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Two-phase magma flow with phase exchange
– Part I –

Physical modeling of a volcanic conduit
Gladys Narbona-Reina∗, Didier Bresch†, Alain Burgisser ‡, Marielle Collombet‡

August 24, 2024

Abstract

In a review paper in this same volume, we present the state of the art on modeling of compressible
viscous flows ranging from single-phase to two-phase systems. It focuses on mathematical properties related
to weak stability because they are important for numerical resolution and on the homogenization process that
leads from a microscopic description of two separate phases to an averaged two-phase model. This review
serves as the foundation for Parts I and II, which present averaged two-phase models with phase exchange
applicable to magma flow during volcanic eruptions. Here, in Part I, after introducing the physical processes
occurring in a volcanic conduit, we detail the steps needed at both microscopic and macroscopic scales to
obtain a two-phase transient conduit flow model ensuring: 1) mass and volatile species conservation, 2)
disequilibrium degassing considering both viscous relaxation and volatile diffusion, and 3) dissipation of total
energy. The resulting compressible/incompressible system has 8 transport equations on 8 unknowns (gas
volume fraction and density, dissolved water content, liquid pressure, and the velocity and temperature of both
phases) as well as algebraic closures for gas pressure and bubble radius. We establish valid sets of boundary
conditions such as imposing pressures and stress-free conditions at the conduit outlet and either velocity
or pressure at the inlet. This model is then used to obtain a drift-flux system that isolates the effects of
relative velocities, pressures, and temperatures. The dimensional analysis of this drift-flux system suggests that
relative velocities can be captured with a Darcy equation and that gas–liquid pressure differences partly control
magma acceleration. Unlike the vanishing small gas–liquid temperature differences, bulk magma temperature
is expected to vary because of gas expansion. Mass exchange being a major control of flow dynamics, we
propose a limit case of mass exchange by establishing a relaxed system at chemical equilibrium. This single-
velocity, single-temperature system is a generalization of an existing volcanic conduit flow model. Finally, we
compare our full compressible/incompressible system to another existing volcanic conduit flow model where
both phases are compressible. This comparison illustrates that different two-phase systems may be obtained
depending on the governing unknowns chosen. Part II presents a 1.5D version of the model established herein
that is solved numerically. The numerical outputs are compared to those of another steady-state, equilibrium
degassing, isothermal model under conditions typical of an effusive eruption at an andesitic volcano.
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1 Introduction
A magma is a three-phase mixture of gas bubbles, solid crystals and silicate liquid. During its deep storage, in
magmatic reservoirs, the gas is not abundant and the magma is essentially two-phase with crystals in suspension
in the silicate liquid. During a volcanic eruption, the magma rises to the surface, which creates gas bubbles by
decompression when volatile components such as H2O or CO2 dissolved into the silicate liquid reach saturation.
If the silicate liquid is viscous enough, the ascending magma can simply be viewed as gas bubbles suspended in
a complex fluid where liquid and crystals move together.

During an eruption, the degree of coupling between the liquid and gas phases of the magma strongly deter-
mines the eruptive style. Explosive eruptions are a consequence of the strong coupling between gas and liquid,
which yields magmas with large proportions of gas prone to fragmentation. Phase decoupling, on the other hand,
enables the gas to escape gently out of the volcanic edifice and fosters effusive eruptions. There is no consensus
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on what are the minimal elements to recover the transition between effusive and explosive eruptive regimes. A
closely related issue is that many volcanoes with frequent effusive–explosive transitions also feature oscillations
of mass flow rate at the vent. Both regime transitions and oscillating effusion rates are observed during the
same eruptive period, which suggests that the peculiarities of the overall architecture of the plumbing system
play a limited role in the matter. Instead, these observations point to a limited set of controlling processes, and
two-phase flow modeling with phase exchange has been shown to potentially be a unifying framework to study
them [Gonnermann and Manga, 2007,Burgisser and Degruyter, 2015].

Two-phase models have first been used to show that flow oscillations can result from rheology changes due to
microlites (small crystals growing during ascent in response to decompression) [Melnik and Sparks, 1999,Costa
et al., 2013]. Similar models have also shown that temperature changes play a role in modulating flow rates
through rheology changes [Costa et al., 2007]. More recently, however, an isothermal two-phase model without
mass exchange but with variable permeability has shown that gas–liquid coupling is sufficient to create flow rate
oscillations [Michaut et al., 2009,Michaut et al., 2013]. Mass exchange, and temperature or rheology variations
may thus not be necessary to capture flow instabilities.

Mass exchange is measured by the degassing rate, which is a combined effect of diffusion of dissolved water
towards gas bubbles and pressure equalisation between the liquid and the gas. Simply dismissing it as a control
of flow modulation is not possible; the transition between explosive and effusive regime has been shown to be
fostered by slow diffusion of the dissolved water towards the gas bubbles [Mason et al., 2006]. Finding an ap-
propriate exchange rate between liquid and gas is challenging. Although exchange rates are well-established at
the micro-scale of a single gas bubble (e.g. [Proussevitch et al., 1993b,Lensky et al., 2004,Forestier-Coste et al.,
2012]), the two-phase flow formulation is a macro-scale, homogenized model. The scale transition implies thus
information loss. The assumption of equilibrium degassing (a diffusion fast enough to always keep the dissolved
water content at the solubility value) has thus often been adopted in two-phase flow models (e.g., [Melnik,
2000,Degruyter et al., 2012]).

Often conduit flow models include many complexities [Gonnermann and Manga, 2007], and here we try to
minimize them by setting a few initial simplifying assumptions such as modeling a pure silicate liquid, or assuming
a constant bubble number density (thereby excluding nucleation processes). Our aim is to propose a two-phase
system with appropriate exchange terms and to provide important properties such as dissipation and invariant
region for the system. Using one of the homogenization techniques presented in the review paper [Bresch et al.,
2024], we propose a new formulation of mass exchange rate and compare it with others rates from the liter-
ature. The review paper [Bresch et al., 2024] also established that if mass and momentum conservation are
given, one can derive a energy balance from these two conservation relationships. We thus establish the energy
balance of our system with the constraints that one phase is compressible and the other not and that the system
should dissipate energy. The resulting equations describe changes in phase volume fraction, velocities, pressures,
and temperatures in the system. As our final model still involves many processes, we draw from the review
paper [Bresch et al., 2024] the techniques to establish a drift flux formulation of our system that is amenable
to scaling. Using a wide range of natural values for the involved parameters, we establish a minimal system
at the main order and we assess the consequences of the assumption of equilibrium degassing by proposing a
relaxed version of our model. Finally, we compare our approach of deriving energy conservation from given mass
and momentum equations of a compressible–incompressible system to an existing model [La Spina et al., 2014]
derived by assuming energy conservation from thermodynamics in a system where both phases are compressible.
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2 Physical model of volcanic conduit flow
The modeling of magma ascending within a vertical conduit from a magma reservoir to the Earth’s surface
implies peculiarities that the general models presented in the review paper [Bresch et al., 2024] do not contain.
We set a few initial simplifying assumptions to keep the modeling tractable. The magma is composed of liq-
uid and gas, which in turn are composed of several chemical components. It is usual to consider that the gas
phase is just composed of water because it represents more than 95 vol% of this phase. We assume that the
liquid phase (silicate liquid, or melt for short) is incompressible and composed of two components, H2O and
an average component representing all the other oxides. We denote by Cl the weight concentration of H2O in
the liquid, hence (1−Cl) represents the concentration of the other oxides. Both phases may exchange water mass.

Crystals will be neglected, keeping the system as a two-phase flow sensu stricto. This is an acceptable as-
sumption as long as the crystal load is small because melt viscosity is generally high enough for liquid and crystals
to move together. Neglecting crystals and crystallization is a limitation as both also influence magma ascent
dynamics (e.g., [La Spina et al., 2016,Arzilli et al., 2019,Bamber et al., 2022]) by affecting the rheology of the
system. This is especially true at high crystal volume fraction, when the suspension becomes a granular system
subject to jamming, which affects both solid and liquid velocities (see the review paper, Section 2.3 [Bresch et al.,
2024]). The release of latent heat of crystallization also affects the temperature of the magma. As crystallization
proceeds by cooling or by dehydration, the water concentration in the liquid melt increases, increasing volatile
exsolution.

Fragmentation is not considered explicitly; the model can thus be used to approach the effusive–explosive
transition from the effusive regime. Integrating fragmentation is generally done by a threshold-controlled switch
of the constitutive relationship of the liquid viscosity so that the carrier phase becomes the gas instead of the
liquid (e.g., [Melnik, 2000,Degruyter et al., 2012]). This approach does not change the structure of the transport
equations, which means that adding fragmentation to the models presented herein would not affect the balances
of mass, momentum, and energy. Finally, the bubble number density with respect to the liquid, N , is considered
constant. Varying N to account for nucleation (e.g., [Chernov et al., 2014]) and coalescence (e.g., [Mancini
et al., 2016]) was a tempting prospect but it significantly increases the complexity of the homogenization process.
It was thus left aside for future works.

