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ABSTRACT
Recently, the first mathematical runtime guarantees have been ob-

tained for the NSGA-II, one of the most prominent multi-objective

optimization algorithms, however only for synthetic benchmark

problems.

In this work, we give the first proven performance guarantees

for a classic optimization problem, the NP-complete bi-objective

minimum spanning tree problem. More specifically, we show that

the NSGA-II with population size 𝑁 ≥ 4((𝑛 − 1)𝑤max + 1) com-

putes all extremal points of the Pareto front in an expected number

of 𝑂 (𝑚2𝑛𝑤max log(𝑛𝑤max)) iterations, where 𝑛 is the number of

vertices,𝑚 the number of edges, and 𝑤max is the maximum edge

weight in the problem instance. This result confirms, via math-

ematical means, the good performance of the NSGA-II observed

empirically. It also paves the way for analyses of the NSGA-II on

complex combinatorial optimization problems.

As a side result, we also obtain a new analysis of the performance

of the GSEMO algorithm on the bi-objective minimum spanning

tree problem, which improves the previous best result by a factor

of |𝐹 |, the number of points in the convex hull of the Pareto front,

a set that can be as large as 𝑛𝑤max. The main reason for this im-

provement is our observation that both algorithms find the different

extremal points in parallel rather than sequentially, as assumed in

the previous proofs.

This paper for the Hot-off-the-Press track at GECCO 2024 sum-

marizes the work Sacha Cerf, Benjamin Doerr, Benjamin Hebras,
Jakob Kahane, and Simon Wietheger. 2023. The first proven perfor-
mance guarantees for the Non-Dominated Sorting Genetic Algorithm
II (NSGA-II) on a combinatorial optimization problem. In Interna-
tional Joint Conference on Artificial Intelligence, IJCAI 2023. ijcai.org,
5522–5530 [1].
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SUMMARY OF OUR RESULTS
Many optimization problems consist of several conflicting objec-

tives. In such scenarios, there typically does not exist solution that

is optimal regarding all criteria. The most common solution concept

therefore is to compute a set of Pareto optima (solutions which can-

not be improved in one objective without accepting a worsening in

another objective), and let a decision maker select the final solution

based on their preference.

Because they naturally work with sets of solutions, evolution-

ary algorithms (EAs) are a standard approach to multi-objective

problems with many successful applications [11]. The by far most

prominent multi-objective evolutionary algorithm (MOEA) is the

Non-Dominated Sorting Genetic Algorithm II (NSGA-II) proposed by
Deb, Pratap, Agarwal, and Meyarivan [2] (with over 50,000 citations

on Google Scholar).

Despite being very popular, this algorithm is only little under-

stood from a fundamental perspective. In fact, it was only in 2022

that the first mathematical runtime analysis of the NSGA-II was

presented [10]. The works that quickly followed analyze the per-

formance of the NSGA-II on simple benchmark problems, mostly

multi-objective variants of the OneMax, LeadingOnes, and Jump

benchmarks well-studied in the theory of single-objective random-

ized search heuristics [4, 9]. However, up until now, the NSGA-II

was never theoretically studied on a practical optimization problem.
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In this work, we propose the first mathematical runtime analysis

of the NSGA-II on such a problem, namely the bi-objective mini-

mum spanning tree problem, which is the multi-objective extension

of the well-known minimum spanning tree problem (MST). In pre-

vious literature, the MST problem has been used to understand how

EAs solve combinatorial optimization problems, the first result in

this direction being an 𝑂 (𝑚2
log(𝑛𝑤max)) runtime upper bound,

shown in [8], where 𝑛 and𝑚 are the number of nodes and edges

of the graph, and𝑤max is the maximum weight. Using a balanced

mutation operator, this can be improved to 𝑂 (𝑚𝑛 log(𝑛𝑤max)).
In the bi-objective variant, edges are assigned a vector of two

non-negative weights. The weight of a spanning tree is then defined

as the vector sum of the weights of its edges, and the task is to

compute the set of all spanning trees such that no other spanning

tree has a smaller weight on both coordinates. If multiple such

Pareto optima have the same weight vector, one is allowed to find

only one of them, effectively computing the Pareto front: the set of
all optimal weight vectors.

