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Lattice associated to a Shi variety

Nathan Chapelier-Laget

Let W be an irreducible Weyl group and Wa its affine Weyl group.
In [4] the author defined an affine variety X̂Wa , called the Shi
variety of Wa, whose integral points are in bijection with Wa. The
set of irreducible components of X̂Wa , denotedH0(X̂Wa), is of some

interest and we show in this article that H0(X̂Wa) has a structure
of a semidistributive lattice.
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1. Introduction

Let V be a Euclidean space with inner product (−,−). Let Φ be an
irreducible crystallographic root system in V with simple system Δ =

arXiv: 2010.04310
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{α1, . . . , αn}. We set m = |Φ+|. From now on, when we say “root system”
it will always mean irreducible crystallographic root system.

Let W be the Weyl group associated to ZΦ, that is the maximal (for
inclusion) reflection subgroup of O(V ) admitting ZΦ as a W -equivariant
lattice. We identify ZΦ and the group of its associated translations and we
denote by τx the translation corresponding to x ∈ ZΦ.

Let k ∈ Z and α ∈ Φ. Define the affine reflection sα,k ∈ Aff(V ) by

sα,k(x) = x−(2 (α,x)
(α,α)−k)α. We consider the subgroupWa of Aff(V ) generated

by all affine reflections sα,k with α ∈ Φ and k ∈ Z, that is

Wa := 〈sα,k | α ∈ Φ, k ∈ Z〉.

The group Wa is called the affine Weyl group associated to Φ.
Let α ∈ Φ such that α = a1α1 + · · · + anαn with ai ∈ Z. The height

of α (with respect to Δ) is defined by the number h(α) = a1 + · · ·+ an. We
denote by −α0 the highest short root of Φ.

The set Sa := {sα1
, . . . , sαn

} ∪ {s−α0,1} is a set of Coxeter generators
of Wa. For short we will write Sa = {s0, s1, . . . sn} where s0 := s−α0,1 and
si = sαi

for i = 1, . . . , n.
It is also well known that Wa = ZΦ�W . Therefore, any element w ∈ Wa

decomposes as w = τxw where x ∈ ZΦ and w ∈ W . The element w is called
the finite part of w.

Let α ∈ Φ and α∨ := 2α
(α,α) . For any k ∈ Z and any m ∈ R, we set the

hyperplanes

Hα,k = {x ∈ V | sα,k(x) = x}
= {x ∈ V | (x, α∨) = k},

the strips

Hm
α,k = {x ∈ V | k < (x, α∨) < k +m}.

The collection of hyperplanes Hα,k is denoted by H(Φ) or just H if there
is no possible confusion. The fundamental polytope PH is defined by

PH :=
⋂
α∈Δ

H1
α,0.

An alcove of V is by definition a connected component of

V \
⋃
α∈Φ+

k∈Z

Hα,k.
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We denote by Ae the alcove Ae =
⋂

α∈Φ+ H1
α,0. It turns out that Wa acts

regularly on the set of alcoves. Therefore we have a bijective correspondence
between the elements of Wa and all the alcoves. This bijection is defined by
w �→ Aw where Aw := wAe. We call Aw the corresponding alcove associated
to w ∈ Wa. Any alcove of V can be written as an intersection of special
strips, that is there exists a Φ+-tuple of integers (k(w,α))α∈Φ+ such that

Aw =
⋂

α∈Φ+

H1
α,k(w,α).

Definition 1.1. A point x ∈ V is called special if StabWa
(x) is isomorphic

to W . Intuitively this notion embodies the points in V that have the same
geometry in their neighbourhood as the point 0.

Proposition 10.17 of [2] tells us that such points exist. Moreover, there
exists a useful characterisation of these points:

Proposition 1.1 ([2], Proposition 10.19). A point x ∈ V is special if and
only if every hyperplane in H is parallel to a hyperplane passing through x.