Even with the simplifications mentioned above, many processes and length scales remain involved in controlling
flow dynamics (Figure 1). At the smallest scale of a single bubble, the main processes are the diffusion of water
from the melt into the bubble and the viscous resistance of the melt to gas expansion. Bubbles are assumed to
form a mono-disperse population homogeneously distributed in space at the mesoscale. Finally, at the scale of
the volcanic conduit, the gas–liquid flow is controlled by viscous resistance against conduit wall over the whole
length of the conduit. We describe the macroscale transport equations (Section 2.1) before focusing on closures
equations, which are based on a microscale description (Section 2.2) that is averaged at the mesoscale (Section
2.3). These closure equations are integrated into the final macroscale system in Sections 2.4–2.6.

2.1 Mass and momentum transport equations

We consider a two-phase, three-component model of a liquid–gas mixture where ϕ represents the gas volume
fraction in the system and then (1 − ϕ) is the liquid volume fraction. The gas has only one component, water
vapor (which may be in supercritical conditions). The liquid phase is composed of H2O with concentration Cl
in the liquid phase, the other oxides (inert component) having the concentration 1− Cl. The total mass of the
liquid phase is thus decomposed as (1− ϕ)ρl = (1− ϕ)ρlCl + (1− ϕ)ρl(1− Cl). The velocities are denoted by
uk, and the densities by ρk, with k = l, g for liquid and gas phases respectively.
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Figure 1: Scales over which the eruptive processes modeled herein occur: a single gas bubble (blue frame), a
bubble population (cyan frame), and a volcanic conduit (magenta frame).

Mass equations. In our system the components are conserved, that is, the oxides mass in the liquid phase and
the total water mass,

∂t((1− ϕ)ρl(1− Cl)) + div((1− ϕ)ρl(1− Cl)ul) = 0, (2.1)

∂t(ϕρg + (1− ϕ)ρlCl) + div(ϕρgug + (1− ϕ)ρlClul) = 0. (2.2)

Summing up these two equations yields the conservation of the total mass in the system (see Remark 2.1 below).
The exchange of mass between liquid and gas occurs between the gas phase ϕρg and the dissolved gas in the liquid
phase, (1 − ϕ)ρlCl. Denoting RH2O the gas-liquid mass transfer rate, the mass equations for these quantities
read

∂t(ϕρg) + div(ϕρgug) = RH2O, (2.3)

∂t((1− ϕ)ρlCl) + div((1− ϕ)ρlClul) = −RH2O. (2.4)

The sum of (2.1) (oxides in liquid phase) and (2.4) (water in liquid phase) gives the liquid phase mass equation

∂t((1− ϕ)ρl) + div((1− ϕ)ρlul) = −RH2O. (2.5)

Remark 2.1. Conservation of the total mass is fulfilled. We introduce the mixture density and velocity as

ρ = ϕρg + (1− ϕ)ρl, u = ϕρgug + (1− ϕ)ρlul
ρ

. (2.6)

Then from equations (2.3) and (2.5) we get

∂tρ+ div(ρu) = 0. (2.7)

�
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Momentum equations. Momentum conservation reads for both phases:

(2.8)∂t((1−ϕ)ρlul)+div((1−ϕ)ρlul⊗ul)+∇((1−ϕ)pl)−div((1−ϕ)Dl)−〈pint,lId−Dint,l〉∇(1−ϕ)
− fdrag − (1− ϕ)ρlg + 〈uI〉RH2O = 0

(2.9)∂t(ϕρgug) + div(ϕρgug ⊗ ug) +∇(ϕpg)− div(ϕDg)− 〈pint,gId−Dint,g〉∇ϕ
+ fdrag − ϕρgg − 〈uI〉RH2O = 0

where Dl,Dg are the diffusive quantities of the viscous stress tensors and fdrag is the liquid–gas drag. The
transport equations above are the basis of well-known two-phase models, see for example [Gavrilyuk and Saurel,
2002, Guillemaud, 2007, Ishii, 1975, Ishii and Hibiki, 2011] and see also the review paper Section 3.1, [Bresch
et al., 2024]. They are obtained by an averaging process over the mixture domain, and so jump conditions at
the interface between phases must be prescribed. As a result, these relations contain the averaged values of the
velocity and stress tensors at the gas/fluid interface, denoted here like in [Bresch et al., 2024] respectively as
〈uI〉, 〈pint,lId−Dint,l〉, 〈pint,gId−Dint,g〉. In particular, the momentum exchange due to mass transfer between
phases is a function of the exchange velocity ±〈uI〉RH2O. Appropriate closures for these interface quantities
are given later in the microscopic study (Section 2.3) and when establishing the energy balance of the system
(Section 2.5).

The diffusive quantities. The gravity vector being g = (0, 0,−ḡ) (ḡ = 9.81m/s2), the viscous tensors Dl,Dg are
given by

Dg = λgdiv ugId + 2ηgD(ug) (2.10)

Dl = λldiv ulId + 2ηlD(ul) (2.11)

where D(u) = 1
2(∇u+∇tu) is the deformation rate tensor of a velocity field u. We neglect the viscosity at the

gas/liquid interface. For each phase (j = l, g), λj = ζj − 2
3ηj with ζj and ηj the volume and dynamic shear

viscosities, respectively. For H2O in either gas or supercritical state, ζg = 11ηg/3 and λg = 3ηg. For the liquid,
ζl = ηl and λl = 1

3ηl [Webb and Dingwell, 1990], ηl being a function of Cl and Tg (e.g., [Hess and Dingwell,
1996]).

The drag term. Following [Kozono and Koyaguchi, 2009, Kozono and Koyaguchi, 2010], the drag term fdrag
depends on the region where the conduit the magma is. Here we will consider a bubbly and a permeable flow for
the magma in the conduit, ϕbp ∼ 0.6 being the threshold of the gas volume fraction between them. The critical
volume fraction for fragmentation is denoted by ϕc ∼ 0.8 [Melnik, 2000]. For the bubbly flow region (ϕ < ϕbp)
the drag term is given by

fb = 3ηl
R2 ϕ(1− ϕ)(ug − ul)

and for the permeable flow region (ϕbp < ϕ < ϕc) in laminar flow regime it is instead

fp = ηg
k
ϕ(1− ϕ)(ug − ul)

for k the permeability coefficient of the magma. Then we introduce the following unified formulation for the drag
term:

fdrag = Kd ϕ(1− ϕ)(ug − ul) with Kd =


3ηl
R2 bubbly flow

ηg

k permeable flow
. (2.12)
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Pressure law. The ideal gas law relates gas density to gas pressure:

ρg = pg
c0Tg

(2.13)

where c0 is the ideal gas constant for water (461.52 J/kg/K) and Tg is the gas temperature that becomes a new
unknown of the system. Hence we must give a closure equation for Tg, which will be described when establishing
the energy of the system in Section 2.5.

As ρl is assumed to be constant and thus the liquid is incompressible, we will provide in Section 2.3 a closure
equation for the liquid pressure, pl, that encodes the evolution of the bubbles, which will yield a formula of pl in
terms of the other unknowns.

The system has insofar 7 unknowns (ϕ, ρg, Cl, pl, ul, ug, Tg) for 5 equations: (2.5), (2.3), (2.1), (2.8), (2.9).
Closing the system involves several steps. First, the physics of gas bubble growth at the microscopic scale detailed
in Section 2.2 allows us to add an equation for the gas volume fraction, ϕ, and a closure for the mass exchange
term RH2O. Next, scaling these processes up to the macroscopic scale in Section 2.3 yields in Section 2.4 a
system without energy balance with 7 unknowns for 6 transport equations by adding the scaled-up equation for
ϕ and an algebraic equation for the bubble radius, R. Finally, Section 2.5 shows how to use the energy balance
to add the liquid temperature, Tl, as a final variable and establish the needed equations for both temperatures.
Section 2.6 summarizes our final, closed system with 8 unknowns (ϕ, ρg, Cl, pl, ul, ug, Tg, Tl), as many transport
equations, and algebraic closures for pg and R.

2.2 Closure equations: bubble growth at the microscopic scale

To establish the closure equations for the gas volume fraction ϕ and the mass exchange term RH2O, we focus
on the microscopic scale of one bubble submerged in the melt. According to previous work ( [Plesset and Pros-
peretti, 1977,Arefmanesh and Advani, 1991,Proussevitch et al., 1993b,Leighton, 1994,Brennen, 1995,Toramaru,
1995, Lensky et al., 2001,Forestier-Coste et al., 2012,Mancini et al., 2016,Toramaru, 2022]), the description of
bubble growth in response to pressure changes involve several processes at the microscopic level. On the other
hand, scaling this description up to the macroscopic level involves additional assumptions. At the microscopic
level, we adopt the common assumption that the submerged bubble is affected by two effects that controls its
size. The first one is the deformation of the bubble itself by the gas expansion caused by the pressure jump at
its interface with the melt. At the macroscopic level, this will yield the closure equations for ϕ. The pressure
jump also causes an exchange of water mass between the bubble and the melt that is directly related to the
evolution of the water concentration in the melt. At the macroscopic level, this will give us the definition of
RH2O. An additional effect at that level is the bubble transport within the melt, which is assumed to be driven by
the −macroscopic− fluid velocity field ul (cf. [Leighton, 2007]). Section 2.2.1 below focuses on the microscopic
effects and the scaling up to the macroscopic level is presented in Section 2.3.

