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riety associated to W (Ã_n). Journal of Algebraic Combinatorics, 2023, 58 (3), pp.717 - 739.
�10.1007/s10801-023-01243-5�. �hal-04677010�

https://hal.science/hal-04677010v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


A SYMMETRIC GROUP ACTION ON THE IRREDUCIBLE COMPONENTS OF
THE SHI VARIETY ASSOCIATED TO W (Ãn)

NATHAN CHAPELIER-LAGET

Abstract. Let Wa be an affine Weyl group with corresponding finite root system Φ. In [9] Jian-Yi
Shi characterized each element w ∈ Wa by a Φ+-tuple of integers (k(w,α))α∈Φ+ subject to certain
conditions. In [4] a new interpretation of the coefficients k(w,α) is given. This description led us to
define an affine variety X̂Wa , called the Shi variety of Wa, whose integral points are in bijection with
Wa. It turns out that this variety has more than one irreducible component, and the set of these
components, denoted H0(X̂Wa), admits many interesting properties. In particular the group Wa acts
on it. In this article we show that the set of irreducible components of X̂

W (Ãn) is in bijection with
the conjugacy class of (1 2 · · · n + 1) ∈ W (An) = Sn+1. We also compute the action of W (An) on
H0(X̂

W (Ãn)).
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1. Introduction

1.1. General background on Weyl groups. Let V be a Euclidean space with inner product
(−,−) and denote ||x|| =

√
(x, x). Let Φ be an irreducible crystallographic root system in V with

simple system ∆ = {α1, . . . , αn}. Let m = |Φ+|. From now on, when we will say “root system” it
will always mean irreducible crystallographic root system.

Let W be the Weyl group associated to ZΦ, that is the maximal (for inclusion) reflection subgroup
of the orthogonal group O(V ) admitting ZΦ as a W -equivariant lattice. For α ∈ Φ we denote by sα
the linear reflection of V defined as follows:

sα : V −! V

x 7−! x− 2 (α,x)
(α,α)α.

We denote si := sαi for i = 1, . . . , n and S = {sα | α ∈ ∆} so that (W,S) is a Coxeter system of
rank n (see [2], [3] or [8] for good references on the subjet).

We identify ZΦ and the group of its associated translations and we denote by τx the translation
corresponding to x ∈ ZΦ.
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Let k ∈ Z and α ∈ Φ. Define the affine reflection sα,k as follows:

sα,k : V −! V

x 7−! x− (2 (α,x)
(α,α) − k)α.

We consider the subgroup Wa of Aff(V ) generated by all affine reflections sα,k with α ∈ Φ and
k ∈ Z, that is

Wa = 〈sα,k | α ∈ Φ, k ∈ Z〉.
The group Wa is called the affine Weyl group associated to Φ. It is also well known [8, Ch.III, Section
11] that Wa = ZΦoW . Therefore, any element w ∈Wa decomposes as w = τxw where x ∈ ZΦ and
w ∈W . The element w is called the finite part of w.

The classification of irreducible crystallographic root systems states that there are at most two
possible root lengths in Φ. We call short root the shorter ones.

Let α ∈ Φ such that α = a1α1 + · · · + anαn with ai ∈ Z. The height of α (with respect to ∆) is
defined by the number h(α) = a1 + · · ·+ an. Height provides a preorder on Φ+ defined by α ≤ β if
and only if h(α) ≤ h(β).

We denote by α0 the highest short root of Φ. Then (Wa, Sa) is a Coxeter system (see for example
[7, Ch.4] or [9]).

The inversion set of w ∈W is by definition the set
N(w) := {ξ ∈ Φ+ | w−1(ξ) ∈ Φ−}.

It is a well known fact that if w = uv is a reduced expression of w (that is `(w) = `(u) + `(v)) then
the inversion set of w decomposes as [5, Proposition 2.1]
(1) N(w) = N(u) t u(N(v)).

Let α ∈ Φ and α∨ := 2α
(α,α) . For any k ∈ Z and any m ∈ R, we set the hyperplanes

Hα,k = {x ∈ V | sα,k(x) = x}
= {x ∈ V | (x, α∨) = k},

the half spaces
H

+
α,k = {x ∈ V | k < (x, α∨)}

and
H
−
α,k = {x ∈ V | (x, α∨) < k},

and the strip
H1
α,k = {x ∈ V | k < (x, α∨) < k + 1}

= H
+
α,k ∩H

−
α,k+1.

The connected components of
V \

⋃
α∈Φ+

k∈Z

Hα,k

are called alcoves. We denote Ae the alcove defined as Ae =
⋂
α∈Φ+ H1

α,0. It is well known thatWa acts
regularly on the set of alcoves [7, Ch. 4]. It follows that there is a bijective correspondence between
the elements of Wa and all the alcoves. This bijection is defined by w 7! Aw where Aw := wAe.
We call Aw the corresponding alcove associated to w ∈ Wa. Any alcove of V can be written as an
intersection of width-one strips, that is there exists a Φ+-tuple of integers (k(w,α))α∈Φ+ such that

Aw =
⋂

α∈Φ+

H1
α,k(w,α).

In [9] Jian-Yi Shi characterized the elements of any affine Weyl group w ∈Wa by the Φ+-tuple of
integers (k(w,α))α∈Φ+ subject to certain conditions. This characterization is given by the following
theorem.