In [13] Jian-Yi Shi shows that the Φ+-tuple of integers (k(w,α))α∈Φ+

subject to certain conditions characterizes entirely w (we recall the details
of this characterization in Section 3.1, which we refer to as the Shi’s charac-
terization). Built on this characterization, the author defined in [4] an affine
variety X̂Wa

, called the Shi variety of Wa, whose integral points are in bi-
jection with Wa. We denote by H0(X̂Wa

) the set of irreducible components
of X̂Wa

.
The set H0(X̂Wa

) has many interests that we describe now. It turns out
that it is involved in several fields, a priori unrelated to the Shi varieties.

First of all, we showed in [4] that H0(X̂Wa
) was parameterized by a

collection of vectors in Zm, that we called admitted vectors (see Section 3.1).
We also showed that these vectors were exactly the Φ+-tuples of integers
(k(w,α))α∈Φ+ when Aw lies in PH.

When one is interested in W (Ãn), the irreducible components of X̂W ( ˜An)

give many interesting results. The action by conjugation of W (An) on itself
is defined for all σ, γ ∈ W (An) by σ.γ := σγσ−1. Understanding the orbits
of this action, which are the conjugacy classes, yielded a lot of research work
in recent decades. We related in [5] the conjugacy class of (1 2 · · · n + 1)
with the irreducible components of the Shi variety corresponding to W (Ãn),
in particular we showed the following theorem

Theorem 1.1 ([5], Theorem 1.3). There is a natural bijection between
H0(X̂W ( ˜An)

) and the circular permutations (i.e. (n+ 1)-cycles) of W (An).
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Example 1.1. The admitted vectors for n = 3 are represented by a triangle
where the coordinates are positioned in Figure 1.

Figure 1: Coordinates of an admitted vector in W (Ã3).

Then, the bijection of Theorem 1.1 can be seen below

Figure 2: Poset of admitted vectors in W (Ã3) on the left, and circular per-
mutations of W (A3) on the right. In the expression of admitted vectors
we drop the first line since the coefficients vi,i+1 = 0 (see Definitions 3.2
and 3.4). The red labels indicate, from left to right, the cover relation in the
natural order on Z6; the conjugation action.

In [1] the authors also related H0(X̂W ( ˜An)
) to several other things, such

as Eulerian numbers, n-gon, Young’s lattice, and Reidemeister moves via the
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line diagrams. In particular we showed that H0(X̂W ( ˜An)
) has a structure of

semidistributive lattice (see [1] Corollary 6.2) and we give a way to compute

the join of any pair of two elements (see [1] Section 4).

It is then natural to ask whether the set H0(X̂Wa
) has in general a

structure of semidistributive lattice. The goal of this article is to give a

positive answer to this question. Our main result is thereby the following

theorem.

Theorem 1.2. H0(X̂Wa
) has a structure of semidistributive lattice.

Remark 1.1. The poset of irreducible components of X̂Wa
seems to be re-

lated to another poset introduced by D. Speyer et al. in [9]. In this article the

authors study the looping case of Mozes’s game of numbers, which concerns

the orbits in the reflection representation of affine Weyl groups situated on

the boundary of the Tits cone.

2. Generalities about Coxeter groups

2.1. General definitions

Let (W,S) be a Coxeter system with e the identity element and S the set of

Coxeter generators. For s, t ∈ S we denote mst the order of st. Let X be the

R-vector space with basis {es | s ∈ S}, and let B be the symmetric bilinear

form on X defined by

B(es, et) =

{
−cos( π

mst
) if mst < ∞

− 1 if mst = ∞.

We denote by OB(X) the orthogonal group of X associated to B. For

each s ∈ S we define σs : X → X by σs(x) = x − 2B(es, x)es. The map

σ : W ↪→ OB(X) defined by s �→ σs is called the geometrical representation

of (W,S) (for more information the reader may refer to [3] ch. V, § 4 or [10]

ch. 5.3). Through this representation we identify (W,S) with (σ(W ), σ(S)).

Definition 2.1. Let us denote COS := {−1}∪{−cos(πk ), k ∈ N≥2}. A simple

system in (X,B) is a finite subset Γ in X such that:

i) Γ is linearly independent;

ii) for all α, β ∈ Γ distinct, B(α, β) ∈ COS;

iii) for all α ∈ Γ, B(α, α) = 1.