2.2.1 Gas volume fraction equation

Bubble volume changes due to gas expansion is described by the Rayleigh-Plesset equation that governs the
dynamics of a gas bubble submerged in an infinite incompressible liquid with constant viscosity. The derivation of
the Rayleigh-Plesset equation is made from the Navier-Stokes equations written in spherical coordinates, where
r is the radial coordinate originating from the fixed bubble center. We thus consider the following Lagrangian
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coordinates for the radial velocity ur = ur(t, r(t)),
dr

dt
(t, r0) = ur(t, r(t, r0)),

r(t, r0)|t=0 = r0.
(2.14)

In this section all variables are written in these Lagrangian coordinates and for clarity we use the calligraphic
notation for them to avoid confusion with the Eulerian variables. Variables represented with greek letters are
adorned by a tilde and there are no changes in the notation of the constant variables. Thus, for any variable
F = F(t, r(t)) we introduce the Lagrangian derivative

dF
dt

= Ḟ = ∂tF(t, r(t)) + ur(t, r(t))∂rF(t, r(t)). (2.15)

In what follows the explicit dependence on (t, r(t)) is omitted for conciseness.

Rayleigh-Plesset with a bubble in an infinite medium. The Rayleigh-Plesset equation originally presented
in [Scriven, 1959] is based on the analysis of the behavior of a bubble of radius R, the center of which is as-
sumed to be at rest. The derivation of the Rayleigh-Plesset equation is classic and can be found in the literature
(e.g., [Toramaru, 2022]). For completeness we included it in Appendix A. It is obtained through the integration
of the Navier-Stokes equation for the liquid, with radial velocity ur and pressure Pl. The most relevant point is
that the dynamic mechanical equilibrium at the bubble/liquid interface given by the Young-Laplace equation is
considered as the boundary condition at the bubble wall (see (A.4))

Pg − 2 σ̃
R

= Pl − 2ηl∂rur, at the bubble/liquid interface, (2.16)

where Pg denotes the gas pressure, σ̃ > 0 is the surface tension coefficient and the gas viscosity is neglected at
the interface. This condition will be also considered for our macroscopic model to determine the stress tensor at
the interface appearing in the momentum equations (2.8)-(2.9), as we detail in Section 2.3.
The Rayleigh-Plesset equation when the inertial terms are neglected reads

Ṙ = R
4ηl

(
Pg − Pl −

2σ̃
R

)
. (2.17)

where Ṙ represents the radial velocity at the bubble interface. This is the equation that we consider for the
evolution of the bubble growth.

Remark 2.2. We assume herein that the microscopic and macroscopic surface tension coefficients (σ̃ and σ,
Section 2.3 below) are constant. Recent advances [Hajimirza et al., 2019], however, suggest that surface tension
in magmatic liquids follow:

σR = σi
1 + 2δT /R

where σR is a size-dependent surface tension coefficient, σi is the constant surface tension coefficient of a planar
surface, and δT is called the Tolman length (0.32 nm in rhyolitic liquids, [Hajimirza et al., 2019]). As a result,
the Rayleigh-Plesset pressure term 2σ̃

R becomes 2σi
R+2δT

where both σi and δT are constants.

Differential equation on the volume fraction ϕ̃. To extend this single-bubble model to a magma containing
many bubbles, we follow the works of [Proussevitch et al., 1993b, Toramaru, 1995, Proussevitch and Sahagian,
1998,Lensky et al., 2001,Lensky et al., 2004] that have since been widely adopted (e.g., [Forestier-Coste et al.,
2012,Mancini et al., 2016, Su and Huber, 2017]). The magma is considered as a set of identical spherical cells
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Figure 2: Configuration of a monosized bubble population in an infinite melt (adapted from [Lensky et al., 2004])

composed of a spherical gas bubble of radius R in a surrounding liquid melt of radius S > R, so the bubbles
do not interact with each other (see Appendix A for more details and in particular, Figure 2 for a sketch and
notation). The packing arrangement considers that these cells slightly overlap uniformly in the suspension in a
way such that the gas volume fraction of magma is:

ϕ̃ = R
3

S3 , (2.18)

In order to find a continuity equation for the Lagrangian, microscopic gas volume fraction, ϕ̃, we use this
definition to write

˙̃ϕ = 3R
2

S2
SṘ −RṠ
S2 .

As the liquid density ρl is constant, the volume of liquid at the microscopic level, 4π(S3 −R3)/3, is conserved.
We thus have Ṡ = R2

S2 Ṙ, which gives:

˙̃ϕ = 3R
2

S2
Ṙ
S

(
1− R

3

S3

)
= 3R

3

S3

(
1− R

3

S3

)
Ṙ
R

= 3ϕ̃(1− ϕ̃)Ṙ
R
.

So embedding (2.17) into that last relationship yields the evolution equation of the gas volume fraction:

˙̃ϕ = 3
4ηl

ϕ̃(1− ϕ̃)
(
Pg − Pl −

2σ̃
R

)
. (2.19)

A discrete homogenization procedure to deduce the equation on the volume fraction ϕ̃ in one dimension.
In this subsection, we explain how to use the method developed in the review paper, Section 3.2 [Bresch et al.,
2024] (first introduced in [Burtea et al., 2023]) to deduce a volume fraction equation for a compressible mixture in
one dimension (1D). We consider the 1D case with bubbles arranged in such a way that all their radii are aligned.
We denote by x(t) the position of the bubble interface at time t and consider the surrounding cell [xg(t), xl(t)]
with respective distances εg(t) = x(t)− xg(t), εl(t) = xl(t)− x(t) (see figure 3). We define α(t) as the volume
fraction of the phase g in this cell that is

α(t) = εg(t)
εg(t) + εl(t)

.
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x(t)

xgxl

l g

Figure 3: 1D arrangement of the bubbles for homogenization with εg = R, εl = S −R.

Omitting the dependence on t for conciseness, we can write

Dtα = (εg + εl)Dtεg − εgDt(εg + εl)
(εg + εl)2

If we adopt the notation used here, then the phase g corresponds to the gas and the phase l to the melt and

εg = R, εl = S −R, α = R
S

so
Dtα = SDt(R)−RDt(S)

S2

At the center of the cell x we consider, as for the Rayleigh-Plesset equation, the dynamic mechanical equilibrium:

Pg − 2ηg(∂xu)g −
2σ
R

= Pl − 2ηl(∂xu)l. (2.20)

Since we neglect the viscosity of the gas phase, we obtain

Pg = Pl − 2ηl(∂xu)l+
2σ
R

= Pl − 2ηl
Dt(S)−Dt(R)
S −R

+2σ
R

where we approximated (∂xu)l ∼ ul−u
εl

with ul = u(xl). Assuming Dt(R) is known, we obtain Dt(S) from this
expression to replace it in Dtα. First,

Dt(S) = Dt(R)− S −R2ηl

(
Pg − Pl−

2σ
R

)
,

and embedding it in the previous expression of Dtα gives,

Dtα = Dt(R)
S

− R
S2Dt(S) = Dt(R)

S

(
1− R
S

)
+ R(S −R)

2ηlS2

(
Pg − Pl−

2σ
R

)
= α(1− α)

(
Dt(R)
R

+ 1
2ηl

(
Pg − Pl−

2σ
R

))
If we identify Dt(R) = Ṙ and use the equation (2.17), we obtain

Dtα = α(1− α)
(
Ṙ
R

+ 1
2ηl

(
Pg − Pl−

2σ
R

))
= α(1− α) 3

4ηl

(
Pg − Pl−

2σ
R

)
(2.21)
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Despite the different definition of the volume fraction α (1D) versus ϕ̃ (3D), we obtain the same kind of
relationships (compare (2.19) and (2.21)). Remark that the two representations are equivalent when R ≈ S
because the cubic configuration implied by the 1D approximation then becomes close to the spherical one and
ϕ̃ ≈ α.

