 𝑥 be a vertex of 𝑀 . It follows that there must be at least one submodule of𝑀 whose
dimension vector is 𝑥. Let 𝑁 be such a submodule. We will show that there is a torsion class 
such that the torsion part of𝑀 with respect to  is 𝑁.
Choose a linear form 𝜃 on the space of dimension vectors such that the unique point on 𝑀

maximizing 𝜃 is 𝑥. Define a torsion class by

𝜃 = {𝑋 ∣ 𝜃(dim𝑌) ⩾ 0 for all quotients 𝑌 of 𝑋}

It is not hard to establish 𝑇𝜃 is a torsion class [4, Proposition 3.1]. Suppose 𝐿 is a proper submodule
of 𝑁. As 𝐿 is also a submodule of𝑀, we know that 𝜃(dim𝐿) < 𝜃(dim𝑁), so 𝜃(dim𝑁∕𝐿) > 0, and
it follows that 𝑁 ∈ 𝜃. Let us write 𝑁′ for the torsion part of 𝑀 with respect to 𝜃. As 𝑁 is a
submodule of 𝑀 and is in 𝜃, we know that 𝑁 must be a submodule of 𝑁′. If it were a proper
submodule, then 𝜃(dim𝑁′) < 𝜃(dim𝑁), so 𝜃(dim𝑁′∕𝑁) < 0, contradicting the assumption that
𝑁′ ∈  . Thus 𝑁′ = 𝑁.
For the final statement, suppose that there were two distinct modules 𝑁1,𝑁2 with dimen-

sion vector 𝑥. The above argument shows that both 𝑁1 and 𝑁2 are in  , so the maximal
torsion part of 𝑀 with respect to  is larger than either of them, which we have established is
impossible. □

6 NEWTON POLYTOPES OF 𝑭-POLYNOMIALS

By definition, the 𝐹-polynomial 𝐹𝛼 for 𝛼 ∈  is obtained by taking 𝑥prin𝛼 , the cluster variable asso-
ciated to 𝛼 inprin(𝑄), and setting all the 𝑥𝑖 to 1. It is therefore a polynomial in 𝑦1, … , 𝑦𝑛. It turns
out that the cluster variable 𝑥prin𝛼 can be recovered from the 𝐹-polynomial (see [17, Corollary 6.3]),
so no information has been lost, and at the same time, the𝐹-polynomial turns out to be convenient
for another reason: for (𝑖, 𝑗) ∈  with 𝑖 ⩾ 1, the 𝐹-polynomial 𝐹(𝑖,𝑗) is the generating function for
the submodules of the representation𝑊(𝑖−1,𝑗) in the following sense:

𝐹(𝑖,𝑗)(𝑦1, … , 𝑦𝑛) =
∑

𝑒⩽dim(𝑊(𝑖−1,𝑗))

𝜒(Gr𝑒(𝑊(𝑖−1,𝑗))𝑦
𝑒.

We refer to [12, eq. (1.6)] for the formula. Here 𝑒 = (𝑒1, … , 𝑒𝑛) is a dimension vector in ℤ𝑛
⩾0
,Gr𝑒(𝑋)

means the quiver Grassmannian of subrepresentations of 𝑋 whose dimension vector is 𝑒, and 𝜒
is the Euler characteristic. We write 𝑦𝑒 for 𝑦𝑒1

1
𝑦
𝑒2
2
… 𝑦

𝑒𝑛
𝑛 .
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14 of 27 BAZIER-MATTE et al.

Let 𝑓 ∈ ℤ[𝑦1, … , 𝑦𝑛] be a polynomial. Let 𝑃 be the subset of ℤ𝑛 such that 𝑓 can be written as

𝑓 =
∑
𝑝∈𝑃

𝑓𝑝𝑦
𝑝

with all 𝑓𝑝 nonzero integers. That is to say 𝑃 is the collection of the the 𝑛-tuples corresponding
to exponents of terms that appear in 𝑓. The Newton polytope of 𝑓 is then the convex hull of the
points in 𝑃.
Newton polytopes of 𝐹-polynomials have been studied by Brodsky and Stump [6]. They give

a description in type 𝐴𝑛 and a uniform conjecture for all finite types. Subsequent to the first
appearance of the present paper, this conjecture was proved in [20], relying in part on our results.
Newton polytopes of cluster variables have also been studied, by Sherman and Zelevinsky in

rank 2 [31], by Cerulli Irelli for 𝐴2 [9], and by Kalman in type 𝐴𝑛 [21, 22]. Note that, by [17,
Corollary 6.3], the Newton polytope of a cluster variable is an affine transformation of that of
the corresponding 𝐹-polynomial, so the two questions are quite close.
For (𝑖, 𝑗) ∈ +, let 𝑒

𝑖𝑗
denote the standard basis vector in ℝ+ that has a 1 in position (𝑖, 𝑗) and

zeros elsewhere.

Theorem 3. 𝔸𝑒𝑖𝑗
is the Newton polytope of 𝐹(𝑖+1,𝑗).

Subsequent to the appearance of the first version of the present paper, this result has been
extended to the nonsimply laced case [2], by using a folding argument to reduce to the simply
laced case, for which they rely on this result. Before we prove the theorem, we will state and
prove a key lemma, and then a proposition.

Lemma 5. Let 𝑇 be a tilting object in the additive hull of {𝑊𝛼 ∣ 𝛼 ∈ }. Let  be the corresponding
torsion class in rep𝑄𝑜𝑝, consisting of all quotients of sums of summands of 𝑇 that are contained in
rep𝑄𝑜𝑝 . For 𝑀 ∈ rep𝑄𝑜𝑝, let 𝑡𝑀 denote the torsion part of 𝑀 with respect to the torsion class  .
Let 𝑞

𝑇
be the vertex of 𝕌𝑐 at which the coordinates corresponding to summands of 𝑇 are zero. Then

𝜋(𝑞
𝑇
) = dim(𝑡𝑀).