6 Nathan Chapelier-Laget

We denote by Ψ = W (Γ) the corresponding root system with basis Γ.
Let us write Ψ+ := Ψ∩cone(Γ) and Ψ− = −Ψ+. Then one has Ψ = Ψ−
Ψ+.
If α ∈ Ψ we denote by sα its corresponding reflection.

Let Γ be a simple system in (X,B). The group WΓ := 〈sα | α ∈ Γ〉
is a subgroup of W . Moreover it is a Coxeter group with set of generators
SΓ = {sα | α ∈ Γ} (We refer the reader to [7] or [8] Section 2.5 for more
details about subreflection groups and their root system). We say that Γ is
a simple system for (WΓ, SΓ). In particular the set Δ := {es | s ∈ S} is a
simple system for (W,S) and S = SΔ.

The length function � : W −→ N∗ is defined as follows: �(w) is the
smallest number r such that there exists an expression w = si1 . . . sir with
sik ∈ S. By convention, �(e) = 0. This function has been extensively studied
and all basic information about it can be found in [3] or [10]. Let w ∈ W .
An expression of w is called a reduced expression if it is a product of �(w)
generators. The inversion set of w is by definition

N(w) := {α ∈ Ψ+ | �(sαw) < �(w)} = {α ∈ Ψ+ | w−1(α) ∈ Ψ−}.

Moreover we have |N(w)| = �(w). In the case of affine Weyl groups, the
length of an element w ∈ Wa has a convenient interpretation in terms of its
Φ+-tuple of integers (k(w,α))α∈Φ+ , namely

�(w) =
∑
α∈Φ+

|k(w,α)|.

2.2. Geometrical representation of Wa and root system

The goal of this section is to recall and give a good framework of the geo-
metrical representation of affine Weyl groups.

Let V̂ = V ⊕ Rδ with δ an indeterminate. The inner product (−,−)
has a unique extension to a symmetric bilinear form on V̂ which is positive
semidefinite and has a radical equal to the subspace Rδ. This extension
is also denoted (−,−), and it turns out that the set of isotropic vectors
associated to the form (−,−) is exactly Rδ. In particular for all x, y ∈ V
and for all p, q ∈ Z we have

(1) (x+ pδ, y + qδ) = (x, y).

The root system of Wa is denoted Φa and its simple system is de-
noted Δa. Using [6] (Section 3.3 Definition 4 and Proposition 2) a concrete
description of the affine (respectively, positive, simple) root system of Wa is
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provided by:

Φa = Φ∨ + Zδ,

Φ+
a = ((Φ∨)+ + Nδ) 
 ((Φ∨)− + N

∗δ),

Δa = Δ∨ ∪ {α∨
0 + δ}.

Remark 2.1. The link between V̂ and the geometrical representation is
as follows. Let Δa = {α∨

i | i = 1, . . . , n} ∪ {α∨
0 + δ} be the simple system

associated to Wa. To simplify the notations we denote λi = α∨
i . We can now

identify the X of Section 2.1 with V̂ , by sending es0 to λ0+δ
||λ0|| and esi to

λi

||λi||
for si ∈ S. Since δ is isotropic for (−,−) we only consider the scalar products
(λi, λj) for i, j = 0, . . . , n. It is well known that (λi, λj) = ||λi|| · ||λj ||cos(θ)
where θ is the angle between λi and λj in the plane generated by these two
vectors. Moreover, it is also well known that θ = π − π

mij
. It follows that

(λi, λj) = ||λi|| · ||λj ||cos(π − π

mij
) = −||λi|| · ||λj ||cos(

π

mij
)(2)

= ||λi|| · ||λj ||B(esi , esj )

Furthermore we know that in the crystallographic root systems there are
at most two root lengths. If λi is short we have set before that ||λi|| = 1.
Therefore in the simply laced cases we have (λi, λj) = B(esi , esj ). When
λi is longer than λj we have two situations to look at: if mij = 4 then
||λi|| =

√
2||λj || =

√
2, and in particular (λi, λj) =

√
2B(esi , esj ). If mij = 6

then ||λi|| =
√
3||λj || =

√
3 and it follows that (λi, λj) =

√
3B(esi , esj ).