2.2.2 Mass exchange term RH2O

Equation on the bubble number density per unit volume of melt. It is usually introduced the bubble number
density per unit volume of melt, denoted by N , that is given in terms of the total bubble number density ñ, as

N (1− ϕ̃) = ñ. (2.22)

Using previous definitions we write ñ =
(

4π
3 S

3
)−1

=
(

4π
3
R3

ϕ̃

)−1
, which yields

N = 3
4πR3

ϕ̃

1− ϕ̃ . (2.23)

The derivative of this expression is:
˙̃ϕ = ϕ̃(1− ϕ̃)

(
3Ṙ
R

+ Ṅ
N

)
,

so thanks to (2.17) and (2.19), we obtain that the bubble number density with respect to the melt is conserved:

Ṅ = 0. (2.24)

The microscopic definition of gas volume fraction implies that the magma is arranged as adjacent spherical
cells where there always is melt surrounding a bubble, which stops gas bubbles to interact directly with each
other. As a consequence, no coalescence/nucleation effect is considered in the system. The limit case ϕ̃ → 1
thus implies an infinite N . In detail, however, the arrangement of melt cells is such that a certain overlap can
occur (see Figure 2). There is thus an opportunity for two bubbles to come into contact with each other depend-
ing on the overlap distance. In the Lagrangian microscopic framework, however, the assumption of a uniform
distribution (i.e. all bubbles have the same radius R) implies that all bubbles are in contact at the same time.
So, introducing coalescence/nucleation effects can only be done in the Lagrangian framework if bubbles have
different sizes. For coalescence, this is discussed in [Mancini et al., 2016] for a magma containing a polydisperse
distribution of bubbles.

Water mass balance at the interface of a bubble. A description of the mass exchange between the bubbles
and the melt at the microscopic level is needed to establish the macroscopic closure for RH2O. In the Lagrangian
framework, the driving force is the changes experimented by the pressures. In magmas, mass diffusion at the
bubble interface plays a large role in controlling bubble size in the melt cells (e.g. [Plesset and Prosperetti,
1977, Arefmanesh and Advani, 1991, Proussevitch et al., 1993b, Lyakhovsky et al., 1996, Lensky et al., 2004]).
Interesting macroscopic closures for the mass diffusion are found in [Lyakhovsky et al., 1996] and [Mancini et al.,
2016]. The comparison of these relationships with the closure we propose and the resulting macroscopic mass
exchange variable RH2O is analyzed in Appendix A.2.

Henry’s law, which relates pressure and the concentration of the dissolved water in the melt (C), is valid for
silicate melts (e.g., [Burnham, 1975]). In the fluid adjacent to the bubble, Henry’s law reads:

Ceq = khP1/2, (2.25)
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where kh is Henry’s constant. P at the interface is equal to Pg so that when there is a pressure disequilibrium in
the gas, the concentration of dissolved water at the bubble wall changes [Lensky et al., 2004]. When C|r=R > Ceq,
the bubble grows and when C|r=R < Ceq, the bubble shrinks [Plesset and Prosperetti, 1977,Proussevitch et al.,
1993b]. The moving boundary diffusion equation of C is:

dC
dt

= 1
r2∂r(r

2D∂rC); R ≤ r ≤ S; (2.26)

where, as in (2.15), dC
dt = ∂tC + ur∂rC, and D is the volatile diffusivity, which we here consider constant in a

given melt cell (see [Forestier-Coste et al., 2012] for an example of variable diffusion). This equation is completed
by the following boundary conditions:

(C)|r=R = kh
√
Pg and (∂rC)|r=S = 0. (2.27)

The first condition is the equilibrium at the bubble interface established by (2.25), and the second condition
stipulates that the water concentration flux is zero at the outer limit of the melt cell. Notice that consider-
ing the quasi-static approximation, which is valid at small Peclet number (Peclet number is the ratio between
the diffusion and viscous time scales Pe = θd

θv
, where θd = R2/D, θv = η/∆P .), equation (2.26) reduces to

1
r2∂r(r2D∂rC) = 0, which in turn leads to the equilibrium solution (2.25).

To study the water mass exchange at the interface bubble level, we define the bubble gas mass as:

Mg = 4π
3 ρ̃gR3. (2.28)

The conservation of the total water in the cell states that the sum of the water in the bubble and the water
dissolved in the melt must remain constant in time:

Mg +
∫ S
R

4πr2ρlCdr = 4π
3 S

3
0C0ρl. (2.29)

Here S0 represents the radius of the influence region for a zero radius bubble, S3
0 = S3 −R3, that is constant in

time, and C0 is the constant water concentration in the melt for a bubble of radius zero. We rewrite this equation
in radial coordinates:

dMg

dt
+
∫ S
R

d

dt
(4πr2ρlC)dr = 0.

Using equation (2.26) to write dC
dt = 1

r2∂r(r2D∂rC) yields that

dMg

dt
+ 4πS2ρlD(∂rC)|r=S − 4πR2ρlD(∂rC)|r=R = 0.

Using the previous boundary condition at the limit of the cell r = S in (2.27), we obtain the water mass balance
at the bubble interface:

dMg

dt
= 4πR2ρlD(∂rC)|r=R, (2.30)

which represents the accumulation of water in the bubble by diffusion. On the right hand side, the term
D(∂rC)|r=R represents the diffusion flux of dissolved water from the melt to the gas bubble at the interface
(Fick’s law) [Arefmanesh and Advani, 1991]. So ρlD(∂rC)|r=R is the mass flux at the interface per unit area and
it depends on the concentration gradient at the bubble interface.

The concentration gradient at the interface is given by equation (2.26)-(2.27). This is an issue because the
resolution of this equation is not direct. As a result, several analysis have been performed in order to find a profile
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for the water concentration C in different dynamic regimes [Proussevitch et al., 1993b,Arefmanesh and Advani,
1991,Lensky et al., 2004,Lyakhovsky et al., 1996,Forestier-Coste et al., 2012,Mancini et al., 2016].

Here we propose a simple approximation of the concentration gradient using Taylor’s formula:

C(r) = (C)|r=R + (∂rC)|r=R(r −R) +O((r −R)2)⇒ (∂rC)|r=R ∼
C(r)− (C)|r=R

r −R
.

By evaluating this expression at the outer melt boundary (r = S), we find

(∂rC)|r=R ∼
(C)|r=S − kh

√
Pg

S −R
. (2.31)

The value (C)|r=S can be considered as a water concentration independent of r that we must define. The closure
of the concentration gradient given by (2.31) determines the water mass balance at the bubble interface thanks
to equation (2.30). See Appendix A.2 for comparison with the closures proposed in [Lyakhovsky et al., 1996]
and [Mancini et al., 2016].

Remark 2.3. We would like to analyze the behavior of the rate of mass exchange dMg

dt at limit cases that are
relevant at the macroscopic scale. It is desirable that dMg

dt tends to 0 when R tends to 0 since in this case there
would be no gas in the cell and thus no exchange happens. Conversely, when R tends to S, there is only gas in
the cell, so it is convenient that dMg

dt to tends to ∞. In other words, we want the following limits to be satisfied:

lim
R→0

dMg

dt
= 0 and lim

R→S

dMg

dt
=∞. (2.32)

For the proposed approach (2.31), (2.30) reads

dMg

dt
= 4πρlD

R2

S −R

(
(C)|r=S − kh

√
Pg
)

for any fixed value of (C)|r=S . We easily check that both limits are achieved. �

Macroscopic mass exchange rate. The gas mass exchange at the bubble level needs to be scaled up to
the macroscopic framework in order to find an expression for RH2O, which appears for instance in the mass
balance (2.4) of the concentration of water in the melt Cl. As all the calculations done in this section involve
variables written in Lagrangian coordinates (2.14), we also introduce the notation RH2O for the exchange rate
in Lagrangian coordinates. Since dMg

dt is the water mass exchange rate over the surface of one bubble, we may
identify

RH2O = ñ
dMg

dt
(2.33)

where ñ is the total bubble number density, which for uniform cells − the layout considered above − is defined
as ñ =

(
4π
3 S

3
)−1

. Equation (2.30) describes the rate ofMg that we remind here, dMg

dt = 4πR2ρlD(∂rC)r=R,
where D is the volatile diffusivity in the melt cell. Thus we have a first expression for RH2O:

RH2O = 4πρlDR2ñ
(C)|r=S − kh

√
Pg

S −R
.

Using (2.18) and ñ =
(

4π
3 S

3
)−1

, we get

RH2O = 4πρlDñ
( 3

4πñ

)1/3
ϕ̃2/3 (C)|r=S − kh

√
Pg

1− ϕ̃1/3 .
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This rate may also be written in terms of bubble number density per unit melt N (see equation (2.22)):

RH2O = 4πR2N (1− ϕ)ρlD
(C)|r=S − kh

√
Pg

S −R
, (2.34)

which can be understood as the diffusion rate of water over the interface surface 4πR2N (1 − ϕ) divided by a
measure of the interbubble spacing S−R. In order to reduce the number of variables in the macroscopic model,
we use the following form that no longer involves R and S:

RH2O = 31/3ρlD (4πN ϕ̃(1− ϕ̃))2/3 (C)|r=S − kh
√
Pg

1− ϕ̃1/3 . (2.35)

Similarly to dMg

dt , we would like the same behavior at the limits for RH2O (see equation (2.32)). So we search
for

lim
ϕ̃→0
RH2O = 0 and lim

ϕ̃→1
RH2O =∞. (2.36)

Thanks to (2.33) and taking into account that ñ = (1 − ϕ̃)N , the limit when ϕ̃ tends to zero (or equivalently
R → 0) still holds. Conversely, when ϕ̃ tends to one (or equivalently R → S), we have:

lim
ϕ̃→1

RH2O = 31/3ρlD(4πN )2/3((C)|r=S − kh
√
Pg) lim

ϕ̃→1

(1− ϕ̃)2/3

1− ϕ̃1/3

= 31/3ρlD(4πN )2/3((C)|r=S − kh
√
Pg) lim

ϕ̃→1

(1 + ϕ̃1/3 + ϕ̃2/3)2/3

(1− ϕ̃1/3)1/3
=∞

since (1− ϕ̃) = (1− ϕ̃1/3)(1 + ϕ̃1/3 + ϕ̃2/3).

