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ABSTRACT
In this work, we conduct the first mathematical runtime analysis

of a simple multi-objective evolutionary algorithm (MOEA) on a

classic benchmark in the presence of noise in the objective function.

We prove that when bit-wise prior noise with rate 𝑝 ≤ 𝛼/𝑛, 𝛼 a

suitable constant, is present, the simple evolutionary multi-objective
optimizer (SEMO) without any adjustments to cope with noise finds

the Pareto front of the OneMinMax benchmark in time𝑂 (𝑛2 log𝑛),
just as in the case without noise. Given that the problem here is

to arrive at a population consisting of 𝑛 + 1 individuals witnessing

the Pareto front, this is a surprisingly strong robustness to noise

(comparably simple evolutionary algorithms cannot optimize the

single-objective OneMax problem in polynomial time when 𝑝 =

𝜔 (log(𝑛)/𝑛)). Our proofs suggest that the strong robustness of the

MOEA stems from its implicit diversity mechanism designed to

enable it to compute a population covering the whole Pareto front.

Interestingly this result only holds when the objective value of

a solution is determined only once and the algorithm from that

point on works with this, possibly noisy, objective value. We prove

that when all solutions are reevaluated in each iteration, then any

noise rate 𝑝 = 𝜔 (log(𝑛)/𝑛2) leads to a super-polynomial runtime.

This is very different from single-objective optimization, where

it is generally preferred to reevaluate solutions whenever their

fitness is important and where examples are known such that not

reevaluating solutions can lead to catastrophic performance losses.

This paper for the Hot-off-the-Press track at GECCO 2024 sum-

marizes the workMatthieu Dinot, Benjamin Doerr, Ulysse Hennebelle,
and Sebastian Will. 2023. Runtime analyses of multi-objective evolu-
tionary algorithms in the presence of noise. In International Joint Con-
ference on Artificial Intelligence, IJCAI 2023. ijcai.org, 5549–555 [6].
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SUMMARY OF OUR RESULTS
Many real-world optimization problems consist of multiple, often

conflicting objectives. For these, a single optimal solution usually

does not exist. Consequently, a common solution concept is to com-

pute a set of solutions which cannot be improved in one objective

without worsening in another one (Pareto optima) and then let a

decision maker select one of these.

Due to their population-based nature, evolutionary algorithms

(EAs) are an obvious heuristic approach to such problems, and in

fact, such multi-objective evolutionary algorithms (MOEAs) have

been successfully applied to many multi-objective problems [2, 16].

Evolutionary algorithms are known to be robust against different

types of stochastic disturbances such as noise or dynamic changes of

the problem instance [12]. Surprisingly, as regularly pointed out in

the literature [10, 11, 13], only very little is known on how MOEAs

cope with such stochastic optimization problems. In particular,

while it is known that single-objective evolutionary algorithms

without any specific adjustments can stand a certain amount of

noise in the evaluation of the objective function, we are not aware

of any such result in multi-objective optimization.

We approach this question via the methodology of mathematical

runtime analysis [8]. This field, for more than twenty years, has

significantly enlarged our understanding of the working princi-

ples of all kinds of randomized search heuristics, including both

MOEAs [1] and single-objective evolutionary algorithms solving
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stochastic optimization problems [14]. Despite this large amount

of work, there is not a single runtime analysis discussing how a

standard MOEA computes or approximates the Pareto front of a

multi-objective problem in the presence of noise (and this is what

we shall do in the present work). The only paper that conducts a

mathematical runtime analysis of a MOEA in a noisy setting ana-

lyzes a combination of the adaptive Pareto sampling frameworks

with the simple evolutionarymulti-objective optimizer (SEMO) [10],

so this algorithm definitely is not anymore a standard MOEA.

To start closing this gap, we conduct a runtime analysis of a sim-

ple MOEA, namely the SEMO, on the classic benchmark problem

OneMinMax, in the presence of one-bit prior noise. We prove that

when the noise rate is at most 𝛼/𝑛, where 𝛼 is a suitable constant,

then the population of this MOEA, despite the noise, after an ex-

pected number of 𝑂 (𝑛2 log𝑛) fitness evaluations witnesses the full
Pareto front. This is the same bound on the runtime that is known

for the setting without noise [3, 9]. We note that in comparable

single-objective settings, not much more noise can be tolerated.

For example, only for 𝑝 = 𝑂 (log(log(𝑛))/𝑛) it could be shown

in [5] that the (1 + 1) EA retains its noise-free 𝑂 (𝑛 log𝑛) runtime

on the OneMax benchmark. Already for 𝑝 = 𝜔 (log(𝑛)/𝑛), the run-
time is super-polynomial. Considering this and taking into account

that the multi-objective OneMinMax problem is naturally harder

(we aim at a population containing exactly one solution for each

Pareto optimum), our result indicates that MOEAs cope with noise

surprisingly well.

However, our work also shows one important difference to the

noisy optimization of single-objective problems. Our result above

assumes that each solution is evaluated only once, namely when it

is generated. This possibly noisy objective value is stored with the

solution unless the solution is discarded at some time. This approach

is natural in that it avoids costly reevaluations, but it differs from

the standards in single-objective evolutionary computation. Being

afraid that a faulty fitness value can negatively influence the future

optimization process, almost all works there assume that each time

a solution competes with others, its fitness is reevaluated. That not

reevaluating solutions can significantly disturb a noisy optimization

process was rigorously shown for an ant-colony optimizer [7, 15].

Given that in single-objective evolutionary computation it is

more common to assume that solutions are evaluated anew when

they compete with others, we also analyzed the runtime of the

SEMO on OneMinMax under this assumption. While the reeval-

uations prevent one from sticking to faulty objective values for

a long time, our mathematical runtime analysis shows that this

approach can only tolerate much lower levels of noise. We can

prove an 𝑂 (𝑛2 log𝑛) runtime only for 𝑝 ≤ 𝛽/𝑛2, 𝛽 a suitable

constant, and we prove that for 𝑝 = 𝜔 (log(𝑛)/𝑛2) the algorithm
needs super-polynomial time to compute the full Pareto front of

the OneMinMax benchmark. So clearly, the reevaluation strategy

recommended in single-objective optimization is less suitable in

multi-objective optimization.

Overall, this first runtime analysis work of a standard MOEA in a

noisy environment shows thatMOEAswithout specific adjustments

are reasonably robust to noise and that such stochastic processes

can be analyzed with mathematical means, but also that insights

from the single-objective setting can be fundamentally wrong in

multi-objective noisy optimization.

Parallel independent work: In [4], Dang, Opris, Salehi, and Sudholt
analyze the performance of the NSGA-II on the LOTZ problem in

the presence of noise. Their results in particular show that the

NSGA-II can stand much stronger noise than the GSEMO.

Subsequent work: In the meantime, the authors of this works

have proven a lower bound on the noise-level the SEMO without

reevaluations can stand, namely that for 𝑝 = 𝜔 (log(𝑛)/𝑛), the
runtime becomes super-polynomial.
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