The geometrical representation sends the reflection sα,k in V to the

reflection sα∨−kδ in V̂ . In particular one can think of the hyperplane Hα,k

as the fixed points of sα∨−kδ.

3. Background about the Shi variety

3.1. Admitted vectors

Let Φ be an irreducible crystallographic root system with simple system
Δ = {α1, . . . , αn} and positive root system Φ+ = {β1, . . . , βm}. Let Wa be
the affine Weyl group corresponding to Φ.

We recall in this section some necessary material. All the definitions
were introduced in [4]. We denote Z[XΔ] := Z[Xα1

, . . . , Xαn
] and Z[XΦ+ ] :=

Z[Xβ1
, . . . , Xβm

]. For w ∈ Wa and Q ∈ Z[XΔ] we denote

Q(w) := Q(k(w,α1), . . . , k(w,αn)).
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Notation 3.1. For two integers a, b ∈ Z, the notation �a, b� means [a, b]∩Z.
If Y ⊂ Rm we denote by Y (Z) the set of integral points of Y .

The following theorem is the Shi’s characterization of the elements w ∈
Wa by their Φ+-tuples of integers.

Theorem 3.1 ([13], Theorem 5.2). Let A =
⋂

α∈Φ+

H1
α,kα

with kα ∈ Z. Then

A is an alcove, if and only if, for all α, β ∈ Φ+ satisfying α + β ∈ Φ+, we
have the following inequality

||α||2kα + ||β||2kβ + 1 ≤ ||α+ β||2(kα+β + 1)

(3)

≤ ||α||2kα + ||β||2kβ + ||α||2 + ||β||2 + ||α+ β||2 − 1.

The following theorem decomposes the Shi coefficients as polynomial
equations.

Theorem 3.2 ([4], Theorem 4.1). Let w ∈ Wa. Then for all θ ∈ Φ+ there
exists a linear polynomial Pθ ∈ Z[XΔ] with positive coefficients and λθ(w) ∈
�0, h(θ∨)− 1� such that

(4) k(w, θ) = Pθ(w) + λθ(w).

Definition 3.1. Let θ ∈ Φ+. Write Iθ := �0, h(θ∨)−1�. Notice that if θ is a
simple root then Iθ = {0}. For any root θ ∈ Δ we set Pθ = Xθ and λθ = 0.
We denote by Pθ[λθ] the polynomial Pθ + λθ −Xθ ∈ Z[XΦ+ ]. We define the
ideal JWa

of R[XΦ+ ] as JWa
:=

∑
α∈Φ+

〈
∏

λα∈Iα
Pα[λα]〉. We define XWa

to be

the affine variety associated to JWa
, that is

XWa
:= V (JWa

).

Definition 3.2. We say that v = (vα)α∈Φ+ ∈ Nm is an admissible vector
(or just admissible) if it satisfies the boundary conditions, that is if for all
α ∈ Φ+ one has vα ∈ Iα (where Iα is defined in Definition 3.1). For instance,
all the λ := (λα)α∈Φ+ coming from the polynomials Pα[λα] give rise to
admissible vectors. Furthermore, each admissible vector arises this way. For
short we will write λ instead of (λα)α∈Φ+ .

Definition 3.3. Let λ be an admissible vector. We denote by JWa
[λ] the

ideal of R[XΦ+ ] generated by the polynomials Pα[λα] with α ∈ Φ+, that is
JWa

[λ] := 〈Pα[λα], α ∈ Φ+〉.
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Then we define XWa
[λ] as the affine subvariety of XWa

associated to the
ideal JWa

[λ], that is XWa
[λ] := V (JWa

[λ]).