In Appendix A.2 we present the equivalent exchange terms RH2O when the approaches in [Lyakhovsky et al.,
1996] and [Mancini et al., 2016] are considered. In Part II, Section 6.1 [Burgisser et al., 2024], we compare the
influence on flow dynamics of the proposed mass exchange RH2O to those proposed by [Lyakhovsky et al., 1996]
and [Mancini et al., 2016], which are given respectively in equations (A.23) and (A.24). We find that, in the
flow conditions studied, the [Lyakhovsky et al., 1996] approach and ours yield similar results. In comparison,
the [Mancini et al., 2016] approach overestimates the mass exchange rate at small gas volume fraction and
overestimates it at high gas volume fraction. This result is consistent with the limits established in Remarks 2.3
and Appendix A.2.

2.3 From microscopic to macroscopic closures

In the macroscopic model, all quantities are averaged locally, so for example, R is the averaged local radius of the
bubbles andMg is the averaged local bubble mass. We use the microscopic equations developed above to complete
the system (2.5)-(2.13) by determining closure equations for ϕ and RH2O. As established microscopically, these
quantities depend on R and N , which need to be expressed as macroscopic variables of the system. The
microscopic bubble growth equations were established in terms of the radial coordinate, so all the variables
involved were functions of (t, r(t)). To write such variables in terms of the Eulerian coordinates, (t, x(t)), we
assume that the bubbles of the microscopic configuration are transported through the velocity field of the liquid
phase, ul (see [Leighton, 2007]). Thus, for example, for the bubble radius R(t), we define

R(t, x(t)) = R(t) (2.37)
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and then Ṙ = dR
dt = ∂tR+ ul · ∇R. The same reasoning for the pressures, bubble number densities and volume

fraction yields:

pg(t, x(t)) = Pg(t), pl(t, x(t)) = Pl(t), N(t, x(t)) = N (t), n(t, x(t)) = ñ(t),
ρg(t, x(t)) = ρ̃g(t), ϕ(t, x(t)) = ϕ̃(t), σ(t, x(t)) = σ̃(t), RH2O(t, x(t)) = RH2O(t).

The closure equations are then given by (2.17), (2.19), (2.22), and (2.35), which we write here for clarity in
Cartesian coordinates:

∂tR+ ul · ∇R = R

4ηl

(
pg − pl −

2σ
R

)
, (2.38a)

∂tϕ+ ul · ∇ϕ = 3
4ηl

ϕ(1− ϕ)
(
pg − pl −

2σ
R

)
, (2.38b)

n = N(1− ϕ), (2.38c)

and the expression of RH2O is

RH2O = 31/3ρlD (4πNϕ(1− ϕ))2/3 Cl − kh
√
pg

1− ϕ1/3 . (2.38d)

To write RH2O, we identified that (C)|r=S is Cl, the dissolved water concentration in the liquid. The equivalent
equilibrium water concentration at saturation associated with Henry’s law (2.25) is:

Ceq
l = kh

√
pg. (2.39)

The microscopic bubble number density, N , becomes at the macroscopic scale a local number density, N , that
thanks to (2.24) is a transported variable. We assume that N is constant, so if initially

(R3)|t=0 =
( 3

4πN
ϕ

1− ϕ
)
|t=0

,

then equation (2.23) yields an algebraic relationship for the bubble radius:

R3 = 3
4πN

ϕ

1− ϕ, (2.40)

This removes the need to include R as a variable controlled by (2.38a). If N is not constant, R and (2.38a) need
to be considered instead.

Remark 2.4. When ϕ → 1, equation (2.40) implies that R → ∞. At high ϕ values, however, the monosized
bubble population configuration of Figure 2 is no longer valid. Bubbles are so close to each other that they deform,
adopting a geometry made of polyhedral shapes made of inter-bubble films (nearly planar surfaces) connected by
thicker wedges of liquid called Plateau borders. These geometries have been described in natural magmas; such
magma fragments (pyroclasts) are called reticulite and can reach ϕ values of 0.95–0.99 [Mangan and Cashman,
1996]. There is thus no longer a single length scale involved, and the dynamics of such high porosity foams
is generally described by considering planar films and Plateau borders separately [Proussevitch et al., 1993a].
Equation (2.40) has thus a limited applicability above the critical volume fraction for fragmentation ϕc ∼ 0.8
(see bubbly and permeable flow drag relationships (2.12)). Our focus on permeable flow implies that our model
best represents situations propitious to bubbles interconnection and percolation (e.g., [Castro et al., 2012]), which
prevents reticulite formation.
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Now the system has 7 unknowns (ϕ, ρg, Cl, pl, ul, ug, Tg) for 6 equations ((2.5), (2.3), (2.1), (2.8), (2.9),
(2.38b)) with N constant and the variables n, RH2O, and R given by equations (2.38c), (2.38d), and (2.40),
respectively. The new equation (2.38b) for ϕ is important because it will later (cf. Section 2.6) allow us to
characterize pl in terms of the other unknowns using that ρl is constant.

We must still define 〈pint,lId−Dint,l〉, 〈pint,gId−Dint,g〉, 〈uI〉, and an equation for the gas temperature Tg.
To establish a closure relationship of the tensor at the gas–liquid interface, we follow the same condition as that
used in the microscopy study, which is the dynamic mechanical equilibrium stipulating the balance of the interface
forces as in the Rayleight-Plesset equation (A.4), and the homogenization procedure (2.20). For the macroscopic
situation, this condition is written as:

〈pint,gId−Dint,g〉 − 2σ〈H〉 = 〈pint,lId−Dint,l〉 (2.41)

where 〈H〉 is the mean interface curvature. As bubbles are spherical, the radius of curvature is taken as R and
the mean curvature becomes 〈H〉 = 1/R. Ignoring as before the gas viscosity at the interface, we get

〈pint,gId−Dint,g〉 = 〈pint,g〉, 〈pint,lId−Dint,l〉 = 〈pint,g〉 −
2σ
R
. (2.42)

where 〈pint,g〉 must still be specified. We assume that the interface pressure 〈pint,g〉 and exchange velocity 〈uI〉
are convex combinations of gas and liquid pressures and velocities, respectively, through two constants, a and b:

〈pint,g〉 = apg + (1− a)pl. (2.43)

By analogy, the exchange velocity must be such that 〈uI〉 = ug = ul when ug = ul:

〈uI〉 = bug + (1− b)ul. (2.44)

The values of the coefficients a, b and the closure equation for Tg will be defined in Section 2.5 to ensure a
dissipative energy balance of the system.

Proposition 2.1. Let consider a constant liquid density ρl. Then we have the following relation

div ul = ϕ
3

4ηl

(
pg − pl −

2σ
R

)
− RH2O

ρl(1− ϕ) (2.45)

where from (2.38d)

RH2O = αρl
((1− ϕ)ϕ)2/3

1− ϕ1/3 (Cl − kh
√
pg) with α = 31/3(4πN)2/3D. (2.46)

Proof. From equations (2.5) and (2.38b) the result comes directly using that ρl = cte. �

Remark 2.5. If we neglect surface tension and set RH2O = 0 in (2.45), we get a dilatancy-like constraint

div ul = 3ϕ
4ηl

(pg − pl) (2.47)

where pg = c0ρgTg and pl is an unknown encoding that one phase is incompressible at the macroscopic scale.
More precisely, if pl > pg then div ul < 0 and if pl ≤ pg then div ul ≥ 0. �
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Bounds on the volume fraction ϕ. Even if equation (2.40) is not an accurate descriptor of the bubble network
geometry above a critical gas volume fraction (see Remark 2.4), it is important that our system maintains a
consistent behavior even when ϕ→ 1. We start studying the bounds of ϕ by assuming that at time t = 0 there
is ε > 0 small enough such that ϕ0 ∈ [ε, 1 − ε]. Assuming then that the flow related to ul is regular and that
pg − pl bounded, two cases arise:

• If σ ≥ 0, then for all T fixed there exists δ > 0 such that ϕ ∈ [0, 1− δ] on (0, T )× Ω.

• If σ > 0, then for all T fixed, there exists δ > 0 such that ϕ ∈ [δ, 1− δ] almost everywhere on (0, T )× Ω.

Formal proof. The quantity ϕ/(1− ϕ) plays a crucial role in the proof. Remark first that
1

ϕ(1− ϕ) = 1
ϕ

+ 1
1− ϕ.

Dividing (2.38b) by ϕ(1− ϕ) yields

∂t log
(

ϕ

1− ϕ

)
+ ul · ∇ log

(
ϕ

1− ϕ

)
= 3

4ηl

(
pg − pl − 2 σ

R

)
.