Theorem 1.1 ([9], Theorem 5.2). Let A =
⋂

α∈Φ+
H1
α,kα

with kα ∈ Z. Then A is an alcove, if and

only if, for all α, β ∈ Φ+ satisfying α+ β ∈ Φ+, we have the following inequality
(2) ||α||2kα + ||β||2kβ + 1 ≤ ||α+β||2(kα+β + 1) ≤ ||α||2kα + ||β||2kβ + ||α||2 + ||β||2 + ||α+β||2− 1.
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Let PH be the polytope:
PH :=

⋂
α∈∆

H1
α,0,

and let Aw ⊂ PH. It is clear that k(w,α) = 0 for all α ∈ ∆, and reciprocally, if w′ ∈ Wa is such
that k(w′, α) = 0 for all α ∈ ∆ then Aw′ ⊂ PH. The elements of this polytope seen as Φ+-tuple of
integers are called admitted, and more precisely a vector λ ∈

⊕
α∈Φ+

Zα is admitted if and only if there

exists w ∈Wa such that k(w,α) = λα for all α ∈ Φ+ and such that Aw ⊂ PH (see [4, Section 4.3] for
a more detailed explication of admitted vectors).

Example 1.1. In type An, an admitted vector λ = (λi,j)1≤i<j≤n+1 is defined by the following
conditions:

(3)
{
λi,j + λj,k ≤ λi,k ≤ λi,j + λj,k + 1 for all i < j < k,
λi,i+1 = 0 for all 1 ≤ i < n.

1.2. The Shi variety in type A. In [4] the author defines an affine variety X̂Wa , called the Shi
variety of Wa, whose integral points X̂Wa(Z) are in bijection with Wa [4, Theorem 4.3].

The construction of the variety in full generality is not needed in this article, except in type A
where we use in Lemma 2.1 the nature of the equations that define X̂

W (Ãn). We briefly recall the
construction in type An and we refer the reader to [4, Section 4] for the general construction.

First, we can realize a root system of type Φ = An as follows: Set {e1, · · · , en+1} the canonical
basis of Rn+1. Then Φ := {±(ei − ej) | 1 ≤ i < j ≤ n+ 1} with Φ+ = {ei − ej | 1 ≤ i < j ≤ n+ 1}
and with simple system ∆ = {ei − ei+1 | 1 ≤ i ≤ n}. Let us write for short k(w, ei − ej) = ki,j(w).

Second, from Theorem 1.1 we know that each element w ∈W (Ãn) is characterized by a Φ+-tuple
(ki,j(w))ei−ej∈Φ+ satisfying a system of inequalities given by (2). These inequalities become in type
An as follows:
(4) ki,j(w) + kj,`(w) ≤ ki,`(w) ≤ ki,j(w) + kj,`(w) + 1 for all 1 ≤ i < j < ` ≤ n+ 1.

In particular we see that:
ki,`(w) = ki,j(w) + kj,`(w) or ki,`(w) = ki,j(w) + kj,`(w) + 1.

Iterating this process for any root α = ei − ej ∈ Φ+, we can express kα(w) in terms of the kδ(w)’s
with δ ∈ ∆ as follows:

ki,j(w) = ki,i+1(w) + ki+1,i+2(w) + . . . kj−1,j(w) + λi,j(w)
where λi,j(w) is a positive integer that belongs to J0, h(ei − ej)− 1K, that is to J0, j − i− 1K.

Setting Xi,j to be the formal variable corresponding to the positive root ei − ej , the Shi variety
X̂
W (Ãn) is defined as the set of solutions in Rn(n+1)/2 of the equations:

Xi,i+1 +Xi+1,i+2 + . . . Xj−1,j + λi,j −Xi,j = 0(5)

with 1 ≤ i < j ≤ n + 1 and some particular λi,j ∈ J0, j − i − 1K. It turns out that the λi,j ’s
appearing in the equations (5) are precisely the coefficients of admitted vectors [4, Section 4.3].

1.3. The irreducible components of the Shi variety. It turns out that the irreducible compo-
nents of this variety are in bijection with the alcoves of the polytope PH [4, Proposition 4.1]. Writing
H0(X̂Wa) to be the set of irreducible components of X̂Wa , we have

H0(X̂Wa) = {X̂Wa [λ] | λ admitted}.
From the above parameterization and the fact that the components have no intersection we have the
following decomposition of X̂Wa [4, Theorem 4.3]:

X̂Wa =
⊔

λ admitted
XWa [λ].

The admitted vectors λ are built, in type An for example, via the coefficients λi,j appearing in the
equations (5).



4 NATHAN CHAPELIER-LAGET

1.4. The Φ+-representation. Let sα,p ∈Wa. In [4] we defined the affine map F (sα,p) as
F (sα,p)(x) := Lα(x) + vp,α

for all x ∈
⊕

β∈Φ+
Rβ, with Lα ∈ GLn(R) defined via the matrix (`i,j(α))i,j∈J1,mK where

(6) `αj ,αi(α) := `j,i(α) =


1 if sα(αi) = αj
0 if sα(αi) 6= ±αj
−1 if sα(αi) = −αj ,

and with vp,α ∈
⊕

β∈Φ+
Rβ the vector defined by vp,α = (vp,α(γ))γ∈Φ+ where

(7) vp,α(γ) :=
{

−p(α, sα(γ)∨) if sα(γ) ∈ Φ+

−1− p(α, sα(γ)∨) if sα(γ) ∈ Φ−.

