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ABSTRACT
The Non-dominated Sorting Genetic Algorithm II (NSGA-II) is the
most prominent multi-objective evolutionary algorithm for real-
world applications. While it performs evidently well on bi-objective
optimization problems, empirical studies suggest that it is less ef-
fective when applied to problems with more than two objectives.
A recent mathematical runtime analysis confirmed this observa-
tion by proving that the NGSA-II for an exponential number of
iterations misses a constant factor of the Pareto front of the simple
𝑚-objective OneMinMax problem when𝑚 ≥ 3.

In this work, we provide the first mathematical runtime analysis
of the NSGA-III, a refinement of the NSGA-II aimed at better han-
dling more than two objectives. We prove that the NSGA-III with
sufficiently many reference points – a small constant factor more
than the size of the Pareto front, as suggested for this algorithm –
computes the complete Pareto front of the 3-objective OneMinMax
benchmark in an expected number of 𝑂 (𝑛 log𝑛) iterations. This
result holds for all population sizes (that are at least the size of the
Pareto front). It shows a drastic advantage of the NSGA-III over the
NSGA-II on this benchmark.

This paper for the Hot-off-the-Press track at GECCO 2024 sum-
marizes the work Simon Wietheger and Benjamin Doerr. A mathe-
matical runtime analysis of the Non-dominated Sorting Genetic Al-
gorithm III (NSGA-III). In International Joint Conference on Artificial
Intelligence, IJCAI 2023. 5657–5665, 2023. [15].
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• Theory of computation → Theory of randomized search heuris-
tics.
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SUMMARY OF OUR RESULTS
Many practical applications require to optimize for multiple, con-
flicting objectives. Such tasks can be tackled by population-based
algorithms, whose population eventually represents a set of Pareto
solutions, solutions that cannot strictly be dominated by any other
solution. Thereby, they represent multiple useful trade-offs between
the objectives and allow the user to choose among these accord-
ing to their personal preferences. Indeed, evolutionary algorithms
(EAs), or, more precisely, multi-objective evolutionary algorithms
(MOEAs), have been successfully applied to many real-world prob-
lems [20]. Among these, Zhou et al. [20] identify the non-dominated
sorting genetic algorithm (NSGA-II) [6] as the most prominent one.
Both empirical evaluations [11, 13] and recent mathematical run-
time analyses [1–4, 7–9, 19] confirm the strong results of the NS-
GA-II on bi-objective benchmarks. The performance on problems
with 3 or more objectives, however, is not as well understood. Em-
pirical studies, for example [11], suggest that the NSGA-II struggles
with such problems. A recent mathematical runtime analysis [17]
shows that the NSGA-II regularly loses desirable solutions when
optimizing the𝑚-objective OneMinMax problem for𝑚 ≥ 3, and
consequently, cannot find its Pareto front (the set of Pareto opti-
mal solution values) in sub-exponential time. As a remedy, Deb
and Jain [5] proposed a modified version of the NSGA-II, called
NSGA-III. It replaces the crowding distance, a measure which the
NSGA-II uses in addition to the dominance relation to determine
which individuals are taken in the next generation, by a procedure
involving reference points in the solution space. Their evaluations
on benchmarks with 3 to 15 objectives show that the NSGA-III is
suitable for more than 2 objectives.

These empirical insights are, however, not yet supported by a
deeper mathematical understanding of the working principles of
the NSGA-III. In order to fill this gap, wemathematically analyze the
runtime of the NSGA-III on the 3-objective OneMinMax (3OMM)
problem. The first objective of this 3-objective benchmark is the
total number of 0-bits, while the second and third objective are
the numbers of 1-bits in the first and second half of the bitstring,
respectively. We show that by employing sufficiently many ref-
erence points (a small constant factor more than the size of the
Pareto front, as suggested for this algorithm) and a population at
least of the size of the Pareto front, 𝑁 ≥ ( 𝑛2 + 1)2, once a solu-
tion for a point on the Pareto front is found, the population will
always contain such a solution. This is a notable difference to the
NSGA-II [17] and enables us to prove that after an expected num-
ber of 𝑂 (𝑛 log𝑛) iterations the NSGA-III (for all future iterations)
has a population that covers the Pareto front. Overall, this result
indicates, in a rigorous manner, that the selection mechanism of the
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NSGA-III has significant advantages over the one of the NSGA-II.
Possibly, our result also indicates that more algorithm users should
switch from the NSGA-II, still the dominant algorithm in practice,
to the NSGA-III. We note that the latter has as additional parameter
the number of reference points, but the general recommendation
to use by a small factor more reference points than the size of the
Pareto front (or, in the case of approximate solutions, the size of
the desired solution set) renders it easy to choose this parameter.
We also note that our results support this parameter choice, our
proven guarantees also hold from the point on when the number
of reference points is a small constant factor larger than the Pareto
front. We finally note that using more reference points does not
significantly increase the runtime (not at all when counting fitness
evaluations and only moderately when counting wall-clock time),
so in any case the choice of this parameter appears not too critical.

In a small set of experiments, we demonstrate that the NSGA-III
is indeed able to solve 3OMM while the NSGA-II, even with larger
population sizes, struggles to cover more than a certain ratio of
the Pareto front. Further, our experiments show that the runtime
of the NSGA-III is increasing when using crossover in addition to
the mutation operator. This suggests that progress is made mainly
due to mutation, and justifies that our analyses do not examine the
potential benefits of crossover.

Summary and conclusion:We provide a theoretical understanding
on how theNSGA-III copeswith three objectiveswhere the NSGA-II
struggles: using reference points instead of crowding distance as a
tie breaker in the survival process guarantees that non-dominated
solutions are never lost in future iterations (for suitable choices of
the parameters). Using this insight, we give a first mathematical
runtime analysis of the NSGA-III and show that it solves the 3OMM
benchmark in 𝑂 (𝑛 log(𝑛)) iterations (when using a sufficiently
large population size and sufficiently many reference points).

Subsequent work: Our analysis of optimization time of the NS-
GA-III has been extended in several directions. Most importantly,
the work of Opris, Dang, Neumann and Sudholt [12] generalizes
our central result of not loosing values on the Pareto front to gen-
eral problems with an arbitrary, but constant, number of objectives.
They use this insight to analyze the optimization time of the NS-
GA-III on three established many-objective benchmarks. In our
independent and parallel study of the optimization time of various
multi-objective evolutionary algorithms and on many-objective
benchmarks (also for non-constant number of objectives) [16], we
argued that these results extend to the NSGA-III provided that a re-
sult as shown in [12] is shown (hence now our results also hold for
the NSGA-III). Based on our paper, Qian [14] suggests to study the
NSGA-III for approximating clusterings. Zheng and Doerr [18] state
that our results just like their analysis of the SMS-EMOA (which is
very similar to the NSGA-II but also replaces the crowding distance
tie breaker) show that the struggles of the NSGA-II with more than
2 objectives are not due to its the general structure but are caused
by using crowding distance as a tie breaker. A similar conclusion
can be drawn from [10], who show that the NSGA-II with a further
tie-breaker after the crowding distance can easily optimize several
classic many-objective benchmarks.
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