Example 7. To see examples of this lemma, we can revisit Example 3. The first vertex listed
corresponds to 𝑇1 = 𝑘𝑄𝑜𝑝. The torsion class 1 = rep𝑄𝑜𝑝 is the full category of representations,
so 𝑡1𝑀𝑐 = 𝑀𝑐, and 𝜋(𝑞𝑇1) = (3, 4, 3), which is the dimension of𝑀𝑐.
Looking at the second vertex listed, we see that 2 consists of direct sums of all indecomposables

except 𝑆3. The corresponding torsion part 𝑡2𝑀𝑐 therefore has dimension (3, 4, 2) = 𝜋(𝑞𝑇2). (Recall
that in the definition of 𝜋, the order in which the final slice of coordinates appear is determined
by their corresponding g-vectors, which is why, in type 𝐴3, 𝜋 is in effect reading the final slice of
coordinates from bottom to top.)

Proof. As before, let 𝐺 be the 𝑛 × ||matrix whose (𝑖, 𝑗)th column consists of the g-vector g(𝑖, 𝑗).
Let the summands of 𝑇 be 𝑇1, … , 𝑇𝑛. Let us write 𝐺|𝑇 for the 𝑛 × 𝑛matrix formed by taking the

columns of𝐺 corresponding to 𝑇1, … , 𝑇𝑛. We can interpret𝐺|𝑇 as the change-of-basismatrix from
the basis dim𝑇1, … , dim𝑇𝑛 to the basis dim𝑃1, … , dim𝑃𝑛. 𝐺|𝑇 is therefore invertible, with inverse
given by the inverse change of basis. It follows that (𝐺|𝑇)−1𝐺 is a matrix whose restriction to the
columns corresponding to summands of 𝑇 is an identity matrix.
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ABHY ASSOCIAHEDRA AND NEWTON POLYTOPES OF 𝐹-POLYNOMIALS 15 of 27

The point in 𝔼𝑐 that has zeros in the columns corresponding to the 𝑇𝑖 is therefore

𝑣
𝑐
− [dimHom(𝑇1,𝑀𝑐), … , dimHom(𝑇𝑛,𝑀𝑐)](𝐺|𝑇)−1𝐺.

Note that as 𝑇 is a tilting object, each indecomposable projective module 𝑃𝑖 admits a
coresolution

𝑃𝑖 → 𝑇𝑖0 → 𝑇𝑖1 → 𝑃𝑖[1],

where 𝑇𝑖0 and 𝑇𝑖1 are in add 𝑇. The entries in the 𝑖th column of (𝐺|𝑇)−1 encode the signed
multiplicity of 𝑇1, … , 𝑇𝑛 in this coresolution of 𝑃𝑖 .
Note that the final 𝑛 coordinates of 𝑣

𝑐
are zero. The 𝑖th coordinate of 𝔸𝑐 is therefore

dimHom(𝑇𝑖0,𝑀𝑐) − dimHom(𝑇𝑖1,𝑀𝑐).
From the coresolution of 𝑃𝑖 , we obtain the following commutative diagram, with the rows

exact:

The zeros on the left-hand end follow from the fact that Hom(𝑃𝑖,𝑀𝑐[−1]) = 0 =

Hom(𝑃𝑖, 𝑡𝑀𝑐[−1]). Further, Ext1(𝑇𝑖1, 𝑡𝑀𝑐) = 0 because 𝑇𝑖1 is Ext-projective in  while 𝑡𝑀𝑐

is in  . Therefore, the map from Hom(𝑇𝑖0, 𝑡𝑀𝑐) to Hom(𝑃𝑖, 𝑡𝑀𝑐) is surjective.
The first three vertical maps are injective because they are induced from the inclusion of 𝑡𝑀𝑐

into𝑀𝑐.
Any map from a torsion module to 𝑀𝑐 necessarily lands in the torsion part of 𝑀𝑐, so factors

through 𝑡𝑀𝑐. This means that the first two vertical arrows are also surjective.
Our goal is to understand the image of Hom(𝑇𝑖0,𝑀𝑐) inside Hom(𝑃𝑖,𝑀𝑐); by what we have

already shown, it equals Hom(𝑃𝑖, 𝑡𝑀𝑐); in other words, the dimension of this image is the
dimension of 𝑡𝑀𝑐 at vertex 𝑖, as desired. □

From the previous lemma, the following proposition is almost immediate.

Proposition 1. 𝔸𝑐 = 𝑀𝑐
.

Proof. Thanks to Corollary 1, we know that the vertices of 𝕌𝑐 are the set of points 𝑞𝑇 for 𝑇 a
tilting object in the additive hull of the 𝑊𝛼, with 𝛼 ∈ . (Note that it is of course possible that
𝑞
𝑇
= 𝑞

𝑇′
for two distinct tilting objects 𝑇 and 𝑇′.) By the previous lemma, 𝜋(𝑞

𝑇
) is the dimen-

sion vector of the torsion part of 𝑀𝑐 with respect to the corresponding torsion class. All torsion
classes are of this form, so 𝔸𝑐 is the convex hull of the dimension vectors of all possible tor-
sion parts of 𝑀𝑐. Lemma 4 now tells us that 𝔸𝑐 is therefore the submodule polytope of 𝑀𝑐, as
desired. □

We can now prove Theorem 3.
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16 of 27 BAZIER-MATTE et al.

Proof of Theorem 3. As we are interested in 𝔸𝑒𝑖𝑗
, we set 𝑐 = 𝑒

𝑖𝑗
,𝑀𝑐 = 𝑊𝑖𝑗 . The quiver Grassman-

nianGr𝑒(𝑊𝑖𝑗) is empty if 𝑒 is not the dimension vector of a submodule. Thus, theNewton polytope
of𝐹(𝑖+1,𝑗) is contained in the convex hull of the dimension vectors of submodules of𝑊𝑖𝑗 , whichwe
have established in Proposition 1 is𝔸𝑒𝑖𝑗

. It remains to check that the vertices of𝔸𝑒𝑖𝑗
correspond to

quiver Grassmannians with nonzero Euler characteristics. Lemma 4 tells us that for each vertex of
𝔸𝑒𝑖𝑗

, there is a unique submodule of the appropriate dimension vector. The quiver Grassmannian
is therefore a single point, and the Euler characteristic of a single point is 1. □