A change of variable can be done by defining that

Φ = log
(
ϕ/(1− ϕ)

)
When depending on Φ, the equation to solve becomes:

∂tΦ + ul · ∇Φ = 3
4ηl

(
pg − pl − 2 σ

R

)
with R3 = 3

4πN exp Φ. (2.48)

Recall that the characteristics ξl(t, x) associated to ul are defined as being a solution of

∂tξl(t, x) = ul(t, ξl(t, x)), ξl(0, x) = x.

This definition allows us switch to Lagrangian coordinates related to the velocity ul. In other words, the charac-
teristics ξl(t, x) related to ul allows us to rewrite equation (2.48) (and thus (2.38b)) with the new unknown Φ
as:

∂t(Φ(t, ξl(t, x))) = 3
4ηl

(
pg − pl − 2 σ

R

)
(t, ξl(t, x)) (2.49)

with
R3(t, ξl(t, x)) = 3

4πN (exp Φ)(t, ξl(t, x)).

This is a nonlinear ODE in time governing Φ. As σ/R ≥ 0, integrating (2.49) in time from 0 to any t yields

Φ(t, ξl(t, x)) ≤ Φ(0, x) +
∫ t

0

3
4ηl

(pg − pl) (τ, ξl(τ, x)) dτ.

for Φ0 = Φ|t=0 = log(ϕ0/(1− ϕ0)) ≤ C < +∞. This bound on Φ0 is obtained because we assume there exists
ε > 0 such that ϕ0 ∈ (ε, 1− ε). Therefore

sup
t∈(0,T )

sup
x∈Ω

Φ(t, ξl(t, x)) ≤ C < +∞ (2.50)

if initially we assume
∫ T

0 (supx|pg − pl|)dt < +∞. Assume that we have solved the equation related to Φ in the
Lagrangian coordinates. Defining ϕ such that

ϕ/(1− ϕ) = exp Φ (2.51)
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then ϕ ∈ [0, 1] because exp Φ ≥ 0. Using that Φ is bounded by (2.50), then exp Φ is bounded, which provides
from 2.51 that ϕ is far from 1 (i.e. there exits δ > 0 small enough such that ϕ < 1− δ).

We now assume that σ > 0. Going back to (2.48), integrating it in time from 0 to any t yields

Φ(t, ξl(t, x)) + 2σ
∫ t

0

1
R(τ, ξl(τ, x)) dτ = Φ(0, x) +

∫ t

0

3
4ηl

(pg − pl) (τ, ξl(τ, x)) dτ,

which gives more constraints than (2.50). Using the expression of R with respect to Φ provides the bound∫ t

0
sup
x

(
exp(−Φ)(t, ξl(t, x))

)1/3
dτ ≤ C < +∞,

which implies that there exists M>0 such that (−Φ) < M < +∞ almost everywhere. Therefore, coming back
to the definition ϕ/(1− ϕ) = exp Φ, we deduce that there exists δ > 0 such that ϕ > δ almost everywhere.

Importantly, (2.38b) is not used to compute ϕ but to express pl as a function of RH2O, div ul and pg. Equation
(2.5) is used to calculate ϕ with the expression (2.38d). To ensure that ϕ ∈ [0, 1] starting with ϕ|t=0 ∈ (0, 1),
we have to consider the relationship (2.45) and therefore when ϕ is close to 1 we have

RH2O = O((1− ϕ)).

Conversely, when ϕ is close to 0, (2.38d) implies that RH2O = O(ϕ). This property is ensured at the continuous
level.

Remark 2.6. As noted in Remark 2.2, recent results suggest that the surface tension coefficient depends on
bubble size, which would change the Rayleigh-Plesset pressure term from 2σ

R to 2σi
R+2δT

where both σi and δT are
constants. This does change the reasoning above and we cannot conclude ϕ to be far from 0.

2.4 Resulting macroscopic system without energy balance

The system at this point has 7 unknowns (ϕ, ρg, Cl, pl, ul, ug, Tg) for 6 equations ((2.5), (2.3), (2.1), (2.8),
(2.9), (2.40), (2.38b)) with RH2O given by (2.38d), 〈pint,lId−Dint,l〉 given by (2.42), and 〈pint,g〉, 〈uI〉 given
by equations (2.43)-(2.44). The coefficients a, b of these last two equations need to be determined and we must
also give a closure for the gas temperature Tg in (2.13). Variable pg is given by (2.13), and R is given by (2.40).
In summary, the system is thus:

∂t((1− ϕ)ρl) + div((1− ϕ)ρlul) = −RH2O (2.52a)

∂t(ϕρg) + div(ϕρgug) = RH2O (2.52b)

∂t((1− ϕ)ρl(1− Cl)) + div((1− ϕ)ρl(1− Cl)ul) = 0 (2.52c)

(2.52d)
∂t((1− ϕ)ρlul) + div((1− ϕ)ρlul ⊗ ul) +∇((1− ϕ)pl)− div((1− ϕ)Dl)

−
(
〈pint,g〉 −

2σ
R

)
∇(1− ϕ)−Kd ϕ(1− ϕ)(ug − ul)− (1− ϕ)ρlg + 〈uI〉RH2O = 0

(2.52e)∂t(ϕρgug) + div(ϕρgug ⊗ ug) +∇(ϕpg)− div(ϕDg)
− 〈pint,g〉∇ϕ+Kd ϕ(1− ϕ)(ug − ul)− ϕρgg − 〈uI〉RH2O = 0
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∂tϕ+ ul · ∇ϕ = ϕ(1− ϕ) 3
4ηl

(
pg − pl −

2σ
R

)
(2.52f)

Locally, the gas volume fraction ϕ can also be related to the amount of water dissolved in the melt, Cl, and
to the amount of gas exsolved. Defining the total amount of water, CT , as:

CT = ϕρg + (1− ϕ)ρlCl
ρ

, (2.53)

allows us to express the gas volume fraction with a classical mass balance that will be useful when establishing a
relaxed system in Section 5:

ϕ = ρl(Cl − CT )
ρl(Cl − CT ) + ρg(CT − 1) .

From the definition of CT we can find a nice relation with Cl that serves to write the continuity equation for the
total water content. We have that

(1− ϕ)ρl(1− Cl) = (1− ϕ)ρl − ρCT + ϕρg = ρ(1− CT ).

Thus from equation (2.52c) we write

∂t(ρ(1− CT )) + div(ρ(1− CT )ul) = 0. (2.54)

The convective part can also be developed using the total mass conservation as follows

∂t(ρ(1− CT )) + div(ρ(1− CT )ul) = (1− CT )div(ρ(ul − u))− ρ(∂tCT + ul · ∇CT )
= (1− CT )div(ϕρg(ul − ug))− ρ(∂tCT + ul · ∇CT ),

so we can write
∂tCT + ul · ∇CT = 1− CT

ρ
div(ϕρg(ul − ug)). (2.55)

Equation (2.54) or (2.55) may replace (2.52c) when the unknown CT is considered instead of Cl.

2.5 Energy of the system

We use the energy balance to constrain 〈pint,g〉, 〈uI〉 and thus find a closure for the gas temperature Tg. Note
that our approach differs from the classical one that uses fundamental principles of thermodynamics to establish
the heat equation. We refer the reader to Appendix B for a justification of the temperature equations proposed
herein and how they relate to the thermodynamic theory. This is done by proving the following proposition.

Proposition 2.2. Let (ϕ, ρg, Cl, N, pl, ul, ug, Tg, Tl) be a smooth enough solution of the system (2.52a)–(2.52f)
with the following equations

∂t(ϕcpgρgTg) + div(ϕcpgρgTgug)− ϕ
(
∂t

(
pg−

2σ
R

)
+ ug · ∇pg

)
− γ(Tg − Tl)− div(ϕκg∇Tg)

−ϕ
(
2ηgD(ug) : ∇ug + λg(divug)2

)
= 0

(2.56)

and

∂t((1− ϕ)cpl
ρlTl) + div((1− ϕ)cpl

ρlTlul)−
pl
ρl
RH2O + γ(Tg − Tl)− div((1− ϕ)κl∇Tl)

−(1− ϕ)
(
2ηlD(ul) : ∇ul + λl(divul)2

)
= 0,

(2.57)
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where cpg, cpl are the constant heat capacities (at constant pressure), γ is the heat exchange coefficient (either
constant or function of the existing variables), and κg, κl are the thermal conductivity coefficients. Then we have
the following conservation of energy

(2.58)

∂t

(
(1− ϕ)ρl

|ul|2

2 + ϕρg
|ug|2

2

− (g ·X)((1− ϕ)ρl + ϕρg) + ϕ(cpg − c0)ρgTg + (1− ϕ)ρlcplTl+ϕ
2σ
R

)
+ div

(
ϕcpgρgTgug + (1− ϕ)cpl

ρlTlul + (1− ϕ)plul
)

+ div
(

(1− ϕ)ρlul
|ul|2

2 + ϕρgug
|ug|2

2 − (g ·X)((1− ϕ)ρlul + ϕρgug)
)

− div
(
ϕκg∇Tg + (1− ϕ)κl∇Tl

)
− div

(
(1− ϕ)ul(λldiv ulId + 2ηlD(ul)) + ϕug(λgdiv ugId + 2ηgD(ug))

)
+Kdϕ(1− ϕ)|ug − ul|2 + ϕ(1− ϕ) 3

4ηl

(
pg − pl −

2σ
R

)2
+ 1

2 |ug − ul|
2|RH2O|δ = 0.

where δ ∈ {0, 1} is a unifying coefficient defined below in (2.67). Recall that σ is a positive constant and that
R is related to ϕ through the formula (2.40),

R3 = 3
4πN

ϕ

1− ϕ

and therefore 2σϕ/R is a positive quantity.