Definition 3.4. We denote S[Wa] as the system of all the inequalities com-
ing from Theorem 3.1, in other words a vector v = (vα)α∈Φ+ ∈ Rm is solution
of S[Wa] if whenever we have α, β ∈ Φ+ satisfying α + β ∈ Φ+ then (3) is
satisfied, i.e.

||α||2vα + ||β||2vβ + 1 ≤ ||α+ β||2(vα+β + 1)

≤ ||α||2vα + ||β||2vβ + ||α||2 + ||β||2 + ||α+ β||2 − 1.

Let λ be an admissible vector. We say that λ is admitted if it satisfies
the system S[Wa].

Example 3.1. We give in this example the set of inequations S[Wa] for
Wa = W (Ã3). The positive root system of A3 is given by the vectors ei−ej ∈
R4 with 1 ≤ i < j ≤ 4. We represent them in Figure 3 where it is easy to
see when two positive roots have their sum that is also a positive root.

Figure 3: Positive roots of A3 ordered by their hight.

The roots of A3 have all the same length which is
√
2. Therefore we can

normalize the inequalities by 1/2. It follows that a vector v = (vij) ∈ Z6 is

solution of S[W (Ã3)] if it satisfies the following inequalities⎧⎪⎪⎨
⎪⎪⎩

v12 + v23 ≤ v13 ≤ v12 + v23 + 1
v23 + v34 ≤ v24 ≤ v23 + v34 + 1
v12 + v24 ≤ v14 ≤ v12 + v24 + 1
v13 + v34 ≤ v14 ≤ v13 + v34 + 1

The next result gives the paramaterization of the elements of H0(X̂Wa
)

in terms of the admitted vectors.

Theorem 3.3 ([4], Theorem 5.3). The map ι : Wa −→ XWa
(Z) defined by

w �−→ (k(w,α))α∈Φ+ induces by corestriction a bijective map from Wa to
the integral points of a subvariety of XWa

, denoted X̂Wa
, which we call the

Shi variety of Wa. This subvariety is nothing but X̂Wa
=

⊔
λ admitted

XWa
[λ].
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3.2. Fundamental polytope PH

In this section we recall some material about the polytope PH.
Let ZΦ∨ be the coroot lattice and let us write ZΦ∨ = Zα∨

1⊕· · ·⊕Zα∨
n . We

define its dual lattice (ZΦ∨)∗ as (ZΦ∨)∗ := {x ∈ V | (x, y) ∈ Z ∀y ∈ ZΦ∨}.
The lattice (ZΦ∨)∗ is called the weight lattice. This lattice has the following
decomposition (ZΦ∨)∗ = Zω1 ⊕ · · · ⊕ Zωn where ωi is such that (α∨

i , ωj) =
δij . The elements ωi are called the fundamental weights (with respect to Δ).

The fundamental weights ωi are some of the vertices of PH and we have

PH = {
n∑

i=1
ciωi | ci ∈ �0, 1�}. Since (ωi, ωj) ≥ 0 for all i, j, the element of

maximal norm in PH is the vertex ρ :=
n∑

i=1
ωi. Moreover, if z ∈ cone(Δ)

we have (z, ωi) ≥ 0 for all fundamental weight ωi. Finally, we define the set
Alc(PH) := {w ∈ Wa | Aw ⊂ PH}.

Let w ⊂ Alc(PH). From the Shi’s characterization it follows that
k(w,α) = 0 for all α ∈ Δ, and reciprocally, if w′ ∈ Wa is such that
k(w′, α) = 0 for all α ∈ Δ then Aw′ ⊂ PH. The elements of this polytope
seen as Φ+-tuple of integers are exactly the admitted vectors and moreover
a vector λ ∈

⊕
α∈Φ+

Rα is admitted if and only if there exists w ∈ Wa such

that k(w,α) = λα for all α ∈ Φ+ and such that w ∈ Alc(PH).

Example 3.2. Let us take Wa = W (B̃2) with simple system {α1, α2}.
A short computation shows that ω1 =

1
2(2α1 + α2) and ω2 = α1 + α2.