7 THE USE OF PRINCIPAL COEFFICIENTS

Let𝑄ice be an ice quiver, whose unfrozen part is𝑄. Wewill explain, following [17], how the cluster
variables of(𝑄ice) can be calculated directly from those ofprin(𝑄), rather than via mutation.
Let 𝑓(𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑛) be a cluster variable in 𝐴prin(𝑄). By 𝐹(𝑦1, … , 𝑦𝑛) we denote the

associated 𝐹-polynomial, which is obtained by setting 𝑥1 = ⋯ = 𝑥𝑛 = 1 in 𝑓.
Let 𝑧1, … , 𝑧𝑚 be the coefficients corresponding to the frozen vertices of𝑄ice (equivalently, these

correspond to rows 𝑛 + 1 to 𝑛 + 𝑚 of the matrix 𝐵0.) Define

𝑦̃𝑖 =

𝑚∏
𝑗=1

𝑧
𝑏𝑛+𝑗,𝑖
𝑗

Wewrite 𝐹trop(𝑦̃1, … , 𝑦̃𝑛) for the tropical evaluation of 𝐹 at 𝑦̃1, … , 𝑦̃𝑛. This is themonomial such
that the power of 𝑧𝑖 that appears in it is the minimum over all terms of 𝐹 of the power of 𝑧𝑖 in that
term. (This is the gcd of the monomials that appear.)
Then [17, Theorem 3.7] says that the cluster variable in(𝑄) corresponding to 𝑓 is equal to

𝑓(𝑥1, … , 𝑥𝑛, 𝑦̃1, … , 𝑦̃𝑛)∕𝐹
trop(𝑦̃1, … , 𝑦̃𝑛).

Example 8. Let us consider the following example,

with vertex 4 frozen, and associated to the variable 𝑧. The corresponding 𝐵-matrix is:

⎡⎢⎢⎢⎢⎢⎣

0 1 0

−1 0 −1

0 1 0

1 0 −1

⎤⎥⎥⎥⎥⎥⎦
Using the labeling of the vertices as in Example 1, the cluster variables as well as the cluster

variables with coefficients associated to every vertex are as following:
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ABHY ASSOCIAHEDRA AND NEWTON POLYTOPES OF 𝐹-POLYNOMIALS 17 of 27

Cluster variables for 𝑄ice Cluster variables with principal coefficients
(0, 1) 𝑥1 𝑥1
(0, 2) 𝑥2 𝑥2
(0, 3) 𝑥3 𝑥3

(1, 1)
𝑥2 + 𝑧

𝑥1

𝑥2 + 𝑦1
𝑥1

(1, 2)
𝑥1𝑥3𝑧 + 𝑥2

2
𝑧 + 𝑥2𝑧

2 + 𝑥2 + 𝑧

𝑥1𝑥2𝑥3

𝑥1𝑥3𝑦1𝑦2𝑦3 + 𝑥2
2
+ 𝑥2𝑦1 + 𝑥2𝑦3 + 𝑦1𝑦3

𝑥1𝑥2𝑥3

(1, 3)
𝑥2𝑧 + 1

𝑥3

𝑥2 + 𝑦3
𝑥3

(2, 1)
𝑥1𝑥3𝑧 + 𝑥2 + 𝑧

𝑥1𝑥2

𝑥1𝑥3𝑦1𝑦2 + 𝑥2 + 𝑦1
𝑥1𝑥2

(2, 2)
𝑥1𝑥3 + 𝑥2𝑧 + 1

𝑥2𝑥3

𝑥1𝑥3𝑦2𝑦3 + 𝑥2 + 𝑦3
𝑥2𝑥3

(2, 3)
𝑥1𝑥3 + 1

𝑥2

𝑥1𝑥3𝑦2 + 1

𝑥2

By the definition of 𝑦̃𝑖 , in this example we have 𝑦̃1 = 𝑧, while 𝑦̃2 = 1 and 𝑦̃3 = 𝑧−1. Substituting
them in the polynomials listed above,we obtain the polynomials𝑓(𝑥1, … , 𝑥𝑛, 𝑦̃1, … , 𝑦̃𝑛).Moreover,
the monomials 𝐹trop(𝑦̃1, … , 𝑦̃𝑛) associated to every polynomial 𝑓 are as follows:

𝑓(𝑥1, … , 𝑥𝑛, 𝑦̃1, … , 𝑦̃𝑛) 𝐹trop(𝑦̃1, … , 𝑦̃𝑛)

(0, 1) 𝑥1 1

(0, 2) 𝑥2 1

(0, 3) 𝑥3 1

(1, 1)
𝑥2 + 𝑧

𝑥1
1

(1, 2)
𝑥1𝑥3 + 𝑥2

2
+ 𝑥2𝑧 + 𝑥2𝑧

−1 + 1

𝑥1𝑥2𝑥3
𝑧−1

(1, 3)
𝑥2 + 𝑧−1

𝑥3
𝑧−1

(2, 1)
𝑥1𝑥3𝑧 + 𝑥2 + 𝑧

𝑥1𝑥2
1

(2, 2)
𝑥1𝑥3𝑧

−1 + 𝑥2 + 𝑧−1

𝑥2𝑥3
𝑧−1

(2, 3)
𝑥1𝑥3 + 1

𝑥2
1

Calculating 𝑓(𝑥1, … , 𝑥𝑛, 𝑦̃1, … , 𝑦̃𝑛)∕𝐹
trop(𝑦̃1, … , 𝑦̃𝑛) and comparing with the cluster variables

above, we observe that the theorem holds in this case.

8 UNIVERSAL COEFFICIENTS

As mentioned in Section 4, there are two choices of coefficients that are particularly interesting.
One is the principal coefficients that we discussed in the previous section. The other is universal
coefficients.

 14697750, 2024, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12817 by C

ochrane France, W
iley O

nline L
ibrary on [24/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



18 of 27 BAZIER-MATTE et al.

In fact, there are two closely related notions: universal coefficients, introduced by Fomin
and Zelevinsky [17], and universal geometric coefficients, introduced by Reading [29]. In both
cases, the goal is a cluster algebra with sufficiently general coefficients that it will admit a
ring homomorphism (with certain good properties) to the cluster algebra defined for any other
choice of coefficients. In the finite-type case, the two definitions yield the same system of coef-
ficients, see [29]. We will not need any properties of universal coefficients, so we do not give the
precise definitions.
Reading [29, Theorem 10.12] proves 𝐵0 provides universal coefficients if the coefficient rows

of the extended exchange matrix are the g-vectors 𝐵𝑇
0
, where 𝑇 indicates transposition. As, for

us, 𝐵0 is skew-symmetric, 𝐵𝑇
0
= −𝐵0. Thus, the desired coefficient rows are the g-vectors for 𝑄𝑜𝑝.