Proof. To study the associated energy balance we multiply the momentum equations for respective velocities and
sum up the results. We detail for instance the calculations for the fluid phase, by multiplying equation (2.52d)
by ul. For the convective terms we develop (2.52d) · ul as follows:

ul·
(
∂t((1−ϕ)ρlul)+div((1−ϕ)ρlul⊗ul)

)
= (1−ϕ)ρl

1
2(∂t|ul|2+ul·∇|ul|2)+|ul|2(∂t((1−ϕ)ρl+div((1−ϕ)ρlul))

We use (2.52a) in the last term above and in the time derivative to obtain:

ul ·
(
∂t((1− ϕ)ρlul) + div((1− ϕ)ρlul ⊗ ul)

)
= ∂t((1− ϕ)ρl 12 |ul|

2)− 1
2 |ul|

2(−RH2O − div((1− ϕ)ρlul)) + (1− ϕ)ρl 12ul · ∇|ul|
2−|ul|2RH2O,

and we finally have

ul ·
(
∂t((1− ϕ)ρlul) + div((1− ϕ)ρlul ⊗ ul)

)
= ∂t

(
(1− ϕ)ρl

|ul|2

2

)
+ div

(
(1− ϕ)ρlul

|ul|2

2

)
− |ul|

2

2 RH2O

(2.59)

The viscosity term can be written as:

(2.60)
uldiv((1− ϕ)Dl) = ul∇((1− ϕ)λldiv ul) + 2uldiv((1− ϕ)ηlD(ul))

= div((1− ϕ)λluldiv ul)
− (1− ϕ)λl|div ul|2 + 2div((1− ϕ)ηlulD(ul))− 2(1− ϕ)ηlD(ul) : ∇ul

= div((1− ϕ)ul(λldiv ulId + 2ηlD(ul)))− (1− ϕ)(λl|div ul|2 + 2ηlD(ul) : ∇ul)
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To develop the gravity term, we use the space variable denoted by X and (2.52a):

(2.61)
(1− ϕ)ρlulg = (1− ϕ)ρluldiv(g ·X)

= div((g ·X)(1− ϕ)ρlul)− (g ·X)(−RH2O − ∂t((1− ϕ)ρl))
= ∂t((g ·X)(1− ϕ)ρl) + div((g ·X)(1− ϕ)ρlul) + (g ·X)RH2O

We use (2.59), (2.60) and (2.61) and gather together the terms in the time derivative and the divergence,
respectively. We add the remaining terms of the relation (2.52d) · ul (i.e. the pressure, the interface tensor, and
the drag and exchange terms), so that the energy balance from the liquid momentum equation becomes

(2.62)

∂t

(
(1− ϕ)ρl

|ul|2

2 − (g ·X)(1− ϕ)ρl

)

+ div
(

(1− ϕ)ρlul
|ul|2

2 − (g ·X)(1− ϕ)ρlul − (1− ϕ)ul(λldiv ulId + 2ηlD(ul))
)

+ ul · ∇((1− ϕ)pl)−
(
〈pint,g〉 −

2σ
R

)
ul · ∇(1− ϕ) + (1− ϕ)(λl|div ul|2 + 2ηlD(ul) : ∇ul)

−Kd ϕ(1− ϕ)(ug − ul)ul − (g ·X)RH2O +
(
ul〈uI〉 −

|ul|2

2
)
RH2O = 0

Multiplying (2.52e) by ug and working similarly, we get for the gas momentum equation:

(2.63)
∂t

(
ϕρg
|ug|2

2 − (g ·X)ϕρg

)
+ div

(
ϕρgug

|ug|2

2 − (g ·X)ϕρgug−ϕug(λgdiv ugId + 2ηgD(ug))
)

+ ug · ∇(ϕpg)− 〈pint,g〉ug · ∇ϕ+ ϕ(λg|div ug|2 + 2ηgD(ug) : ∇ug) +Kd ϕ(1− ϕ)(ug − ul)ug

+ (g ·X)RH2O +
( |ug|2

2 − 〈uI〉ug
)
RH2O = 0

We can then write a preliminary expression of the energy balance for the total system as follows,

(2.64)

∂t

(
(1− ϕ)ρl

|ul|2

2 + ϕρg
|ug|2

2 − (g ·X)((1− ϕ)ρl + ϕρg)
)

+ div
(

(1− ϕ)ρlul
|ul|2

2 + ϕρgug
|ug|2

2 − (g ·X)((1− ϕ)ρlul + ϕρgug)
)

− div
(
(1− ϕ)ul(λldiv ulId + 2ηlD(ul)) + ϕug(λgdiv ugId + 2ηgD(ug))

)
+ ul · ∇((1− ϕ)pl)−

(
〈pint,g〉 −

2σ
R

)
ul · ∇(1− ϕ) + ug · ∇(ϕpg)− 〈pint,g〉ug · ∇ϕ

+ (1− ϕ)
(
λl|div ul|2 + 2ηlD(ul) : ∇ul

)
+ ϕ

(
λg|div ug|2 + 2ηgD(ug) : ∇ug

)
+Kdϕ(1− ϕ)|ug − ul|2

+
(
〈uI〉(ul − ug)−

|ul|2

2 + |ug|
2

2
)
RH2O = 0.

Viscosity terms of the fifth line can be simplified by using λg = 3ηg and λl = 1
3ηl (see (2.10)–(2.11)):

(2.65)
(1− ϕ)(λl|div ul|2 + 2ηlD(ul) : ∇ul) + ϕ(λg|div ug|2 + 2ηgD(ug) : ∇ug)

= (1− ϕ)ηl
(1

3 |div ul|2 + 2D(ul) : ∇ul
)

+ ϕηg
(
3|div ug|2 + 2D(ug) : ∇ug

)
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All these terms are giving dissipative contributions because ηl > 0, ηg > 0, and D(uk) : ∇uk ≥ 0.

The drag term on the sixth line of (2.64), Kdϕ(1−ϕ)|ug −ul|2, has a dissipative contribution. The term on
the last line does not have a fixed sign as RH2O can be either positive or negative. The simplest energy equation
is obtained by setting 〈uI〉(ul − ug)− 1

2 |ul|
2+1

2 |ug|
2= 0, which implies that b = 1

2 in (2.44) and:

〈uI〉 = ug + ul
2 . (2.66)

This is the natural choice of b value in two-phase or two-layer models with mass exchange because when the
velocity of the exchange is given as the averaged of the two phase velocities, it provides an exact balance of this
effect in terms of energy. Note that the exchange of mass must be exactly compensated since the amount of
mass released by one phase is fully absorbed by the other one. This is not strictly true for the velocity of the
transfer 〈uI〉 involved in the momentum exchange. This leads us to define the exchange velocity 〈uI〉 taking into
account the sign of the transfer RH2O. When RH2O ≥ 0 the transfer is made from the liquid phase to the gas
phase, so the appropriate exchange velocity would be ul. On the contrary, when RH2O ≤ 0 the transfer is made
from the gas phase to the liquid phase, so the velocity of the exchange would be ug. This is summarized with
the following definition of the coefficient b in (2.44),

b = 1
2 −

1
2sgn(RH2O), 〈uI〉 = bug + (1− b)ul =

{
ul RH2O ≥ 0
ug RH2O ≤ 0 .

Notice that RH2O ≥ 0 leads to b = 0 and RH2O ≤ 0 leads to b = 1. A unified formulation considering the
previous case b = 1

2 is achieved under the following definition

b = 1
2 −

1
2sgn(RH2O)δ, δ =

{
0 if averaged
1 if binary . (2.67)

For the binary case, the momentum exchange term does not disappear from the energy balance and it has a
dissipative contribution, 1

2 |ug − ul|
2|RH2O|.

We must still analyze the pressure terms on the fourth line of (2.64) that we write as:

Q = ul · ∇((1− ϕ)pl)−
(
〈pint,g〉 −

2σ
R

)
ul · ∇(1− ϕ) + ug · ∇(ϕpg)− 〈pint,g〉ug · ∇ϕ (2.68)

=
(
ul

(
〈pint,g〉 − pl −

2σ
R

)
+ ug(pg − 〈pint,g〉)

)
· ∇ϕ+ (1− ϕ)ul · ∇pl + ϕug · ∇pg

In order to relate the first term with (2.52f), we cancel the term in ug by setting 〈pint,g〉 = pg (equivalently a = 1
in (2.43)). This value coincides with that considered by [Guillemaud, 2007] when mass transfer occurs.

