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ABSTRACT
The NSGA-II is one of the most prominent algorithms to solve

multi-objective optimization problems. Despite numerous success-

ful applications, several studies have shown that the NSGA-II is

less effective for larger numbers of objectives. In this work, we

use mathematical runtime analyses to rigorously demonstrate and

quantify this phenomenon. We show that even on the simple𝑚-

objective generalization of the discrete OneMinMax benchmark,

where every solution is Pareto optimal, the NSGA-II also with large

population sizes cannot compute the full Pareto front (objective

vectors of all Pareto optima) in sub-exponential time when the num-

ber of objectives is at least three. The reason for this unexpected

behavior lies in the fact that in the computation of the crowding

distance, the different objectives are regarded independently. This

is not a problem for two objectives, where any sorting of a pair-

wise incomparable set of solutions according to one objective is

also such a sorting according to the other objective (in the inverse

order).

This paper for the Hot-off-the-Press track at GECCO 2024 sum-

marizes the workWeijie Zheng, Benjamin Doerr: Runtime Analysis
for the NSGA-II: Proving, Quantifying, and Explaining the Inefficiency
For Many Objectives. IEEE Transactions on Evolutionary Computation,
in press. https://doi.org/10.1109/TEVC.2023.3320278 [23].

CCS CONCEPTS
• Theory of computation → Theory and algorithms for ap-
plication domains; Theory of randomized search heuristics.
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SUMMARY OF OUR RESULTS
The most prominent multi-objective evolutionary algorithm

(MOEA) with many successful applications in various domains

is the non-dominated sorting genetic algorithm II (NSGA-II) [5]. De-
spite numerous positive results on the NSGA-II, several studies

have observed that the NSGA-II is less effective when the number

of objectives grows. From their experimental comparison of three

MOEAs, Khare, Yao, and Deb [11] reported that the NSGA-II in-

creasingly suffers in converging to the global Pareto front when

the number of objectives increases from 2 to 8. This early study is

a pure performance comparison, so no explanations for the differ-

ent behaviors were found. Also, it should be noted that the other

algorithms regarded also suffered in different ways from growing

numbers of objectives. Purshouse and Fleming [15] aimed for fur-

ther empirical observations. They studied the range of suitable

configurations of the NSGA-II that can result in good solutions.

That the suitable ranges shrink along with the increasing number

of objectives, indicates the increasing difficulty for the NSGA-II for

more objectives. They also observed some factors that might be

relevant for the poor performance of the NSGA-II, like that when

the population evolves, the proportion of non-dominated solutions

in the population rapidly increases to 100%, and that in each it-

eration, only a low proportion of the newly generated solutions

dominates the current solutions. These observations are regarded

as one of the key challenges for many-objective optimizations, see

the surveys [9, 13].

Since apparently there is a lack of understanding of the perfor-

mance of the NSGA-II for many-objective problems, we try to ap-

proach this research question via a mathematical runtime analysis.

Such analyses are an integral part of the theory of heuristic search.

While often restricted to simple algorithmic settings, this alterna-

tive approach has led to several deep and very reliable (namely

mathematically proven) results in the past. Also, often the proofs

also reveal the reason why a certain phenomenon can be observed.

Our Contribution: To this aim, we conduct a mathematical

runtime analysis of the NSGA-II on the𝑚-objective version of the

classic bi-objective OneMinMax benchmark. This pseudo-Boolean

(that is, defined on bit-strings of length 𝑛) benchmark is very simple

in several respects, for example, any solution is Pareto optimal

and the objectives are all equivalent to the OneMax benchmark,

which is generally considered as the easiest single-objective Pseudo-

boolean benchmark [6, 16, 20]. For the bi-objective OneMinMax

problem, a good performance of the NSGA-II has been proven

recently [2, 21, 22, 25].

Our main (proven) result is that – despite the simplicity of the

problem and in drastic contrast to the bi-objective setting – for all
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numbers𝑚 ≥ 3 of objectives the NSGA-II also with large population

sizes cannot find the full Pareto front faster than in exponential time.

Even worse, we prove that for an exponential time, the population

of the NSGA-II will miss a constant fraction of the Pareto front.

Our experiments confirm this finding in a very clear manner.

Our mathematical runtime analysis also gives an explanation for

the drastic change of behavior between two and three objectives,

namely that in the definition of the crowding distance the different

objectives are regarded independently. This is not a problem for two

objectives, because for a set of pair-wise non-dominated solutions a

sorting with respect to one objective automatically is a sorting with

respect to the other objective (in the opposite order). Hence here in

fact the two objectives automatically are not treated independently.

From three objectives on, such a correlation between the objectives

does not exist, and this can lead to the problems made precise in

this work.

This understanding has two implications. On the negative

side, it appears very likely that the difficulties observed for the

OneMinMax benchmark will also occur for many other optimiza-

tion problems, including continuous optimization problems. On the

positive side, this understanding suggests to search for an alterna-

tive crowding distance measure that does not treat the objectives

independently.

We note that given the known difficulties of the NSGA-II with

more objectives, several alternatives to the crowding distance

have been proposed. For example, Deb and Jain [3] proposed the

NSGA-III, where the crowding distance is replaced by a system of

reference points. In their SMS-EMOA, Beume, Naujoks, and Em-

merich [1] replaced the crowding distance by the hypervolume.

The hypervolume measure was also considered as the second sort-

ing criterion in the multiobjective CMA-ES [8]. It was also used in

hybrid with the crowding distance [18]. Instead of removing points

with the smallest crowding distances in the NSGA-II, the diversity

preservation way via clustering from SPEA [26] was used to select

the survived individuals [4, 17]. However, none of these alterna-

tives is as accepted in practice as the NSGA-II. For this reason, we

hope that our work can not only spur the development of superior

algorithms, but also motivate practitioners to try moving from the

NSGA-II to these more modern algorithms. We further note that

several promising variations of the crowding distance have been

proposed, e.g., [7, 12], which again are not used a lot in practice.

Subsequent works: Two recent runtime analyses [14, 19] re-

vealed that the difficulties proven here for the NSGA-II do not arise

with the NSGA-III. In [24] it was proven that the SMS-EMOA can

overcome these difficulties as well. Very recently [10], it was shown

that the NSGA-II with an additional tie-breaker after the crowding

distance, similar to the one proposed in [7], can optimize the many-

objective versions of several classic benchmarks efficiently when

the population size is slightly larger than the size of the Pareto front.

However, since this variant only differs from the traditional NS-

GA-II when objective values occur multiple times in the population,

we see that this variant displays the same unfavorable behavior on

Example 2 in [23] as the traditional NSGA-II.
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