For w ∈ Wa we denote Lw to be the left multiplication by w. In [4] we showed that F extends
naturally to Wa. We also showed that F induces a geometrical action on the irreducible components.
Theorem 1.2 ([4], Theorem 3.1). There exists an injective morphism F : Wa ! Isom(Rm) such that
for any w ∈Wa the following diagram commutes. This morphism is called the Φ+-representation of
Wa, and the corresponding action is called the Φ+-action of Wa.

Wa
Lw //

� _

ι
��

Wa� _

ι
��

Rm
F (w)

// Rm.

Proposition 1.1 ([4], Proposition 4.3 ). Let F : Wa ↪! Isom(Rn) be the Φ+-representation of Wa.
Then we have:

1) Wa acts naturally on the irreducible components of X̂Wa via the action defined as w�XWa [λ] :=
F (w)(XWa [λ]). Furthermore if we assume that w ∈ Wa decomposes as w = τxw, then
w �XWa [λ] = w �XWa [λ]. Finally this action is transitive.

2) The previous action induces an action on the admitted vectors by w � λ := γ such that
w �XWa [λ] = XWa [γ]. In other words we have w �X[λ] = X[w � λ].

1.5. The main theorem of the article. In this article we thoroughly investigate H0(X̂
W (Ãn))

from a combinatorial point of view. The main result of this article is Theorem 1.3. Let us first recall
some basics about the symmetric group:

We call circular permutations the (n+ 1)-cycles of Sn+1 = W (An). The action by conjugation of
W (An) on itself is defined for all σ, γ ∈W (An) by σ.γ := σγσ−1. This action appears in a lot of areas
and has been studied many times. In particular, understanding the orbits of the action, which are
the conjugacy classes, yielded a lot of research work. For example, M. Geck and G. Pfeiffer used in
[6] the technology of cuspidal class in order to express any conjugacy class in terms of these cuspidal
classes.

We relate in this article the conjugacy class of (1 2 · · · n+ 1) with the irreducible components of
the Shi variety corresponding to W (Ãn). Finally, the action by conjugation plays a crucial role in
the following theorem:
Theorem 1.3. There is a natural bijection between H0(X̂

W (Ãn)) and the circular permutations of
W (An). In particular |H0(X̂

W (Ãn))| = n!.

In Theorem 1.3 the word “natural” is used because the bijection involved respects the action of
W (An) on two different sets, namely the action we have defined on H0(X̂

W (Ãn)) and the conjugation
action on the circular permutations in W (An). Because of Proposition 1.1 we know that the compo-
nents are invariant under translations, that is only the finite part matters. Consequently, we will only
look at the action of the finite part W (An). Thus, the goal is to understand how the components
behave when we apply F (w) on them for any w ∈W (An).

Giving explicit formulas for the action of W (An) on H0(X̂
W (Ãn)) is of particular interest as well.

These formulas are established in Theorem 3.1.
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2. Bijection between H0(X̂
W (Ãn)) and the set of circular permutations of W (An)

2.1. Notations and setup. Let E be a R-vector space and let G be a group that acts linearly on
E. This action induces a linear action on the rth exterior power

∧r(E) for all r ∈ N. We call this
action the diagonal action on

∧r(E).
For instance, ifG = W (An) is the symmetric group and E is the vector space E := span(e1, · · · , en+1)

then G acts on E by permutation of the coordinates, that is σ.ei = eσ(i). Then the diagonal action
of G on

∧2(E) is given by
σ · (ek ∧ e`) = eσ(k) ∧ eσ(`).

From now on {e1, · · · , en+1} represents the canonical basis of K := Rn+1. Recall that a way to
represent the root system An in K is by Φ := {±(ei−ej) | 1 ≤ i < j ≤ n+1} with Φ+ = {ei−ej | 1 ≤
i < j ≤ n+ 1} and with simple system ∆ = {ei− ei+1 | 1 ≤ i ≤ n}. We recall that m = |Φ+| and we
set Y to be the R-vector space with basis ei,j for 1 ≤ i < j ≤ n+ 1. The elements ei,j are in obvious
bijection with the positive roots ei − ej . We denote by sk,` the reflection sek−e`,0, namely sk,` is the
transposition of Sn+1 that swaps k and `. Finally, we will denote Lk,` := Lek−e` .

2.2. Affine diagonal action.

Definition 2.1. We define the affine diagonal action of W (An) on
∧2(K) as follows. Write W (An) =

〈s1, · · · , sn〉 where si is the adjacent transposition (i, i + 1). We define the operation � on the
generators si and on the basis of

∧2(K), where for all k < ` we have

si � ek ∧ e` := (i, i+ 1) · (ek ∧ e`)− ei ∧ ei+1 = esi(k) ∧ esi(`) − ei ∧ ei+1,(8)

and we extend it as follows

(9) si � (
∑
r<s

xr,ser ∧ es) = (
∑
r<s

xr,sesi(r) ∧ esi(s))− ei ∧ ei+1.

Proposition 2.1. The operation � : W (An)×
∧2(K)!

∧2(K) is an action which is not linear.