Reading the quiver for  from right to left instead of left to right, we see that the g-vectors for 𝑄𝑜𝑝

are simply the negatives of the g-vectors for 𝑄. Thus, we shall be interested in the setting where
we add a row to the exchangematrix 𝐵0 for each element of , with the row corresponding to (𝑖, 𝑗)
being given by −g(𝑖, 𝑗). We will call the corresponding algebrauniv(𝑄).

Example 9. Consider again Example 1. The extended exchange matrix 𝐵0 is

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0

−1 0 −1

0 1 0

−1 0 0

0 −1 0

0 0 −1

1 −1 0

1 −1 1

0 −1 1

0 0 1

0 1 0

1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The additional rows in 𝐵0 define the behavior of 𝑧0,1, … , 𝑧2,3, where 𝑧𝑖𝑗 is the frozen variable

corresponding to the row whose entries are −g(𝑖, 𝑗).
The cluster variables with universal coefficients are computed below.

Cluster variables with universal coefficients
(0, 1) 𝑥1

(0, 2) 𝑥2

(0, 3) 𝑥3

(1, 1)
𝑥2𝑧0,1 + 𝑧1,1𝑧1,2𝑧2,3

𝑥1

(1, 2) (𝑥2
2
𝑧0,1𝑧0,2𝑧0,3 + 𝑥2𝑧0,1𝑧0,2𝑧1,2𝑧1,3𝑧2,1 + 𝑥2𝑧0,2𝑧0,3𝑧1,1𝑧1,2𝑧2,3

+𝑧0,2𝑧1,1𝑧
2
1,2
𝑧1,3𝑧2,1𝑧2,3 + 𝑥1𝑥3𝑧1,2𝑧2,1𝑧2,2𝑧2,3)∕𝑥1𝑥2𝑥3
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ABHY ASSOCIAHEDRA AND NEWTON POLYTOPES OF 𝐹-POLYNOMIALS 19 of 27

(1, 3)
𝑥2𝑧0,3 + 𝑧1,2𝑧1,3𝑧2,1

𝑥3

(2, 1)
𝑥2𝑧0,2𝑧0,3𝑧1,1 + 𝑧0,2𝑧1,1𝑧1,2𝑧1,3𝑧2,1 + 𝑥1𝑥3𝑧2,1𝑧2,2

𝑥2𝑥3

(2, 2)
𝑧0,2𝑧1,1𝑧1,2𝑧1,3 + 𝑥1𝑥3𝑧2,2

𝑥2

(2, 3)
𝑥2𝑧0,1𝑧0,2𝑧1,3 + 𝑧0,2𝑧1,1𝑧1,2𝑧1,3𝑧2,3 + 𝑥1𝑥3𝑧2,2𝑧2,3

𝑥1𝑥2

Define the universal𝐹-polynomial𝐹univ
(𝑖,𝑗)

to be the polynomial obtained starting from the cluster
variable in position (𝑖, 𝑗) inuniv(𝑄), and setting the initial cluster variables to one.

Theorem 4. 𝕌𝑒(𝑖,𝑗)
is the Newton polytope of 𝐹univ

(𝑖+1,𝑗)
.

Example 10. Consider, for example, the universal 𝐹-polynomial 𝐹univ
(1,1)

. According to the
above calculation, it is 𝑧0,1 + 𝑧1,1𝑧1,2𝑧2,3. Thus, its Newton polytope is the line segment from
(1,0,0,0,0,0,0,0,0) to (0,0,0,1,1,0,0,0,1). To find the vertices of 𝔸𝑒(0,1)

, we find solutions to the 𝑒
(0,1)

-
deformedmesh relations that are all nonnegative and have at least three zeros. The results are the
following, as expected.

Proof. We will use the strategy explained in Section 7 to calculate 𝐹univ
(𝑖+1,𝑗)

on the basis of 𝐹(𝑖+1,𝑗).
Define 𝑦̃1, … , 𝑦̃𝑛 as in Section 7 with respect to the matrix 𝐵0 as defined above. Then

𝐹univ
(𝑖+1,𝑗)

=
𝐹(𝑖+1,𝑗)(𝑦̃1, … , 𝑦̃𝑛)

𝐹
trop
(𝑖+1,𝑗)

(𝑦̃1, … , 𝑦̃𝑛)
.

Let 𝑥 be a vertex of 𝔸𝑐. It corresponds to a term 𝑦𝑥 in 𝐹(𝑖+1,𝑗). There is a unique element 𝑥̃ ∈ 𝔼0
such that 𝜋(𝑥̃) = 𝑥. This is precisely the exponent vector of the result of substituting 𝑦̃𝑖 for 𝑦𝑖 in
the monomial 𝑦𝑥.
The element of 𝔼𝑐 that projects onto 𝑥 is exactly 𝑥̃ + 𝑣

𝑐
. This, then, is the vertex of 𝕌𝑐

corresponding to 𝑥. What remains to be verified is that 𝑣
𝑐
equals negative the exponent of

𝐹
trop
(𝑖+1,𝑗)

(𝑦̃1, … , 𝑦̃𝑛).

By definition, 𝐹
trop
(𝑖+1,𝑗)

(𝑦̃1, … , 𝑦̃𝑛) is the least common multiple of all the terms in
𝐹(𝑖+1,𝑗)(𝑦̃1, … , 𝑦̃𝑛). Subtracting it from the Newton polytope of 𝐹(𝑖+1,𝑗)(𝑦̃1, … , 𝑦̃𝑛) translates the
polytope so that for each 𝑧𝑖𝑗 , the minimal power that appears is zero. We know that 𝕌𝑐 also
has the property that the minimum value that any coordinate takes on within 𝕌𝑐 is zero. Thus
𝑣
𝑐
= −𝐹

trop
(𝑖+1,𝑗)

(𝑦̃1, … , 𝑦̃𝑛), as desired. □
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20 of 27 BAZIER-MATTE et al.