Figure 4: Fundamental parallelepiped PB2
.
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4. Lattice structure on H0(X̂Wa)

4.1. Poset structure on H0(X̂Wa
)

In this section we define the natural poset structure on H0(X̂Wa
) which we

give in Definition 4.1. For λ = (λα)α∈Φ+ an admitted vector we denote by wλ

the associated element of Alc(PH), that is wλ is such that k(wλ, α) = λα for

all α ∈ Φ+. Conversely, for w ∈ Alc(PH) we denote by λw its corresponding

Shi vector.

Definition 4.1. The set of Shi vectors inherits the natural order of Zm.

More precisely for two shi vectors v = (vα)α∈Φ+ and v′ = (v′α)α∈Φ+ we

say that v ≤S v′ if and only if vα ≤ v′α for all α ∈ Φ+. If w,w′ are the

corresponding elements of Wa associated to the Shi vectors v, v′ we write

w ≤S w′ as well.

The set H0(X̂Wa
) has also a natural poset structure induced from the

previous one. It is defined by XWa
[λ] ≤S XWa

[γ] if and only if λ ≤S γ. There

is a minimal element in this poset which is the component corresponding to

the admitted vector 0. The cover relation of ≤S is denoted by � and it is

given by λ� γ if and only if there exists α ∈ Φ+ such that γα = λα + 1 and

γβ = λβ for β ∈ Φ+ \ {α}.
An interval for ≤S is denoted by [−,−]S .

Remark 4.1. The restriction of the right weak order ≤R of Wa to Alc(PH)
is exactly the same thing as the order ≤S , that is for two admitted vectors

λ, λ′ one has λ ≤S λ′ ⇐⇒ wλ ≤R wλ′ . This claim follows easily from the

fact that wλ ≤R wλ′ if and only if their corresponding alcove share a face

(of maximal dimension), which is equivalent to say that there exists α ∈ Φ+

such that λ′
α = λα + 1 and λ′

β = λβ for β ∈ Φ+ \ {α}.
However, if we take two elements w,w′ such that their alcove don’t live

in the positive orthant then the equivalence w ≤S w′ ⇐⇒ w ≤R w′ might

fail.

Example 4.1. The polytope PB2
is drawn in Figure 5.
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Figure 5: Polytope PB2
seen as set of representatives of irreducible compo-

nents of X̂W ( ˜B2)
(See [4], Figure 9 for more details about the colors).

In Figure 6 we denote the admitted vectors by dropping the two zeros

corresponding to the simple roots, and by ordering the coordinates according

to the height of the dual roots. Therefore, H0(X̂W ( ˜B2)
) is as follows:

Figure 6: Poset associated to X̂W ( ˜B2)
.

Example 4.2. Adapting Example 1.1 for n = 4 we get the following pre-

sentation of an admitted vector in Figure 7.
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Figure 7: Poset associated to X̂W ( ˜A4)
. The coordinates on the simple roots

are erased since they are all equal to 0. The red labels represent the natural
order on Z10.
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Example 4.3. The positive roots of B∨
3 can be arranged according to their

height into a shape looking like the temple of Kukulcan. Moreover the base

is the set of dual simple roots. If λ is an admitted vector, its coordinates on

the dual simple roots are 0.

Figure 8: Positive roots of B∨
3 .

Figure 9: Presentation of an admitted vector λ in W (B̃3) where we erase
the base.
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Figure 10: Poset associated to X̂W ( ˜B3)
.
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4.2. Proof of the main result

In this paragraph we recall some basics about lattices. A lattice is a partially
ordered set such that every pair x, y of elements has a meet (greatest lower
bound) x∧y and join (least upper bound) x∨y. A lattice is distributive if the
meet operation distributes over the join operation and the join distributes
over the meet.

A lattice L is join semidistributive if whenever x, y, z ∈ L satisfy x∨y =
x∨ z, they also satisfy x∨ (y∧ z) = x∨ y. This is equivalent to the following
condition: If X is a nonempty finite subset of L such that x ∨ y = z for all
x ∈ X, then (

∧
x∈X x) ∨ y = z. The lattice is meet semidistributive if the

dual condition (x ∧ y = x ∧ z) ⇒ (x ∧ (y ∨ z) = x ∧ y) holds. Equivalently,
if X is a nonempty finite subset of L such that x ∧ y = z for all x ∈ X,
then (

∨
x∈X x) ∧ y = z. The lattice is semidistributive if it is both join

semidistributive and meet semidistributive.