Proof. In order to prove this statement we just need to check that the relations of W (An) are
preserved under the operation �. It turns out that this is the case because

si � (si+1 � (si � (ek ∧ e`)))
= si � (si+1 � (esi(k) ∧ esi(`) − ei ∧ ei+1))
= si � (esi+1si(k) ∧ esi+1si(`) − esi+1(i) ∧ esi+1(i+1) − ei+1 ∧ ei+2)
= si � (esi+1si(k) ∧ esi+1si(`) − ei ∧ ei+2 − ei+1 ∧ ei+2)
= esisi+1si(k) ∧ esisi+1si(`) − esi(i) ∧ esi(i+2) − esi(i+1) ∧ esi(i+2) − ei ∧ ei+1

= esisi+1si(k) ∧ esisi+1si(`) − ei+1 ∧ ei+2 − ei ∧ ei+2 − ei ∧ ei+1,

and

si+1 � (si � (si+1 � (ek ∧ e`)))
= si+1 � (si � (esi+1(k) ∧ esi+1(`) − ei+1 ∧ ei+2))
= si+1 � (esisi+1(k) ∧ esisi+1(`) − esi(i+1) ∧ esi(i+2) − ei ∧ ei+1)
= si+1 � (esisi+1(k) ∧ esisi+1(`) − ei ∧ ei+2 − ei ∧ ei+1)
= esi+1sisi+1(k) ∧ esi+1sisi+1(`) − esi+1(i) ∧ esi+1(i+2) −
esi+1(i) ∧ esi+1(i+1) − ei+1 ∧ ei+2

= esisi+1si(k) ∧ esisi+1si(`) − ei ∧ ei+1 − ei ∧ ei+2 − ei+1 ∧ ei+2.

Thus the mesh relation sisi+1si = si+1sisi+1 is preserved under this action. For |i − j| ≥ 2 we
know that sisj = sjsi. Let us show that this relation is also preserved. This is the case because

si � (sj � (ek ∧ e`)) = si � (esj(k) ∧ esj(`) − ej ∧ ej+1)
= esisj(k) ∧ esisj(`) − esi(j) ∧ esi(j+1) − ei ∧ ei+1

= esisj(k) ∧ esisj(`) − ej ∧ ej+1 − ei ∧ ei+1,
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and
sj � (si � (ek ∧ e`)) = sj � (esi(k) ∧ esi(`) − ei ∧ ei+1)

= esjsi(k) ∧ esjsi(`) − esj(i) ∧ esj(i+1) − ej ∧ ej+1

= esjsi(k) ∧ esjsi(`) − ei ∧ ei+1 − ej ∧ ej+1.

There is one type of relation left to check: those coming from the involutions. Thus
si � (si � ek ∧ e`) = si � (esi(k) ∧ esi(`) − ei ∧ ei+1)

= esisi(k) ∧ esisi(`) − esi(i) ∧ esi(i+1) − ei ∧ ei+1

= ek ∧ e` − ei+1 ∧ ei − ei ∧ ei+1

= ek ∧ e` + ei ∧ ei+1 − ei ∧ ei+1 = ek ∧ e`.
�

Definition 2.2. We define Θ from Y to
∧2(K) to be the linear map sending the elements ei,j of the

basis of Y to the elements ei ∧ ej of the basis of
∧2(K).

Proposition 2.2. The map Θ is an isomorphism from the Φ+-action of W (An) on Y to the affine
diagonal action of W (An) on

∧2(K).

Proof. We need to show that the following diagram commutes for all w ∈W (An)

Y
F (w) //

oΘ
��

Y

o Θ
��∧2(K) ϕw

// ∧2(K)

where ϕw(ei∧ej) := w�ei∧ej . However, it is enough to only show the commutativity of this diagram
for the generators si ∈ S. First of all, Θ is an isomorphism because the set {ei,j | 1 ≤ i < j ≤ n+ 1}
is a basis of Y , and {ei ∧ ej | 1 ≤ i < j ≤ n+ 1} is a basis of

∧2(K). Let 1 ≤ k < ` ≤ n + 1. With
respect to the commutativity we have

ϕsi ◦Θ(ek,`) = ϕsi(ek ∧ e`) = esi(k) ∧ esi(`) − ei ∧ ei+1.

Moreover, it follows from (6) and (7) that F (si)(ek,`) = esi(k),si(`) − ei,i+1. Therefore
Θ ◦ F (si)(ek,`) = Θ(esi(k),si(`) − ei,i+1) = Θ(esi(k),si(`))−Θ(ei,i+1)

= esi(k) ∧ esi(`) − ei ∧ ei+1.

�

Corollary 2.1. Let w ∈W (An) and 1 ≤ k < ` ≤ n+ 1. Then we have

w � ek ∧ e` = ew(k) ∧ ew(`) −
∑

er−es∈N(w)
er ∧ es.

Proof. We proceed by induction on the length. The base case follows from (8). Let us write
w := si1si2 · · · sip := si1w

′ be a reduced expression of w. Let us also assume that w′ � ek ∧ e` =
ew′(k) ∧ ew′(`) −

∑
er−es∈N(w′)

er ∧ es. Because of (1) we know that

N(w) = N(si1) t si1N(w′) = {ei1 − ei1+1} t si1N(w′).(10)
Therefore, it follows that

si1w
′ � ek ∧ e` = si1 � (w′ � ek ∧ e`) = si1 � (ew′(k) ∧ ew′(`) −

∑
er−es∈N(w′)

er ∧ es)

(9)= esi1w′(k) ∧ esi1w′(`) −
∑

er−es∈N(w′)
esi1 (r) ∧ esi1 (s) − ei1 ∧ ei1+1

(10)= ew(k) ∧ ew(`) −
∑

er−es∈N(w)
er ∧ es.