Example 11. We look at 𝐹univ
(1,1)

in our running example.

𝑦̃1 = 𝑧1,1𝑧1,2𝑧2,3∕𝑧0,1

𝑦̃2 = 𝑧2,2∕𝑧0,2𝑧1,1𝑧1,2𝑧1,3

𝑦̃3 = 𝑧1,2𝑧1,3𝑧2,1∕𝑧0,3

Now

𝐹(1,1)(𝑦̃1, 𝑦̃2, 𝑦̃3) =
𝑧0,1 + 𝑧1,1𝑧1,2𝑧2,3

𝑧0,1
, 𝐹

trop
(1,1)

(𝑦̃1, 𝑦̃2, 𝑦̃3) = 𝑧−10,1

and we indeed obtain

𝐹univ
(1,1)

= 𝐹(1,1)(𝑦̃1, 𝑦̃2, 𝑦̃3)∕𝐹
trop
(1,1)

(𝑦̃1, 𝑦̃2, 𝑦̃3).

9 THE NEF CONE OF THE TORIC VARIETY ASSOCIATED TO THE
g -VECTOR FAN IS SIMPLICIAL

9.1 Brief reminder on toric varieties

Our main reference for toric varieties is [11]. We do not give specific references for the basic facts
that are to be found in the first few chapters of that book.
Let 𝑁 be a free abelian group of rank 𝑛. Write𝑀 = Hom(𝑁,ℤ) for its dual. We write ⟨⋅, ⋅⟩ for

the duality pairing from𝑀 ×𝑁 to ℤ. We write 𝑁ℝ for 𝑁 ⊗ℤ ℝ, and in general use a subscript ℝ
to denote tensoring by ℝ.
A cone in a real vector space is a semigroup closed undermultiplication by nonnegative reals. A

strongly convex, rational, polyhedral cone in𝑁ℝ is a cone which is generated by a finite collection
of vectors from 𝑁, all lying in a proper half-space. A fan in 𝑁ℝ is a collection of strongly convex,
rational, polyhedral cones such that the intersection of any two cones is necessarily a face of each.
(The examples to which we will apply this theory are the outer normal fan to the generalized
associahedra𝔸𝑐 that we have constructed, which are particular instances of g-vector fans of finite-
type cluster algebras. They are indeed fans in the above sense.)
Let Σ be a fan in𝑁ℝ. For simplicity of exposition, we will assume that the 𝑛-dimensional cones

of Σ cover ℝ𝑛, as this is true in particular for the outer normal fans that we are considering. We
write Σ𝑖 for the 𝑖-dimensional cones of Σ.
Associated to a fan Σ, there is a normal toric variety 𝑋Σ. The field of rational functions on 𝑋Σ is

the fraction field of the group ring ℂ[𝑀]. For𝑚 ∈ 𝑀, we write 𝜒𝑚 for the corresponding function
field element.
There is a torus 𝑇 ≃ (ℂ∗)𝑛 acting on 𝑋Σ. There is a bijection between cones of Σ and 𝑇-orbits in

𝑋Σ. We write 𝜎 for the orbit corresponding to the cone 𝜎 ∈ Σ. The dimension of 𝜎 is 𝑛 minus
the dimension of the span of 𝜎.
A divisor on a normal variety is a formalℤ-linear combination of irreducible codimension 1 sub-

varieties. On a toric variety, we are particularly interested in those divisors that are torus invariant.
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ABHY ASSOCIAHEDRA AND NEWTON POLYTOPES OF 𝐹-POLYNOMIALS 21 of 27

For 𝜌 ∈ Σ1, we define 𝐷𝜌 to be the closure of 𝜌. This is an irreducible codimension 1 subvariety
that is torus-invariant. The torus-invariant divisors of 𝑋Σ are Div(𝑋Σ) =

⨁
𝜌∈Σ1 ℤ[𝐷𝜌].

Given a normal variety𝑋 and an element of the function field of𝑋, say 𝑓, there is an associated
divisor, div(𝑓). Informally, it consists of the zero locus of 𝑓minus the locus where 𝑓 blows up. We
shall shortly define this notion precisely in the setting of toric varieties. A divisor 𝐷 on a normal
variety𝑋 is called a Cartier divisor if there exists an open cover {𝑈𝑖} of𝑋 such that𝐷|𝑈𝑖

is principal
for each 𝑖 ∈ 𝐼, that is to say, there exists an element 𝑓𝑖 of the function field of𝑈𝑖 such that div(𝑓𝑖)
equals the restriction of 𝐷 to 𝑈𝑖 .
In the case of toric varieties, we are interested in torus-invariant Cartier divisors. It turns out

that there is a canonical choice of open cover thatworks for any torus-invariant Cartier divisor. For
each maximal cone 𝜎, let 𝑋𝜎 denote the toric variety associated to the fan consisting of 𝜎 and its
faces. 𝑋𝜎 is open in 𝑋Σ, and 𝑋Σ is covered by the varieties 𝑋𝜎. Any torus-invariant Cartier divisor
on 𝑋Σ is given by a collection of functions, one on each 𝑋𝜎. In fact, we can take the function on
𝑋𝜎 to be of the form 𝜒𝑚𝜎 for some 𝑚

𝜎
∈ 𝑀. We call the collection {𝑚

𝜎
}𝜎∈Σ𝑛 the local data of the

Cartier divisor. For each ray 𝜌 ∈ Σ1, let 𝑢
𝜌
be the first lattice point along the ray 𝜌. Themultiplicity

of 𝐷𝜌 in the divisor corresponding to the local data {𝑚𝜎
}𝜎∈Σ𝑛 is given by−⟨𝑚𝜎

, 𝑢
𝜌
⟩ for 𝜎 any cone

of Σ containing 𝜌.
A collection {𝑚

𝜎
}𝜎∈Σ𝑛 is not necessarily the local data of any Cartier divisor. The following

condition provides a necessary and sufficient condition to verify that it is.

Lemma 6 [11, Theorem 4.2.8, Exercise 4.2.3]. The collection {𝑚
𝜎
}𝜎∈Σ𝑛 forms the local data for a

Cartier divisor if and only if ⟨𝑚
𝜎
, 𝑢

𝜌
⟩ is equal for all maximal cones 𝜎 containing the ray 𝜌.

