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ABSTRACT
The NSGA-II was recently proven to have difficulties in many-
objective optimization. In contrast, the literature experimentally
shows a good performance of the SMS-EMOA, which can be seen
as a steady-state NSGA-II that uses the hypervolume contribution
instead of the crowding distance as the second selection criterion.

This paper conducts the first rigorous runtime analysis of the
SMS-EMOA for many-objective optimization. To this aim, we first
propose a many-objective counterpart, the𝑚-objective𝑚OJZJ prob-
lem, of the bi-objective OneJumpZeroJump benchmark, which is
the first many-objective multimodal benchmark used in a math-
ematical runtime analysis. We prove that SMS-EMOA computes
the full Pareto front of this benchmark in an expected number of
𝑂 (𝑀2𝑛𝑘 ) iterations, where 𝑛 denotes the problem size (length of
the bit-string representation), 𝑘 the gap size (a difficulty parameter
of the problem), and𝑀 = (2𝑛/𝑚 − 2𝑘 + 3)𝑚/2 the size of the Pareto
front. This result together with the existing negative result on the
original NSGA-II shows that in principle, the general approach of
the NSGA-II is suitable for many-objective optimization, but the
crowding distance as tie-breaker has deficiencies.

We obtain three additional insights on the SMS-EMOA. Differ-
ent from a recent result for the bi-objective OneJumpZeroJump
benchmark, the stochastic population update often does not help for
𝑚OJZJ. It results in a 1/Θ(min{𝑀𝑘1/2/2𝑘/2, 1}) speed-up, which is
Θ(1) for large𝑚 such as𝑚 > 𝑘 . On the positive side, we prove that
heavy-tailed mutation still results in a speed-up of order 𝑘𝑘+0.5−𝛽 .
Finally, we conduct the first runtime analyses of the SMS-EMOA on
the bi-objective OneMinMax and LOTZ benchmarks and show that
it has a performance comparable to the GSEMO and the NSGA-II.

This paper for the Hot-off-the-Press track at GECCO 2024 sum-
marizes the workWeijie Zheng, Benjamin Doerr: Runtime Analysis
of the SMS-EMOA for Many-Objective Optimization. AAAI 2024,
20874–20882 [20].
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SUMMARY OF OUR RESULTS
TheNSGA-II is themost widely-appliedmultiobjective evolutionary
algorithm (MOEA). Non-dominated sorting and crowding distance
are its two major features differentiating it from basic MOEAs such
as the GSEMO or the (𝜇 + 1) SIBEA. Zheng et al. [22] conducted
the first runtime analysis of the NSGA-II (see [17] for the journal
version). This work quickly inspired many interesting follow-up
results in bi-objective optimization [2, 4–6, 8–10, 16]. In contrast
to these positive results for two objectives, Zheng and Doerr [18]
proved that for 𝑚 ≥ 3 objectives the NSGA-II needs at least ex-
ponential time (in expectation and with high probability) to cover
the full Pareto front of the𝑚-objective OneMinMax benchmark,
a simple many-objective version of the basic OneMax problem
where all search points are Pareto optimal. They claimed that the
main reason for this low efficiency is the independent computation
of the crowding distance in each objective.

A very recent work showed that the NSGA-III, a successor algo-
rithm of the NSGA-II aimed at better coping with many objectives,
can efficiently solve the 3-objective OneMinMax problem [14].
Since apparently practitioners much prefer the NSGA-II (more than
17,000 citations on Google scholar only in the last five years) over
the NSGA-III (5,035 citations since its publication in 2013), it re-
mains an interesting question whether there are variants of the
NSGA-II which better cope with many objectives.