This problem is NP-complete, but it is possible to compute the

extremal points (points which are vertices of the polygonal line

formed by convex hull of the Pareto front) in polynomial time

[6]. The first result on how MOEAs solve this problem is [7]. It

shows that the GSEMO algorithm, a multi-objective analogue of

the basic (1 + 1) EA, computes the extremal points of the Pareto

front in an expected number of 𝑂 (𝑚2𝑛𝑤min ( |𝐹 | + log(𝑛𝑤max)))
iterations, where 𝐹 denotes the convex hull of the Pareto front

and𝑤min denotes the minimum between the maximums of the two

weight functions. As in the single-objective case, balanced mutation

improves the runtime by a factor of Ω(𝑚/𝑛).
Our results are both an extension of this line of work to the more

practically used NSGA-II, and an improvement of the results in [7].

On one hand, we establish the first runtime upper bound for the

NSGA-II on the bi-objective MST, assuming that the population

size 𝑁 is sufficiently large. More precisely, we show that if 𝑁 ≥
4((𝑛 − 1)𝑤min + 1), then the NSGA-II finds the extremal points of

the Pareto front in 𝑂 (𝑁𝑚2
log(𝑛𝑤max)) fitness evaluations, and

that balanced mutation improves this number by an Ω(𝑚/𝑛) factor.
On the other hand, we bring the previous runtime bound shown in

[7] down to 𝑂 (𝑚2𝑛𝑤min log(𝑛𝑤max)), removing a factor of |𝐹 |, for
which the only known upper bound is 𝑛𝑤min. This improvement

stems from our observation that, contrary to previous analyses,

the NSGA-II and the GSEMO find the extremal points in parallel,

rather than sequentially. We propose a new technique based on drift

analysis that exploits this parallelism to derive our tighter bound.

Even though we apply it only to these two algorithms, we believe

that this approach is general enough to derive runtime guarantees

also for other MOEAs.

Summary and conclusion: In this first mathematical runtime

analysis of the NSGA-II on a combinatorial optimization problem,

we provided a general approach to proving runtime guarantees for

MOEAs solving the bi-objective MST problem. As in most theoret-

ical works on randomized search heuristics, our aim was not so

much finding the best possible algorithm to solve this problem (for

this problem-specific algorithms will usually be superior), but to

gain a deeper understanding of an algorithm, here the NSGA-II,

by revealing the mechanisms it uses to solve a certain problem.

Overall, this work indicates that mathematical runtime analyses

for the NSGA-II are possible also for combinatorial optimization

problems. We concentrated on proving performance guarantees at

all, but it would be interesting to derive more insights on how to

optimally use the NSGA-II on the particular problem (we only saw

that balanced mutation is preferable). Such results are possible in

principle: previous works on artificial benchmarks, e.g., [5], gave

some indications on the right mutation rate. Clearly, runtime anal-

yses of the NSGA-II on other combinatorial optimization problems

would also be desirable to put this research direction on a broader

basis.

Subsequent work: In [3], another multi-objective EA, the

MOEA/D, is analyzed on the class of Multi-Objective Minimum

Weight Base Problems (MOMWB), which the MOST problem be-

longs to. These problems consist in minimizing a weight function

over the bases of any given matroid. It is shown that the MOEA/D

finds the extremal points of any MOMWB in𝑂 (𝑚2𝐿(𝑚 log(𝑚−𝑛) +
3 log(𝑤max)) + log𝑛) function evaluations, and the entirety of the

convex hull𝐶 in𝑂 (𝑚2𝐿(𝑚 log(𝑚−𝑛) +3 log(𝑤max) + |𝐶 |2) + log𝑛),
where 𝐿 =

√︁
min(𝑛,𝑚 − 𝑛). This work is interesting for at least

three reasons. First, results from [8] about the structure of the

search space, which are central in our paper (in particular, Lemma

2), are generalized to MOMWB. Hence, further work could be con-

ducted to see if our analysis of the NSGA-II can be adapted to

MOMWB. Second, the factor 𝐿 comes from a new upper bound on

the number of extremal points for any MOMWB. This bound might

also be useful to tighten our analysis. Third, they demonstrate the

possibility to obtain runtime bounds for finding the full convex hull

of the Pareto front, rather than the extremal points.
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