As we have already remarked, −⟨𝑚
𝜎
, 𝑢

𝜌
⟩ is the multiplicity of 𝐷𝜌 in the divisor; the condition

for {𝑚
𝜎
} to be local data amounts to saying that the formula for the multiplicity of 𝐷𝜌 does not

depend on which 𝜎 is used, among those containing 𝜌.
We write CDiv(𝑋Σ) for the torus invariant Cartier divisors on 𝑋Σ. We write Div0(𝑋Σ) for the

principal divisors on 𝑋Σ. These are the Cartier divisors for which all 𝑚𝜎 are equal. The Picard
group of 𝑋Σ, denoted Pic(𝑋Σ), is defined to be CDiv(𝑋Σ)∕Div0(𝑋Σ). Under our assumptions on
the fan Σ, CDiv(𝑋Σ) is a free abelian group whose rank is |Σ1| − 𝑛 [11, Theorem 4.2.1].
Let𝐷 be a Cartier divisor on a normal variety𝑋 and let 𝐶 a complete curve in𝑋. We write𝐷 ⋅ 𝐶

for the intersection product of 𝐷 and 𝐶. We will not define it in full generality, but the following
can be taken as a definition in the toric setting.

Definition 1. On the toric variety 𝑋Σ, let 𝐷 be a torus-invariant Cartier divisor, which is thus
given by a collection of local data {𝑚

𝜎
}𝜎∈Σ𝑛 . Let 𝐶 be a complete, irreducible torus-invariant curve

in 𝑋Σ; it is therefore the closure of 𝜏 for some codimension 1 𝜏 in Σ. The cone 𝜏 separates two
maximal cones 𝜎 and 𝜎′. Let 𝑢 be an element of 𝜎′ that maps to a generator of𝑁∕𝑁𝜏. (Here𝑁𝜏 is
the lattice generated by 𝜏, so 𝑁∕𝑁𝜏 is isomorphic to ℤ.) Then

𝐷 ⋅ 𝐶 = ⟨𝑚
𝜎
−𝑚

𝜎′
, 𝑢⟩

We take this as the definition of 𝐷 ⋅ 𝐶; see also [11, Proposition 6.3.8], which shows that this
definition agrees with the definition for general varieties.
A Cartier divisor on a normal variety 𝑋 is called nef (“numerically effective”) if 𝐷 ⋅ 𝐶 ⩾ 0 for

every irreducible complete curve 𝐶 in 𝑋. In the toric case, 𝐷 is nef if and only if 𝐷 ⋅ 𝐶 ⩾ 0 for
every irreducible torus-invariant complete curve, that is, for those curves that are the closure of
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22 of 27 BAZIER-MATTE et al.

𝜏 for some 𝜏 ∈ Σ𝑛−1 [11, Theorem 6.3.12]. Thus, the definition of 𝐷 ⋅ 𝐶 that we have given above
is sufficient to determine, for any Cartier divisor on 𝑋Σ, whether or not it is nef.
A Cartier divisor𝐷 on a normal variety is said to be numerically equivalent to zero if and only if

𝐷 ⋅ 𝐶 = 0 for all irreducible complete curves 𝐶; two Cartier divisors are numerically equivalent if
their difference is numerically equivalent to zero. The nef cone of a variety is defined in the vector
space of its Cartier divisors modulo numerical equivalence, and tensored by ℝ. For a toric variety,
a torus-invariant Cartier divisor is numerically equivalent to zero if and only if it is principal [11,
Proposition 6.3.15]. Thus, we can view Nef(𝑋Σ) as contained in Pic(𝑋Σ)ℝ. Then, Nef(𝑋Σ) is the
cone generated by the classes of the nef Cartier divisors in Pic(𝑋Σ)ℝ.
Associated to a torus-invariant Cartier divisor 𝐷 =

∑
𝜌∈Σ1 𝑎𝜌[𝐷𝜌] on 𝑋Σ, there is a polytope

defined by

𝑃𝐷 = {𝑚 ∈ 𝑀ℝ ∣ ⟨𝑚, 𝑢
𝜌
⟩ ⩾ −𝑎𝜌 for all 𝜌 ∈ Σ1}.

See [11, (6.1.1)].
Combining [11, Theorems 6.1.7 and 6.3.12], we obtain the following useful criterion for a Cartier

divisor’s being nef:

Proposition 2. ACartier divisor𝐷 on𝑋Σ with local data {𝑚𝜎
}𝜎∈Σ𝑛 is nef if and only if𝑚𝜎

∈ 𝑃𝐷 for
all 𝜎 ∈ Σ𝑛.

A cone in a real vector space is said to be simplicial if its number of generating rays is equal to
the dimension of its span.
We can now state the theorem that we seek to prove about the toric variety associated to the

g-vector fan.

Theorem 5. Let Σ be the outer normal fan of 𝔸𝑐 (or equivalently the g-vector fan corresponding to
a Dynkin quiver). The nef cone of the toric variety 𝑋Σ is simplicial.

9.2 Combinatorics of 𝐏𝐢𝐜(𝑿𝚺)

Let 𝑁 = ℤ𝑛 be a rank 𝑛 free abelian group with a fixed basis 𝑏
1
, … , 𝑏

𝑛
, and let𝑀 = Hom(𝑁,ℤ),

equipped with the dual basis 𝑏∗
1
, … , 𝑏∗

𝑛
. Let Σ be the g-vector fan realized in 𝑁ℝ with respect to

the basis {𝑏
𝑖
}, and let 𝑋Σ be the corresponding toric variety. The irreducible divisors correspond

to rays of Σ, which themselves correspond to elements (𝑖, 𝑗) ∈ . We will write 𝐷𝑖𝑗 for the divisor
corresponding to the ray g(𝑖, 𝑗).
We identify𝑀ℝ with the vector space ℝ𝑛 which is the image of the projection 𝜋, identifying 𝑏∗