�
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2.3. Proof of the main theorem.

Lemma 2.1. (1 2 · · · n+ 1) �X
W (Ãn)[0] = X

W (Ãn)[0].

Proof. Let us write Ei,j for the equation Xi,j −
j−1∑
r=i

Xr,r+1 = 0 for 1 ≤ i < j ≤ n + 1, and E′i,j for

the equation X1,j − X1,i+1 −
n∑

r=i+1
Xr,r+1 = 0 for 1 < i < j ≤ n + 1. We know that X

W (Ãn)[0] is

the component of X̂
W (Ãn) cut out by the equations Ei,j . We analyze the action of (1 2 · · · n+ 1)

on X
W (Ãn)[0] by studying the action of (1 2 · · · n + 1) on the equations Ei,j , with the relations

Xi,j = −Xj,i for i < j. The equations that cut out (1 2 · · · n+ 1) �X
W (Ãn)[0] are exactly the

(1 2 · · · n+ 1) · Ei,j , and a short computation shows that

(11) (1 2 · · · n+ 1) · Ei,j =


Ei+1,j+1 if j 6= n+ 1
E1,n+1 if i = 1, j = n+ 1
E′i,j if 1 < i, j = n+ 1.

Thus, some of the equations that determine the component X
W (Ãn)[0] are just swapped, namely

the Ei,j with j < n + 1, and E1,n+1. The other ones are sent to some equations that are not in the
set of equations cutting out X

W (Ãn)[0].
However (1 2 · · · n+1) acts as an homeomorphism on Y . Thus the set (1 2 · · · n+ 1) �X

W (Ãn)[0]
must be an irreducible component of X

W (Ãn). Thanks to (11) we see that 0 ∈ (1 2 · · · n + 1) �
X
W (Ãn)[0]. Since there is an only one component in X̂

W (Ãn) that contains 0, namely X
W (Ãn)[0], it

follows that (1 2 · · · n+ 1) �X
W (Ãn)[0] = X

W (Ãn)[0]. �

We are now ready to prove our main result.

Proof of Theorem 1.3. It is well known that in the symmetric group W (An) the stabilizer of any
circular permutation for the conjugation action is the subgroup generated by this permutation. More
precisely, let σ be a circular permutation of W (An). Then StabW (An)(σ) = 〈σ〉. It is also clear
that this action acts transitively on the circular permutations. Let us consider now the action of
W (Ãn) onH0(X̂

W (Ãn)). SinceW (Ãn) = ZΦoW (An) we also haveW (An) that acts onH0(X̂
W (Ãn)).

Moreover, because of Lemma 2.1 we know that the circular permutation (1 2 · · · n+ 1) of W (An) is
such that (1 2 · · · n+ 1) �X

W (Ãn)[0] = X
W (Ãn)[0]. Then, the subgroup generated by (1 2 · · · n+ 1)

is included in Stab�(XW (Ãn)[0]). Besides, by Proposition 1.1 we know that the action � is transitive.
Theorem 4.3 of [4] tells us that |H0(X̂

W (Ãn))| = n!. Thus it follows∣∣∣∣∣W (An)�Stab�(XW (Ãn)[0])

∣∣∣∣∣ = |H0(X̂
W (Ãn))| = n!.

Then, one has |Stab�(XW (Ãn)[0])| = n+ 1 and it follows

Stab�(XW (Ãn)[0]) = 〈(1 2 · · · n+ 1)〉.

Therefore, the map given by (1 2 · · · n+ 1) 7! X
W (Ãn)[0] induces a bijective map defined as follows

{Circular permutations of W (An)} −! H0(X̂
W (Ãn))

σ(1 2 · · · n+ 1)σ−1 7−! σ �X
W (Ãn)[0].

�

In Figures 1, 2, 3 and 4 we describe the two posets respectively associated to W (Ã3) and W (Ã4).
When we express a vector v ∈

⊕
α∈A+

n
Rα as a row vector, or column vector, the way to proceed

is by adding, from left to right and from bottom to top, the diagonals of the triangle. Therefore, the
coefficient vij in the below triangle is the coordinate of v in position α = ei − ej . For example in
Figure 1 this expression is as follows: v = (v12, v13, v14, v23, v24, v34).
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Figure 1. Poset associated to X̂
W (Ã3). The coordinates on the simple roots are

erased since they are all equal to 0. The red labels represent the natural order on
Z6, that is the red label on an edge indicates the positive root whose coordinate is
increased when going up the edge.

Figure 2. Poset of admitted vectors of W (Ã3) on the left hand side and circular
permutations of W (A3) on the right hand side. The red labels indicate the cover
relation which is the conjugation action.
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Figure 3. Poset of admitted vectors of W (Ã4). The four coordinates on the simple
roots are erased since they are all equal to 0. The red labels represent the natural order
on Z10, that is the red label on an edge indicates the positive root whose coordinate
is increased when going up the edge.



10 NATHAN CHAPELIER-LAGET

Figure 4. Poset of circular permutations of W (Ã4). The red labels indicate the cover
relation: this is the conjugation of the lower circular permutation by the red label.