Proposition 4.1. There exists a unique alcove Aw in PH such that the point
x :=

⋂
α∈Δ

Hα,1 is a vertex of Aw. Moreover, for α ∈ Δ the hyperplanes Hα,1

are some of the walls of Aw.

Proof. Let Wx := 〈sα,1, α ∈ Δ〉, Δx := {α∨−δ | α ∈ Δ} and Φx := Wx(Δx).
It suffices to show two things: First the set Δx is a simple system of Wx and
secondly Wx = StabWa

(x). Indeed, let us denote Dx to be the simplicial cone
pointed in x, cut out by the hyperplanes Hα,1 for α ∈ Δ and containing the
alcove Ae. If Δx is a simple system of Wx then Dx is the fundamental Weyl
chamber of Wx, and if Wx = StabWa

(x) then there is no hyperplane going
through x and Dx. Thus, by setting Aw to be the alcove with vertex x and
the n− 1 walls Hα,1 for α ∈ Δ we have what we announced.

•) Since Δ is linearly independent it follows that Δx is also linearly
independent. Because of Equation (1) we know that (α∨ − δ, β∨ − δ) =
(α∨, β∨) for all α, β ∈ Δ. Then, using Formula (2) we have B(α∨ − δ, β∨ −
δ) = B(α∨, β∨) for all α, β ∈ Δ. Therefore, Δx is a simple system (in the
sense of Definition 2.1) for (Wx, Sx) where Sx := {sα,1 | α ∈ Δ}.

•) First of all it is clear that Wx � W . Therefore it follows that |Φ+
x | =

|Φ+| and then the number of hyperplanes passing through x is the same
as the number of hyperplanes passing through 0. Moreover, we know that
each hyperplane of H is parallel to a hyperplane passing through 0, that is
parallel to a hyperplane Hα,0 with α ∈ Φ+. In particular each hyperplane
passing through x is parallel to such a hyperplane. Therefore, it follows that
each hyperplane of H is parallel to a hyperplane passing through x. Thus,
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Proposition 1.1 implies that x is a special point, that is StabWx
(x) � W .

It follows then that Wx � StabWa
(x). Finally, since W is finite, Wx is also

finite and then, since Wx ⊂ StabWa
(x), it follows that Wx = StabWa

(x).

Proposition 4.2. Let w as defined in Proposition 4.1. The set H0(X̂Wa
)

has a unique maximal element which is XWa
[λw].

Proof. First of all, we identify H0(X̂Wa
) with the elements of Alc(PH) since

these two sets are in bijection thanks to Theorem 3.3. Let x be as in Propo-

sition 4.1. The proof is split in 4 parts.

- We begin by showing that if Alc(PH) has a maximal element g (in

the sense of Definition 4.1) then the alcove of this element must have x as

vertex. Assume that it is not that case, namely Ag ∩ {x} = ∅. Then, since
Proposition 4.1 implies that there exists a unique element w ∈ Alc(PH)
having x as vertex, it follows that a wall of Aw is supported by an hyperplane

Hθ,k (with θ ∈ Φ+ \Δ and k > 0) that separates Aw and Ag and such that

Ag and Ae are on the same side of Hθ,k. Therefore, k(g, θ) < k(w, θ) which

is impossible by definition of ≤S .

- Main claim. We claim that w is strictly greater than any other element

in Alc(PH). We proceed by contradiction by assuming that w is not the

greater element of Alc(PH). It follows that we have a hyperplane Hα,k with

α ∈ Φ+ \Δ, k ∈ N that cuts PH into two connected components such that

Aw and Ae are in the same one and such that x /∈ Hα,k. Let Aw′ be an alcove

in the connected component that does not contain Ae. It follows that

(5) k(w,α) < k(w′, α)

- Intermediary claim with its proof. Let y be a point of Aw and y′

be a point of Aw′ . Therefore, since y and y′ ∈ PH there exist a1, . . . , an and

b1, . . . , bn ∈ R+ such that y = a1α1+ · · ·+ anαn and y′ = b1α1 + · · ·+ bnαn.