𝑖

with the standard basis of ℝ𝑛.
We will now construct a bijection between ℤ|+| and Pic(𝑋Σ), the Cartier divisors of 𝑋Σ up to

linear equivalence.
Fix 𝑐 = (𝑐𝑖𝑗)(𝑖,𝑗)∈+ , with all 𝑐𝑖𝑗 ∈ ℤ. Unlike earlier in the paper, we do not assume that the

entries of 𝑐 are nonnegative. Nonetheless, as earlier, we get a well-defined affine subspace 𝔼𝑐 of
𝑉. There is a section of 𝜋, which we denote 𝑖𝑐, sending ℝ𝑛 to 𝔼𝑐.
The definition we gave of 𝑣

𝑐
in Section 3 does not make sense any longer, as some of the 𝑐𝑖𝑗 are

negative. However, it can be extended to the more general setting in the following way.
Define a matrix 𝐴, whose rows are indexed by  and whose columns are indexed by +, and

such that the (𝑖, 𝑗), (𝑘, 𝑙) entry is dimHom(𝑀𝑖𝑗,𝑀𝑘𝑙). If we order the rows and columns of𝐴 in the
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ABHY ASSOCIAHEDRA AND NEWTON POLYTOPES OF 𝐹-POLYNOMIALS 23 of 27

same way, respecting the left-to-right order of the Auslander–Reiten quiver of 𝑄 and keeping the
elements of  ⧵ + for last, we obtain a matrix with 1’s on the diagonal and zeros below it, with
the last 𝑛 rows consisting entirely of zeros.
We then define 𝑣 = 𝐴𝑐. Clearly, this recovers the definition of Section 3 when the 𝑐𝑖𝑗 are

nonnegative. The proof that 𝑣 ∈ 𝔼𝑐 goes through without essential alterations.
For future use, let us write𝐴′ for the submatrix of𝐴 consisting of the rows indexed by elements

of +. As it is upper triangular with 1’s on the diagonal, it is invertible in 𝐺𝐿|+|(ℤ).

Example 12. Consider the case that 𝑄 = 1 ���→ 2.
The elements of  are as follows:

In this case, there is only one ordering of  consistent with the left-to-right ordering of
the Auslander–Reiten quiver, namely (0,1),(0,2),(1,1),(1,2),(2,1). With respect to this ordering the
matrix 𝐴 is given by

𝐴 =

⎡⎢⎢⎢⎢⎢⎣

1 1 0

0 1 1

0 0 1

0 0 0

0 0 0

⎤⎥⎥⎥⎥⎥⎦
The matrix 𝐴′ consists of the top three rows of 𝐴.

Let𝐺 be the 𝑛 × ||matrix whose (𝑖, 𝑗)th column is the g-vector corresponding to (𝑖, 𝑗) ∈ . As
already noted in the proof of point (5) of Theorem 1,

𝑖𝑐(𝑦) = −𝑦 ⋅ 𝐺 + 𝑣
𝑐
.

Pullback along 𝑖𝑐 defines a map from functions on 𝑉 to functions on ℝ𝑛 = 𝑀ℝ. In particular,
we can consider the pullbacks of the coordinate functions 𝑖∗𝑐 (𝑝𝑖𝑗). From the formula for 𝑖𝑐(𝑦), we
obtain:

𝑖∗𝑐 (𝑝𝑖𝑗)(𝑦) = −𝑦 ⋅ g(𝑖, 𝑗) + 𝑣𝑖𝑗. (3)

The zero locus of 𝑖∗𝑐 (𝑝𝑖𝑗) is an affine hyperplane in ℝ𝑛 = 𝑀ℝ.
The maximal cones in 𝑋Σ correspond to maximal compatible sets in . For a maximal cone

𝜎, define −𝑚
𝜎
(𝑐) to be the intersection of the zero loci of the pullbacks by 𝑖𝑐 of the coordinate

functions corresponding to the rays of 𝜎. As the corresponding g-vectors are linearly independent,
this intersection is a well-defined point.

Lemma 7. The collection {𝑚
𝜎
(𝑐)} provides local data for a Cartier divisor on𝑋Σ. This Cartier divisor

is 𝐷(𝑐) =
∑

(𝑖,𝑗)∈+ 𝑣𝑖𝑗[𝐷𝑖𝑗].
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24 of 27 BAZIER-MATTE et al.

Proof. As defined, the points𝑚
𝜎
(𝑐) lie in𝑀ℝ. We must first check that they are in fact elements

of𝑀. This follows from the fact that the g-vectors corresponding to the rays of Σ form a basis for
ℤ𝑛.
Nowwe check that the𝑚

𝜎
(𝑐) satisfy the necessary condition to be local data of a Cartier divisor,

as recalled inLemma6. Let𝜌 be a ray ofΣ corresponding to (𝑖, 𝑗) ∈ .Wemust check that the value
of ⟨𝑚

𝜎
, 𝑢

𝜌
⟩ is independent of the choice of𝜎 containing𝜌. This is so because by construction all the

points−𝑚
𝜎
lie on the hyperplane in𝑀ℝ where 𝑖∗𝑐 (𝑝𝑖𝑗) = 0. Now 𝑢

𝜌
= g(𝑖, 𝑗), and 𝑖∗𝑐 (𝑝𝑖𝑗)(−𝑚𝜎

) =

⟨𝑚
𝜎
, g(𝑖, 𝑗)⟩ + 𝑣𝑖𝑗 , so ⟨𝑚𝜎

, 𝑢
𝜌
⟩ = −𝑣𝑖𝑗 , independent of 𝜎, as desired. □

We now establish the following converse to the previous lemma:

Lemma 8. Up to linear equivalence, any Cartier divisor on 𝑋Σ is given by local data {𝑚𝜎(𝑐)} for
some 𝑐.

Proof. Suppose we have a Cartier divisor 𝐷 =
∑

(𝑖,𝑗)∈ 𝑣𝑖𝑗[𝐷𝑖𝑗]. There is a principal divisor whose
coefficients with respect to the rays corresponding to (𝑖, 𝑗) ∈  ⧵ + take any integer values, so,
by subtracting it from 𝐷, we may assume that 𝑣𝑖𝑗 = 0 for (𝑖, 𝑗) ∉ +. Consider the vector 𝑣 which
is the |+|-tuple consisting of the entries 𝑣𝑖𝑗 for (𝑖, 𝑗) ∈ +. To construct𝐷 as a Cartier divisor, we
must show that there exists a |+|-tuple of integers 𝑐 such that 𝑣 = 𝐴′𝑐. As, as we have already
commented, 𝐴′ is invertible, we find that 𝑐 = (𝐴′)−1(𝑣) gives us the necessary 𝑐. □

From the two previous lemmas, we deduce:

Proposition 3. There is an isomorphism of abelian groups between ℤ+ and Pic(𝑋Σ), sending 𝑐 to
𝐷(𝑐).