Remark 2.1. In [1] we thoroughly investigated the structure of H0(X̂
W (Ãn)) from another combi-

natorial point of view, and we gave a deeper explanation of the above bijection. We have shown in
particular that this poset map is an isomophism of posets. We also showed that these posets are
semidistributive lattices and we provided a way to compute the join of any pair of elements.
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W (Ãn)

) 11

3. Investigation of the � action on H0(X̂
W (Ãn))

3.1. Motivation and example. In [4] a concrete description of the coefficients k(w,α) for α ∈
Φ+ \∆ can be found in any type in terms of the coefficients k(w, δ) with δ ∈ ∆. We use here this
description in type A.

Let w ∈ W (Ãn) and let 1 ≤ i < j ≤ n + 1. We denote k(w,α) = ki,j(w) where α = ei − ej is a
positive root of An. According to Theorem 4.1 and Lemma 4.1 of [4], there exists a positive integer
λi,j such that the coefficient ki,j(w) is given by the formula:

ki,j(w) =
j−1∑
r=i

kr,r+1(w) + λi,j .

It is precisely from these formulas that the Shi variety X̂
W (Ãn) is defined in [4]. Therefore, if

λ = (λi,j) is an admitted vector and if x = (xi,j) ∈ XW (Ãn)[λ], because of the construction of the
irreducible components we must have for all 1 ≤ i < j ≤ n+ 1 that:

(12) xi,j =
j−1∑
r=i

xr,r+1 + λi,j .

Since W (Ãn) ' ZAn oW (An), one can express w as w = τuw where u ∈ ZAn and w ∈ W (An).
The goal of this section is to understand, in a practical way, the following action

W (Ãn)×H0(X̂
W (Ãn)) −! H0(X̂

W (Ãn))
(w,X

W (Ãn)[λ]) 7−! w �X
W (Ãn)[λ].

It is of particular interest to provide convenient formulas for the action � in order to better
understand the poset structure, and more specially its cover relation.

We know that the irreducible components of X̂
W (Ãn) are parameterized by the admitted vectors of

W (Ãn) (see [4] Theorem 4.3). Therefore it is equivalent to look at this action on the set of admitted
vectors. Let λ be an admitted vector. Because of Theorem 1.1 we know that the action by translation
has no effect, that is w �λ = w �λ. Thus, it is enough to understand this action restricted to W (An).

Let us then take g ∈ W (An) and let us denote β = g � λ. Our purpose is to express β in terms
of λ. The way to proceed is as follows. W (An) acts on the integral points of X

W (Ãn)[λ] via the
Φ+-representation. Hence, in order to determine the admitted vector β, we just have to find which
component contains the element F (g)(x).

Recall that {ei,j | 1 ≤ i < j ≤ n+ 1} is a basis of Y . Therefore one has

F (g)(x) = F (g)(
∑
i<j

xi,jei,j) = F (g)(
∑
i<j

(
j−1∑
r=i

xr,r+1 + λi,j)ei,j).

Finally, the goal is to find the expression of β in terms of λ from the equation:

F (g)(
∑
i<j

(
j−1∑
r=i

xr,r+1 + λi,j)ei,j) =
∑
i<j

(
j−1∑
r=i

yr,r+1 + βi,j)ei,j .

Example 3.1. Let us take the group W (A3). Because of Theorem 1.3 we know that X̂
W (Ã3) has 6

irreducible components. We think of these components as admitted vectors and we delete the ∆-part
since these coordinates are zero.

Using (3), a short computation shows that these vectors (with positions [λ13, λ14, λ24]) are

{[0, 0, 0], [0, 1, 0], [0, 1, 1], [1, 1, 1], [1, 1, 0], [1, 2, 1]}.

Let g = s1,2 ∈W (A3) be the reflection corresponding to the positive root e1−e2, λ be an admitted
vector and x ∈ X

W (Ã3)[λ]. Let β = (βi,j) be the admitted vector such that F (g)(x) ∈ X
W (Ã3)[β].

Because of (6), (7) and (12) it is easy to see that the matrix representation of the affine map F (g).
The next computation gives the expression of F (g)(x):
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
−1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1




x12

x12 + x23 + λ13
x12 + x23 + x34 + λ14

x23
x23 + x34 + λ24

x34

+


−1
0
0
0
0
0

 =


−x12 − 1
x23

x23 + x34 + λ24
x12 + x23 + λ13

x12 + x23 + x34 + λ14
x34

 .

Let us denote F (g)(x) = y. Once again because of (12) it follows that
−x12 − 1
x23

x23 + x34 + λ24
x12 + x23 + λ13

x12 + x23 + x34 + λ14
x34

 =


y12

y12 + y23 + β13
y12 + y23 + y34 + β14

y23
y23 + y34 + β24

y34

 .

Thus one has
y12 = −x12 − 1
y23 = x12 + x23 + λ13
y34 = x34

and


x23 = y12 + y23 + β13
x23 + x34 + λ24 = y12 + y23 + y34 + β14
x12 + x23 + x34 + λ14 = y23 + y34 + β24.

It follows that
β13 = x23 − (−x12 − 1)− (x12 + x23 + λ13) = −λ13 + 1
β14 = x23 + x34 + λ24 − (−x12 − 1)− (x12 + x23 + λ13)− x34 = −λ13 + λ24 + 1
β24 = x12 + x23 + x34 + λ14 − (x12 + x23 + λ13)− x34 = −λ13 + λ14.

