

Diffusion anisotropy of Helium-3 gas in ordered Al₂O₃ aerogels

Hadi Loutfi¹, Geneviève Tastevin¹, Pierre-Jean Nacher¹, Vyacheslav Kuzmin², Kajum Safiullin³

¹Laboratoire Kastler Brossel, ENS-PSL University, CNRS, Sorbonne Université, Collège de France, Paris, France ²Laboratory of Magnetic Resonance Spectroscopy, Institute of Physics, Kazan Federal University, Kazan, Russia ³ Since Nov.2022: Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany

Introduction: Helium-3 was used for comparison of NMR measurement of gas diffusion along different directions within nanoporous ordered Al_2O_3 aerogels at room temperature in Paris and low temperature in Kazan [1,2].

Aim: This work aimed at a test of the validity and limit of the Knudsen model of gas diffusion within native and compressed aerogel samples [2] for a wide range of gas densities and associated mean free paths.

Methods: At 300K, 10-30 mbar of laser-polarised ³He gas mixed with 0-1 bar of N₂ (effective pressure P_{eff} =10-2500 mbar) was used for multiple (CPMG or XY-16 sequences) spin-echo studies at 2.6 mT with pulsed gradients G of fixed or variable directions and strengths. At 4.2 K, diffusion was probed at 0.5 T with Boltzmann polarised ³He gas (10-1000mbar), Hahn-echoes, and static gradients.

Results: Within aerogel, diffusion was strongly restricted at all gas densities and a "free diffusion regime" was achieved (negligible effects of sample boundaries). At 300 K, ³He polarisation (~50%) typically yielded SNRs around 200. Diffusion anisotropy (changes in apparent diffusion coefficient D_{app} with the angle between G and aerogel fibers) was highest at low P_{eff} (up to a factor of 2). At 4.2K, we have observed that the degree of diffusion anisotropy depends significantly on the aerogel porosity, notably in the compressed samples. We have also observed a strong decrease of gas diffusion and a deviation from the expected Knudsen) behaviour, attributed to the low-T enhanced influence of the walls attractive potential on gas dynamics.

Discussion: Our measurements of anisotropy and pressure dependence of D_{app} at 300 K support and complemented the 4.2 K findings. They significantly extend the range of gas densities used to probe restricted gas diffusion in such complex materials.

anr.fr/Projet-ANR-19-CE30-0023; RSF project: 20-42-09023
Kuzmin et al. (2023) doi.org/10.1021/acs.jpcb.2c08251