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ABSTRACT
As demonstrated by empirical and theoretical work, the Metropolis

algorithm can copewith local optima by accepting inferior solutions

with suitably small probability. This paper extends this research

direction into multi-objective optimization.

The original Metropolis algorithm has two components, one-

bit mutation and the acceptance strategy, which allows accepting

inferior solutions. When adjusting the acceptance strategy to multi-

objective optimization in the way that an inferior solution that

is accepted replaces its parent, then the Metropolis algorithm is

not very efficient on our multi-objective version of the multimodal

DLB benchmark called DLTB. With one-bit mutation, this multi-

objective Metropolis algorithm cannot optimize the DLTB problem,

with standard bit-wise mutation it needs at least Ω(𝑛5) time to

cover the full Pareto front. In contrast, we show that many other

multi-objective optimizers, namely the GSEMO, SMS-EMOA, and

NSGA-II, only need time𝑂 (𝑛4). When keeping the parent when an

inferior point is accepted, the multi-objective Metropolis algorithm

both with one-bit or standard bit-wise mutation solves the DLTB

problem efficiently, with one-bit mutation experimentally leading

to better results than several other algorithms.

Overall, our work suggests that the general mechanism of the

Metropolis algorithm can be interesting in multi-objective optimiza-

tion, but that the implementation details can have a huge impact

on the performance.

This paper for the Hot-off-the-Press track at GECCO 2024 sum-

marizes the workWeijie Zheng, Mingfeng Li, Renzhong Deng, and
Benjamin Doerr: How to Use the Metropolis Algorithm for Multi-
Objective Optimization? In Conference on Artificial Intelligence, AAAI
2024, AAAI Press, 20883–20891. https://doi.org/10.1609/aaai.v38i18.
30078 [22].
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SUMMARY OF OUR RESULTS
Simulated annealing is widely applied in both single- and multi-

objective optimization problems, see [18]. The Metropolis algo-

rithm [14] is a special case of simulated annealing with a fixed

temperature. The runtime analysis of the Metropolis algorithm for

single-objective optimization started in 1988, when [16] proved

that good approximations for the maximum matching problem can

be computed in polynomial time. Jansen and Wegener [11] (see

Doerr et al. [5] for a recent tightening of this result) proved that the

Metropolis algorithm with suitable parameters solves the OneMax

benchmark in an expected time𝑂 (𝑛 log𝑛) fitness evaluation, a run-
time many other randomized search heuristics have as well on this

problem [1, 6, 8, 10, 17, 20].

The Metropolis algorithm can cope with local optima by accept-

ing inferior solutions with suitably small probability. [11] proved

that the Metropolis algorithm solves the GentleNegativeSlope

problem in polynomial time, whereas the (1 + 1) EA needs at least

exponential time; that also the move acceptance hyper-heuristic

need super-polynomial time, was recently shown by [13]. [15]

proved that the Metropolis algorithm solves their Valley func-

tion (which is different from the Valley problem defined in [7])

more efficiently than simple evolutionary algorithms (EAs). [19]

showed that the Metropolis algorithm solves the DeceptiveLead-

ingBlocks (DLB) function in expected time of 𝑂 (𝑛2), while all

(1+1)-elitist unary unbiased black-box algorithms have an expected

runtime of Ω(𝑛3).
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Our Contribution: We note that the known runtime results

for the Metropolis algorithm are all for single optimization. In this

work, we take several steps towards theoretically analyzing multi-

objective Metropolis algorithms. Since an advantage of the Metrop-

olis algorithm was proven for the single-objective DLB function

[19], we construct a bi-objective counterpart of the DLB problem

following a general construction method from [12]. We call our

new benchmark DLTB, for deceptive leading blocks for ones and

deceptive trailing blocks for zeros. DLTB is the first bi-objective

multimodal function for theoretical analysis where not all local

optima are Pareto optimal. It is also the first bi-objective function in

the theory community where the maximum size of a set of mutually

non-dominating objective values is larger than the Pareto front size.

The original Metropolis algorithm uses two operators, one-bit

mutation as variation operator and the selection mechanism that

allows also the inferior offspring to enter the next population. Since

the Metropolis algorithm differs from the randomized local search

(RLS) algorithm only in the selection operator, in our discussion of

multi-objectiveMetropolis algorithmswewill build upon the simple

evolutionary multi-objective optimizer (SEMO), the multi-objective

analogue of RLS. Since the inferior solution in the single-objective

Metropolis algorithm replaces its parent when accepted, a natural

way to implement a multi-objective Metropolis algorithms would

be to let also here the inferior solution replace its parent (when

accepted). However, we will prove that this variant (and also the

original SEMO) cannot cover the Pareto front of the DLTB. Hence

the advantage of the Metropolis algorithm over RLS on the single-

objective DLB problem does not extend to the bi-objective DLTB

problem.

The proof of this negative result heavily exploits that as variation

operator one-bit flips are used. For this reason, we also consider the

multi-objective Metropolis variant where we replace one-bit mu-

tation with the global operator of the standard bit-wise mutation

(flipping each bit independently with probability 1/𝑛). Unfortu-
nately, we can still prove that this variant needs an expected time of

Ω(𝑛5) to cover the Pareto front of the DLTB problem. We note that

the reason for these lower bounds is not an intrinsic difficulty of the

DLTB problem. For three well-known multi-objective EAs, namely

GSEMO [9], NSGA-II [4], and SMS-EMOA [2], we prove that they

all cover the Pareto front of the DLTB problem in expected time

𝑂 (𝑛4). We note that our result for the SMS-EMOA, together with

the parallel work [21], is only the second runtime analysis for this

algorithm after the seminal work [3].