Proof. Lemma 7 establishes the existence of the desired map, which is clearly a morphism of
groups, and Lemma 8 shows that it is surjective. By [11, Theorem 4.2.1], which we have already
cited, Pic(𝑋Σ) is a free abelian group of rank || − 𝑛 = |+|. As ℤ+ and Pic(𝑋𝜎) are free abelian
groups of the same rank, a surjective map from one to the other must be an isomorphism. □

Example 13. We continue the setting of Example 12.
Let us set 𝑐01 = 2, 𝑐02 = 1, 𝑐11 = 1. The figure below shows 𝔸𝑐 and 𝑃𝐷(𝑐).
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9.3 Proof of Theorem 5

We are now almost ready to prove Theorem 5.

Lemma 9. If all the entries of 𝑐 are nonnegative, then 𝐷(𝑐) is nef.

Proof. Let 𝐷(𝑐) =
∑

(𝑖,𝑗)∈ 𝑣𝑖𝑗[𝐷𝑖𝑗]. By Proposition 2, it suffices to show that, provided the entries
of 𝑐 are nonnegative integers, then𝑚

𝜎
(𝑐) ∈ 𝑃𝐷(𝑐) for all 𝜎 ∈ Σ𝑛.

𝔸𝑐 is essentially by definition the region cut out by the inequalities 𝑖∗𝑐 (𝑝𝑖𝑗)(𝑦) ⩾ 0. By (3), this is
equivalent to −𝑦 ⋅ g(𝑖, 𝑗) + 𝑣

𝑖𝑗
⩾ 0. Thus, 𝔸𝑐 is cut out by the inequalities −𝑦 ⋅ g(𝑖, 𝑗) ⩾ −𝑣𝑖𝑗 . This

says that 𝔸𝑐 = −𝑃𝐷(𝑐).
Now, by Theorem 1, we know that, assuming all the entries of 𝑐 are nonnegative, the points

−𝑚
𝜎
(𝑐) are the vertices of 𝔸𝑐, and thus the points𝑚𝜎

(𝑐) lie in 𝑃𝐷(𝑐). □

Lemma 10. If 𝑐 has a negative entry, then 𝐷(𝑐) is not nef.

Proof. Recall that, as defined in Section 4, a slice of theARquiver of𝑄 is a choice, for each 1 ⩽ 𝑖 ⩽ 𝑛

of a vertex (𝑖, 𝑠(𝑖)) such that if vertices 𝑖 and 𝑖′ of 𝑄 are adjacent, then (𝑖, 𝑠(𝑖)) and (𝑖 + 1, 𝑠(𝑖 + 1))

are adjacent in the AR quiver. Any slice is a compatible set.
Suppose that 𝑐𝑘𝑙 < 0. Choose two slices, 𝑠 and 𝑠′, so that 𝑠 contains (𝑘, 𝑙), and 𝑠′ contains

(𝑘, 𝑙 + 1), while the other vertices in the two slices are the same. Write 𝜎 and 𝜎′ for the corre-
sponding cones of Σ. As the two cones differ only in one ray, they share a common codimension 1
face, 𝜏. Write 𝐶 for the corresponding curve. We will show that 𝐷(𝑐) ⋅ 𝐶 < 0, showing that 𝐷(𝑐) is
not nef.
We know that 𝑖𝑐(𝑚𝜎

(𝑐))𝑖,𝑠(𝑖) = 0 for 1 ⩽ 𝑖 ⩽ 𝑛. This implies that 𝑖𝑐(𝑚𝜎
(𝑐))𝑘,𝑙+1 = −𝑐𝑘𝑙, by the

𝑐-deformed mesh relation, while 𝑖𝑐(𝑚𝜎′
(𝑐))𝑖,𝑠′(𝑖) = 0, so 𝑖𝑐(𝑚𝜎′

(𝑐))𝑘,𝑙+1 = 0.
To apply Definition 1, we may take 𝑢 = g(𝑘, 𝑙 + 1). We find that 𝐷(𝑐) ⋅ 𝐶 = ⟨𝑚

𝜎
(𝑐) −

𝑚
𝜎′
(𝑐), g(𝑘, 𝑙 + 1)⟩ = 𝑖∗𝑐 (𝑝𝑘,𝑙+1)(−𝑚𝜎

) − 𝑖∗𝑐 (𝑝𝑘+1,𝑙)(−𝑚𝜎′
) = 𝑐𝑘𝑙 < 0 □

Proof of Theorem 5. Proposition 3 establishes an isomorphism of abelian groups from ℤ|| and
Pic(𝑋Σ), and thus a linear transformation from ℝ|| to Pic(𝑋Σ)ℝ. By the previous two lem-
mas, the cone Nef(𝑋Σ) is the image in Pic(𝑋Σ)ℝ of the positive orthant in ℝ||, and is thus
simplicial. □

The proof of Theorem 5 tells us that the extreme rays of the nef cone of 𝑋Σ are generated by
divisors𝐷(𝑐)where exactly one of the entries of 𝑐 equals 1 and the others are 0. The corresponding
polytope 𝑃𝐷(𝑐) is the negative of the submodule polytopes of the indecomposable representations
of 𝑄. (That is to say, one passes from one polytope to the other by negating all the coordinates of
all its vertices, as in Lemma 9 and Example 13.)
Translated intomore polytopal language, this says that the negative of any polytope correspond-

ing to a nef divisor on 𝑋Σ can be written in a unique way as the Minkowski sum of dilations of
the submodule polytopes of the indecomposable representations of 𝑄. It is natural to ask how to
recover classic realizations of the associahedron in thisway, such as the Loday associahedronmen-
tioned earlier. By results from [28, section 8], up to a change of basis, the Loday associahedron can
be realized as the sum of each of the submodule polytopes of the indecomposable representations
of the linearly oriented 𝐴𝑛 quiver, each appearing with no dilation.
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