Finally one has

g � [λ13, λ14, λ24] = [−λ13 + 1,−λ13 + λ24 + 1,−λ13 + λ14].

Doing these computations for all the simple reflections we obtain the data in Table 1:

Table 1. Action of the simple reflections of W (A3) onto the set of admitted vectors.

[0,0,0] [0,1,0] [0,1,1] [1,1,1] [1,1,0] [1,2,1]
s1,2 [1,1,0] [1,1,1] [1,2,1] [0,1,0] [0,0,0] [0,1,1]
s2,3 [1,1,1] [1,2,1] [1,1,0] [0,0,0] [0,1,1] [0,1,0]
s3,4 [0,1,1] [1,1,1] [0,0,0] [0,1,0] [1,2,1] [1,1,0]

3.2. Computation of the � action. The goal of this section is to give an explicit formula of the �
action, that is we want to express the component w�X

W (Ãn)[λ] in terms of X
W (Ãn)[λ]. As mentioned

in Section 3.1, we approach this question using the action on the admitted vectors instead of the
components, in other words we want to express w � λ in terms of λ. In Proposition 3.1 we give the
formula of this action for w = sk,`. There is no real difficulty to extend it for each element of W .

We keep the presentation of the root system An as a triangle with base ∆. Let sk,` ∈ W (An).
Notice that the inversion set of sk,` is easy to express, indeed

N(sk,`) = {ek − ek+1, ek − ek+2, · · · , ek − e`, ek+1 − e`, ek+2 − e`, · · · , e`−1 − e`}.

Let λ ∈ Y (the definition of Y is given in Section 2.1). We denote by λk,` the coordinate in position
ek,` of λ. See for example Figure 5.

We define now the following sets that will help us to understand how the action � behaves.

Definition 3.1. Let sk,` be a reflection of W (An). We denote

Ai,j(k, `) = {p ∈ {i, · · · , j − 1} | ep − ep+1 /∈ N(sk,`)},

Bi,j(k, `) = {p ∈ {i, · · · , j − 1} | ep − ep+1 ∈ N(sk,`)}.
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Figure 5. Those are the different regions of the root system An−1 cut out by the
action of sk,`. The red part is N(sk,`). The blue part is the set of positive roots that
are nontrivially permuted by sk,`; the remaining positive roots are fixed.

Definition 3.2. Let w ∈W (An). We define the function γw by

γw : X̂
W (Ãn) × [1, n+ 1] −! Z

(x, v) 7−! xw(bvc),w(bv+1c).

If w = id we denote γw by γ.

Lemma 3.1. Let x ∈ X
W (Ãn)[λ], t := sk,`, ei − ej ∈ Φ+, and let us denote y := F (t)(x). Then we

have the formula:

t(j)ˆ

t(i)

γ(x, v)dv −
jˆ

i

γ(y, v)dv = −
jˆ

i

γt(λ, v)dv + |Bi,j |.

Proof. From the definition of F (t) we have that

yp,p+1 =


t(p+1)−1∑
r=t(p)

xr,r+1 + λt(p),t(p+1) if p ∈ Ai,j

−
t(p)−1∑
r=t(p+1)

xr,r+1 − λt(p+1),t(p) − 1 if p ∈ Bi,j .

Therefore, using Definition 3.2 and the fact that λa,b = −λb,a, one can express yp,p+1 as follows:

yp,p+1 =



t(p+1)ˆ

t(p)

γ(x, v)dv + λt(p),t(p+1) if p ∈ Ai,j

t(p+1)ˆ

t(p)

γ(x, v)dv + λt(p),t(p+1) − 1 if p ∈ Bi,j .
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Consequently it follows that
t(j)ˆ

t(i)

γ(x, v)dv −
jˆ

i

γ(y, v)dv

=
t(j)ˆ

t(i)

γ(x, v)dv −
j−1∑
p=i

yp,p+1

=
t(j)ˆ

t(i)

γ(x, v)dv −
∑
p∈Ai,j

(
t(p+1)ˆ

t(p)

γ(x, v)dv + λt(p),t(p+1))−
∑
p∈Bi,j

(
t(p+1)ˆ

t(p)

γ(x, v)dv + λt(p),t(p+1) − 1)

=
t(j)ˆ

t(i)

γ(x, v)dv −
∑
p∈Ai,j

t(p+1)ˆ

t(p)

γ(x, v)dv −
∑
p∈Ai,j

λt(p),t(p+1) −
∑
p∈Bi,j

t(p+1)ˆ

t(p)

γ(x, v)dv

(13)

−
∑
p∈Bi,j

λt(p),t(p+1) + |Bi,j |.

However, since Ai,j tBi,j = {1, . . . , j − 1} it is clear that

(14)
t(j)ˆ

t(i)

γ(x, v)dv =
∑
p∈Ai,j

t(p+1)ˆ

t(p)

γ(x, v)dv +
∑
p∈Bi,j

t(p+1)ˆ

t(p)

γ(x, v)dv.