Given these unfavorable results for the Metropolis algorithm, we

analyze the multi-objective Metropolis algorithm that, in case an

inferior solution is accepted, only removes all individuals weakly

dominated by it, but not its parent. We prove that this variant

covers the Pareto front in expected time 𝑂 (𝑛5). Speculating that

this runtime guarantee is not tight, we conduct a small experimental

investigation and observe that this variant with standard bit-wise

mutation achieves similar performance as the GSEMO, NSGA-II,

and SMS-EMOA (for which we have shown a runtime guarantee

of 𝑂 (𝑛4)). Interestingly, the experimental results suggest an even

better performance of this variant with one-bit mutation.

Overall, our work suggests that the non-elitist acceptance mech-

anism of the Metropolis algorithm can be interesting also in multi-

objective optimization, but that its application is not straight-

forward. Hence more work on how to best use the key elements of

the Metropolis algorithm in multi-objective optimization appears

desirable.

REFERENCES
[1] Denis Antipov and Benjamin Doerr. 2021. A tight runtime analysis for the

(𝜇 + 𝜆) EA. Algorithmica 83 (2021), 1054–1095.
[2] Nicola Beume, Boris Naujoks, and Michael Emmerich. 2007. SMS-EMOA: Mul-

tiobjective selection based on dominated hypervolume. European Journal of
Operational Research 181 (2007), 1653–1669.

[3] Chao Bian, Yawen Zhou, Miqing Li, and Chao Qian. 2023. Stochastic population

update can provably be helpful in multi-objective evolutionary algorithms. In

International Joint Conference on Artificial Intelligence, IJCAI 2023. ijcai.org, 5513–
5521.

[4] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T. Meyarivan. 2002. A

fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on
Evolutionary Computation 6 (2002), 182–197.

[5] Benjamin Doerr, Taha El Ghazi El Houssaini, Amirhossein Rajabi, and Carsten

Witt. 2023. How well does the Metropolis algorithm cope with local optima?. In

Genetic and Evolutionary Computation Conference, GECCO 2023. ACM, 1000–1008.

[6] Benjamin Doerr and Martin S. Krejca. 2020. Significance-based estimation-of-

distribution algorithms. IEEE Transactions on Evolutionary Computation 24 (2020),
1025–1034.

[7] Stefan Droste, Thomas Jansen, and Ingo Wegener. 2000. Dynamic parameter

control in simple evolutionary algorithms. In Foundations of Genetic Algorithms,
FOGA 2000. Morgan Kaufmann, 275–294.

[8] Stefan Droste, Thomas Jansen, and Ingo Wegener. 2002. On the analysis of the

(1+1) evolutionary algorithm. Theoretical Computer Science 276 (2002), 51–81.
[9] Oliver Giel. 2003. Expected runtimes of a simple multi-objective evolutionary

algorithm. In Congress on Evolutionary Computation, CEC 2003. IEEE, 1918–1925.
[10] Thomas Jansen, Kenneth A. De Jong, and IngoWegener. 2005. On the choice of the

offspring population size in evolutionary algorithms. Evolutionary Computation
13 (2005), 413–440.

[11] Thomas Jansen and Ingo Wegener. 2007. A comparison of simulated annealing

with a simple evolutionary algorithm on pseudo-Boolean functions of unitation.

Theoretical Computer Science 386 (2007), 73–93.
[12] Marco Laumanns, Lothar Thiele, and Eckart Zitzler. 2004. Running time analysis

of multiobjective evolutionary algorithms on pseudo-Boolean functions. IEEE
Transactions on Evolutionary Computation 8 (2004), 170–182.

[13] Andrei Lissovoi, Pietro S. Oliveto, and John Alasdair Warwicker. 2023. When

move acceptance selection hyper-heuristics outperform Metropolis and elitist

evolutionary algorithms and when not. Artificial Intelligence 314 (2023), 103804.
[14] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H.

Teller, and Edward Teller. 1953. Equation of state calculations by fast computing

machines. The Journal of Chemical Physics 21 (1953), 1087–1092.
[15] Pietro S. Oliveto, Tiago Paixão, Jorge Pérez Heredia, Dirk Sudholt, and Barbora

Trubenová. 2018. How to escape local optima in black box optimisation: when

non-elitism outperforms elitism. Algorithmica 80 (2018), 1604–1633.
[16] Galen H. Sasaki and Bruce Hajek. 1988. The time complexity of maximum

matching by simulated annealing. Journal of the ACM 35 (1988), 387–403.

[17] Dirk Sudholt and Carsten Witt. 2019. On the choice of the update strength in

estimation-of-distribution algorithms and ant colony optimization. Algorithmica
81 (2019), 1450–1489.

[18] Balram Suman and Prabhat Kumar. 2006. A survey of simulated annealing as

a tool for single and multiobjective optimization. Journal of the Operational
Research Society 57 (2006), 1143–1160.

[19] Shouda Wang, Weijie Zheng, and Benjamin Doerr. 2024. Choosing the right

algorithm with hints from complexity theory. Information and Computation 296

(2024), 105125.

[20] Carsten Witt. 2006. Runtime analysis of the (𝜇 + 1) EA on simple pseudo-Boolean

functions. Evolutionary Computation 14 (2006), 65–86.

[21] Weijie Zheng and Benjamin Doerr. 2024. Runtime analysis of the SMS-EMOA

for many-objective optimization. In Conference on Artificial Intelligence, AAAI
2024. AAAI Press, 20874–20882.

[22] Weijie Zheng, Mingfeng Li, Renzhong Deng, and Benjamin Doerr. 2024. How to

use the Metropolis algorithm for multi-objective optimization?. In Conference on
Artificial Intelligence, AAAI 2024. AAAI Press, 20883–20891.

72


	Abstract
	References