We claim now that without loss of generality one can assume that bi ≤ ai
for all i ∈ �1, n�. Let us explain this claim. Write y and y′ in the basis of

fundamental weights: y = c1ω1 + · · ·+ cnωn and y′ = d1ω1+ · · ·+dnωn with

ci and di ∈ R+. Since y ∈ Aw and y′ /∈ Aw, and since x is a vertex of Aw, we

can take y as close as we want to x. It follows here that there is no problem

of assuming that di ≤ ci for all i. Therefore, we make this assumption. It

turns out that the inverse of the Cartan matrix C−1 = (hij)i,j∈�1,n� of W

is the change-of-basis matrix of the basis of simple roots to the basis of

fundamental weights. Moreover, it is known (see [11] or [14]) that all the
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coefficients of C−1 are positive. It follows that

C−1

⎛
⎜⎝
c1
...
cn

⎞
⎟⎠ =

⎛
⎜⎝
a1
...
an

⎞
⎟⎠ and C−1

⎛
⎜⎝
d1
...
dn

⎞
⎟⎠ =

⎛
⎜⎝
b1
...
bn

⎞
⎟⎠ .

Thus, the i-th coordinate of y is
n∑

k=1

hikck and the i-th coordinate of y′

is
n∑

k=1

hikdk. Since di ≤ ci for all i and since hik ≥ 0 for all k = 1, . . . , n

it follows that
n∑

k=1

hikdk ≤
n∑

k=1

hikck. However the i-th coordinate of y is

nothing but ai, and i-th coordinate of y′ is bi. Finally we have shown that
bi ≤ ai for all i, which proves the intermediary claim.

- Conclusion of the main claim. We are now able to conclude the
first claim. Let � � be the floor function. From the way that the coefficients
k(−,−) are defined, one has k(w,α) = �(α∨, y)� and k(w′, α) = �(α∨, y′)�.
Via the expressions of y and y′ one has:

(α∨, y) = (α∨, a1α1 + · · ·+ anαn) = a1(α
∨, α1) + · · ·+ an(α

∨, αn),

(α∨, y′) = (α∨, b1α1 + · · ·+ bnαn) = b1(α
∨, α1) + · · ·+ bn(α

∨, αn).

It follows that 0 ≤ (α∨, y′) ≤ (α∨, y) and then �(α∨, y′)� ≤ �(α∨, y)�,
which means that k(w′, α) ≤ k(w,α). This contradicts (5). Hence, w must
be the maximal element of Alc(PH).

Proposition 4.3. Let w be the element of Alc(PH) as defined in Propo-
sition 4.1. The map XWa

[λ] �→ wλ defines a poset isomorphism between
H0(X̂Wa

) and the interval [e, w]R for the right weak order of Wa.

Proof. Once again Theorem 3.3 tells us that this map is a bijection. Using
Remark 4.1 we have XWa

[λ] ≤S XWa
[λ′] ⇐⇒ λ ≤S λ′ ⇐⇒ wλ ≤R wλ′ . This

shows that this map is a morphism of posets. Moreover, this also shows that
λ, λ′ define an interval for ≤S if and only if wλ and wλ′ define an interval
for the right weak order. Therefore, we only have to show that [0, λw]S is
a well defined interval. It is obvious that 0 is less than any other admit-
ted vector and that it is the only one satisfying this condition. Thanks to
Proposition 4.2, H0(X̂Wa

) has a unique maximal element which is XWa
[λw]

(identified with λw). It follows then that [0, λw]S does define an interval.

We are now ready to prove the main theorem.
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Proof of Theorem 1.2. It suffices to show that [e, w]R is a semidistributive
lattice. This stems from Theorem 8.1 of [12] that states that every interval
in the right weak order of any infinite Coxeter group is a semidistributive
lattice.
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