Therefore, using (14) in (3.1) it follows that
t(j)ˆ

t(i)

γ(x, v)dv −
jˆ

i

γ(y, v)dv = −
∑
p∈Ai,j

λt(p),t(p+1) −
∑
p∈Bi,j

λt(p),t(p+1) + |Bi,j |

= −
j−1∑
p=i

λt(p),t(p+1) + |Bi,j |

= −
jˆ

i

γt(λ, v)dv + |Bi,j |.

�

Theorem 3.1. Let λ be an admitted vector, α := ei−ej, t := sk,`, Ai,j := Ai,j(k, `), Bi,j := Bi,j(k, `).
Then we have the formulas:

(t � λ)i,j =



λt(i),t(j) −
jˆ

i

γt(λ, v)dv + |Bi,j | if α /∈ N(t)

λt(i),t(j) −
jˆ

i

γt(λ, v)dv + |Bi,j | − 1 if α ∈ N(t).

Proof. Let x = (xi,j) ∈ XWa [λ] with Θ(x) =
∑
i<j

xi,jei ∧ ej , Θ(λ) =
∑
i<j

λi,jei ∧ ej , and F (t)(x) := y.

Since Wa acts on the components, it is enough to see where goes x under this action. Let us denote
by β = (βi,j) the admitted vector such that F (t)(x) ∈ X

W (Ãn)[β]. The goal it then to express β in
terms of λ.

This question is exactly the same as understanding the component Θ(X
W (Ãn)[β]) in

∧2(K). We
will answer this question with the second point of view. We adopt the convention that for j > i,
xj,i = −xi,j . These relations also apply to λ.
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From Definition 2.1 and Corollary 2.1 we have

ϕt(
∑
i<j

xi,jei ∧ ej) = t� (
∑
i<j

xi,jei ∧ ej)

=
∑
i<j

xi,jet(i) ∧ et(j) −
∑

ei−ej∈N(t)
ei ∧ ej

=
∑

ei−ej∈N(t)
xi,jet(i) ∧ et(j) +

∑
ei−ej /∈N(t)

xi,jet(i) ∧ et(j) −
∑

ei−ej∈N(t)
ei ∧ ej

=
∑

ei−ej∈N(t)
xt(i),t(j)ei ∧ ej +

∑
ei−ej /∈N(t)

xt(i),t(j)ei ∧ ej −
∑

ei−ej∈N(t)
ei ∧ ej

=
∑

ei−ej /∈N(t)
xt(i),t(j)ei ∧ ej +

∑
ei−ej∈N(t)

(xt(i),t(j) − 1)ei ∧ ej .

Since Θ ◦ F (t) = ϕt ◦Θ we obtain that

Θ ◦ F (t)(x)

=
∑

ei−ej /∈N(t)
xt(i),t(j)ei ∧ ej +

∑
ei−ej∈N(t)

(xt(i),t(j) − 1)ei ∧ ej

=
∑

ei−ej /∈N(t)
(
t(j)−1∑
r=t(i)

xr,r+1 + λt(i),t(j))ei ∧ ej −
∑

ei−ej∈N(t)
(
t(i)−1∑
r=t(j)

xr,r+1 + λt(j),t(i) + 1)ei ∧ ej

=
∑

ei−ej /∈N(t)
(
t(j)ˆ

t(i)

γ(x, v)dv + λt(i),t(j))ei ∧ ej +
∑

ei−ej∈N(t)
(
t(j)ˆ

t(i)

γ(x, v)dv + λt(i),t(j) − 1)ei ∧ ej .

Moreover, we must have

Θ ◦ F (t)(x) =
∑

ei−ej /∈N(t)
yi,jei ∧ ej +

∑
ei−ej∈N(t)

yi,jei ∧ ej

=
∑

ei−ej /∈N(t)
(
j−1∑
r=i

yr,r+1 + βi,j)ei ∧ ej +
∑

ei−ej∈N(t)
(
j−1∑
r=i

yr,r+1 + βi,j)ei ∧ ej

=
∑

ei−ej /∈N(t)
(
jˆ

i

γ(y, v)dv + βi,j)ei ∧ ej +
∑

ei−ej∈N(t)
(
jˆ

i

γ(y, v)dv + βi,j)ei ∧ ej .

Hence we have

jˆ

i

γ(y, v)dv + βi,j =



t(j)ˆ

t(i)

γ(x, v)dv + λt(i),t(j) if ei − ej /∈ N(t)

t(j)ˆ

t(i)

γ(x, v)dv + λt(i),t(j) − 1 if ei − ej ∈ N(t),

which is equivalent to

βi,j =



λt(i),t(j) +
t(j)ˆ

t(i)

γ(x, v)dv −
jˆ

i

γ(y, v)dv if ei − ej /∈ N(t)

λt(i),t(j) +
t(j)ˆ

t(i)

γ(x, v)dv −
jˆ

i

γ(y, v)dv − 1 if ei − ej ∈ N(t).
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Moreover, because of Lemma 3.1 we know that
t(j)ˆ

t(i)

γ(x, v)dv −
jˆ

i

γ(y, v)dv = −
jˆ

i

γt(λ, v)dv + |Bi,j |.

Thus it follows that

βi,j =



λt(i),t(j) −
jˆ

i

γt(λ, v)dv + |Bi,j | if ei − ej /∈ N(t)

λt(i),t(j) −
jˆ

i

γt(λ, v)dv + |Bi,j | − 1 if ei − ej ∈ N(t).

This ends the proof since βi,j = (t � λ)i,j . �
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