With the SMS-EMOA, an interesting variant of the NSGA-II was
proposed by Beume et al. [1]. This algorithm is a steady-state vari-
ant of the NSGA-II (that is, in each iteration only a single offspring is
generated and possibly integrated into the population) that further
replaces the crowding distance as secondary selection criterion with
the classic hypervolume contribution. Many empirical works (see
the almost 2,000 papers citing [1]) confirmed the good performance
of the SMS-EMOA for many-objective optimization. The first math-
ematical runtime analysis of the SMS-EMOA was conducted very
recently by Bian et al. [3], who proved that its expected runtime on
the bi-objective OneJumpZeroJump problem is 𝑂 (𝑛𝑘+1). They also
proposed a stochastic population update mechanism and proved
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that it has the often superior runtime of 𝑂 (𝑛𝑘+1min{1, 𝑛/2𝑘/4}).
Zheng et al. [21] proved that the SMS-EMOA has an expected run-
time of 𝑂 (𝑛4) on the bi-objective DLTB problem.

Our Contributions: This paper conducts the first mathematical
runtime analysis of the SMS-EMOA for more than two objectives.
We first define the𝑚OJZJ benchmark, an𝑚-objective counterpart
of the bi-objective OneJumpZeroJump problem [19], which is the
problem analyzed in the first runtime analysis for the SMS-EMOA
[3]. We note that the𝑚OJZJ problem is the first multimodal many-
objective benchmark proposed for a theoretical analysis, to the best
of our knowledge. We prove that the SMS-EMOA covers the full
Pareto front of this benchmark in an expected number of𝑂 (𝑀2𝑛𝑘 )
iterations, where 𝑛 is the problems size, 𝑘 the gap size (a difficulty
parameter of the problem),𝑚 the number of objectives, and 𝑀 =

(2𝑛/𝑚 − 2𝑘 + 3)𝑚/2 the size of the Pareto front.
We recall that the original NSGA-II needs at least exponential

time to optimize the𝑚OneMinMax problem, which is a special
case of𝑚OJZJ with gap size 𝑘 = 1. Since the SMS-EMOA employs
non-dominated sorting, but replaces the crowding distance in the
original NSGA-II by the hypervolume contribution, our result in a
similar fashion as the analysis of the NSGA-III in [14] suggests that
the general approach of the NSGA-II is suitable for many-objective
optimization and that it is only the crowding distance as tie-breaker
which is not appropriate for more than two objectives.

We then analyze whether the better performance of the
SMS-EMOA on the bi-objective OneJumpZeroJump problem
achieved via a new stochastic population update [3] extends to
the𝑚-objective𝑚OJZJ problem. Unfortunately, we shall observe
that only a speed-up of order 1/Θ(min{𝑀𝑘1/2/2𝑘/2, 1}) is obtained,
which is Θ(1) when𝑚 is large, e.g.,𝑚 > 𝑘 .

On the positive side, we show that the advantage of heavy-tailed
mutation is preserved. We analyze the SMS-EMOA with heavy-
tailed mutation on the𝑚OJZJ benchmark and prove that a speed-up
of order 𝑘0.5+𝑘−𝛽 is achieved. This is the same speed-up as observed
for single-objective and bi-objective Jump problems [7, 19]. We note
that this is the first theoretical work to support the usefulness of
heavy-tailed mutation in many-objective optimization.

Finally, since so far the performance of the SMS-EMOAwas only
analyzed on the bi-objective OneJumpZeroJump problem [3], we
conduct mathematical runtime analyses of the SMS-EMOA also
on the two most prominent bi-objective benchmarks OneMinMax
and LOTZ. We prove that the SMS-EMOA finds the Pareto fronts
of these benchmarks in an expected number of iterations of at most
2𝑒 (𝑛 + 1)𝑛(ln𝑛 + 1) for OneMinMax and at most 2𝑒𝑛2 (𝑛 + 1) for
LOTZ. These are the same asymptotic runtimes (in terms of fitness
evaluations) as known for the GSEMO and the NSGA-II.

Subsequent Works: The efficiency of NSGA-III on other classic
many-objective problems is shown recently [13]. Both [13] and [15]
show improved runtime results for many-objective benchmarks.
With our methods, these results extend to the SMS-EMOA. Back
to our work’s motivation of whether there are variants of NSGA-
II which better cope with many objectives, a recent preprint [12]
shows that an additional tie-breaker after the crowding distance,
similar to the one proposed in [11], will help. However, the difficulty
of the original NSGA-II shown in Example 2 in [18] still exists.
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