Then using (2.52f) to replace ul · ∇ϕ in the first term we find

Q =
(
pg − pl −

2σ
R

)(
−∂tϕ+ ϕ(1− ϕ) 3

4ηl

(
pg − pl −

2σ
R

))
+ (1− ϕ)ul · ∇pl + ϕug · ∇pg

= −∂t
(
ϕ

(
pg−

2σ
R

))
+ ϕ

(
∂t

(
pg−

2σ
R

)
+ ug · ∇pg

)
+ ϕ(1− ϕ) 3

4ηl

(
pg − pl −

2σ
R

)2
(2.69)

+div((1− ϕ)ulpl)− pl(∂t(1− ϕ) + div((1− ϕ)ul)).
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We use again (2.52f) and (2.52a) to simplify the last term, which yields:

Q = −∂t
(
ϕ

(
pg−

2σ
R

))
+ div((1− ϕ)ulpl) + ϕ(1− ϕ) 3

4ηl

(
pg − pl −

2σ
R

)2

+ϕ
(
∂t

(
pg−

2σ
R

)
+ ug · ∇pg

)
+ pl

RH2O

ρl

The first two terms contribute directly to the time and spatial derivatives of the total energy balance, respectively.
The third term has a dissipative contribution. To write the last two terms in Q, we use the two equations related
respectively to the gas temperature Tg and to the liquid temperature Tl, (2.56) and (2.57). From (2.56), we get:

ϕ

(
∂t

(
pg−

2σ
R

)
+ ug · ∇pg

)
= ∂t(ϕcpgρgTg) + div(ϕcpgρgTgug)− γ(Tg − Tl)− div(ϕκg∇Tg)

−ϕ
(
2ηgD(ug) : ∇ug + λg(divug)2

)
,

and from (2.57) we get

pl
RH2O

ρl
= ∂t((1− ϕ)cpl

ρlTl) + div((1− ϕ)cpl
ρlTlul) + γ(Tg − Tl)− div((1− ϕ)κl∇Tl)

−(1− ϕ)
(
2ηlD(ul) : ∇ul + λl(divul)2

)
.

(2.70)

Embedding these quantities into Q yields:

Q = ∂t

(
ϕcpgρgTg − ϕ

(
pg−

2σ
R

)
+ (1− ϕ)cpl

ρlTl

)
(2.71)

+div(ϕcpgρgTgug + (1− ϕ)cpl
ρlTlul + (1− ϕ)ulpl)− div(ϕκg∇Tg + (1− ϕ)κl∇Tl)

−(1− ϕ)
(
2ηlD(ul) : ∇ul + λl(divul)2

)
− ϕ

(
2ηgD(ug) : ∇ug + λg(divug)2

)
+ϕ(1− ϕ) 3

4ηl

(
pg − pl −

2σ
R

)2
.

Finally, we can bring the expression of Q given by (2.71) back into (2.64):

(2.72)

∂t

(
(1− ϕ)ρl

|ul|2

2 + ϕρg
|ug|2

2

− (g ·X)((1− ϕ)ρl + ϕρg) + ϕ(cpg − c0)ρgTg + (1− ϕ)cpl
ρlTl+ϕ

2σ
R

)

+ div
(

(1− ϕ)ρlul
|ul|2

2 + ϕρgug
|ug|2

2 − (g ·X)((1− ϕ)ρlul + ϕρgug)
)

+ div
(
ϕcpgρgTgug + (1− ϕ)cpl

ρlTlul + (1− ϕ)ulpl
)

− div(ϕκg∇Tg + (1− ϕ)κl∇Tl)
− div

(
(1− ϕ)ul(λldiv ulId + 2ηlD(ul)) + ϕug(λgdiv ugId + 2ηgD(ug))

)
+Kdϕ(1− ϕ)|ug − ul|2 + ϕ(1− ϕ) 3

4ηl

(
pg − pl −

2σ
R

)2
+ 1

2 |ug − ul|
2|RH2O|δ = 0.
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Remark 2.7. The term eg = (cpg − c0)ρgTg in the time derivative of (2.58) involves both the gas heat capacity,
cpg, and the gas constant for water, c0. The heat-conducting Navier-Stokes equations are usually written in terms
of (p, ρ, T ) expressing ρ and the internal energy e in functions of (P, T ). Denoting S the entropy, the specific
heats at constant volume and pressure are given by [Gaskell and Laughlin, 2017]

cp := T
∂S

∂T
, cv = T

(∂S/∂T )(∂ρ/∂P )− (∂S/∂P )(∂S/∂T )
∂ρ/∂P

with the identity
∂S/∂P = ρ−2(∂ρ/∂T )

which implies that
cp
cv

= (∂S/∂T )(∂ρ/∂P )
(∂S/∂T )(∂ρ/∂P )− ρ−2(∂ρ/∂T )2 .

This proves that cp > cv. In our system, we consider the gas to be ideal so we can define cvg = cpg − c0 [Gaskell
and Laughlin, 2017] and thus cpg − c0 > 0.

Remark 2.8. The temperature equations, (2.56) and (2.57), do not have the same structure. The inertial term
appearing in the gas temperature equation, ϕ(∂tpg + ug · ∇pg), is not present in that of the liquid, where we
find instead the term pl

ρl
RH2O. A different option is to propose similar equations for both phases , which of

course modifies the conserved energy. This option comes from a different way to write the term Q in (2.69).
Instead of using the equation of ϕ (2.52f) to simplify the last term, we write it in conservative form, which yields
div((1 − ϕ)ulpl) − pl(∂t(1 − ϕ) + div((1 − ϕ)ul)) = −∂t((1 − ϕ)pl) + (1 − ϕ)(∂tpl + ul · ∇pl). The resulting
liquid temperature equation is:

(1− ϕ)cpl
ρl(∂tTl + ul · ∇Tl)− (1− ϕ)(∂tpl + ul · ∇pl)− cplTlRH2O + γ(Tg − Tl)− div((1− ϕ)κl∇Tl) = 0.

In this case

Q = ∂t
(
ϕρg(cpgTg − pg) + (1− ϕ)ρl(cpl

Tl − pl)+ϕ
2σ
R

)
+ div(ϕcpgρgTgug + (1− ϕ)cpl

ρlTlul)

−div((1− ϕ)κl∇Tl + ϕκg∇Tg) + ϕ(1− ϕ) 3
4ηl

(
pg − pl −

2σ
R

)2

−(1− ϕ)
(
2ηlD(ul) : ∇ul + λl(divul)2

)
− ϕ

(
2ηg|D(ug)|2+λg(divug)2

)
and the energy balance reads

∂t

(
(1−ϕ)ρl

|ul|2

2 +ϕρg
|ug|2

2 −(g ·X)((1−ϕ)ρl+ϕρg)+ϕρg(cpg−c0)Tg+(1−ϕ)ρl(cpl
Tl−pl)+ϕ

2σ
R

)

+ div
(

(1− ϕ)ρlul
|ul|2

2 + ϕρgug
|ug|2

2 − (g ·X)((1− ϕ)ρlul + ϕρgug)
)

+ div
(
ϕcpgρgTgug + (1− ϕ)cpl

ρlTlul
)

− div((1− ϕ)κl∇Tl + ϕκg∇Tg)
+ div

(
− (1− ϕ)ul(λldiv ul + 2ηlD(ul))− ϕug(λgdiv ug + 2ηgD(ug))

)
+Kdϕ(1− ϕ)|ug − ul|2 + ϕ(1− ϕ) 3

4ηl

(
pg − pl −

2σ
R

)2
+ 1

2 |ug − ul|
2|RH2O|δ = 0.

All the terms in the time derivative are positive except the liquid pressure term. �
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Remark 2.9. The presence of the term 2ϕσ/R in (2.72) is interesting. [Kostin, Ilya et al., 2003] consider a
system of two incompressible phases separated by a diffusive interface, which may be seen as a system with
miscible phases. It is written as:

∂tϕ+ div(ϕu) = 0, (2.73a)

∂tu+ u · ∇u+∇p− ε2σ∇ϕ∆ϕ = 0, (2.73b)

divu = 0 (2.73c)

with initial conditions on ϕ and u that assume ϕ0 = 1 inside the fluid 1, ϕ0 = 0 inside the fluid 2 and 0 < ϕ < 1
on a diffuse interface of size ε2. The variable ϕ represents the volume fraction of fluid 1 in this non-overlapping
continuum. The quantity σ∇ϕ∆ϕ represents the surface tension force written for a diffusive interface of size ε
where σ is the surface tension coefficient (assumed to be constant). The quantity ∇ϕ is an extension of the
normal n on the whole space and ∆ϕ = div(∇ϕ) is an extension of the curvature. When evaluating the energy
balance, the term −ε2σ∇ϕ∆ϕ tested against u and integrated in space yields

−ε2
∫

Ω
σ∇ϕ∆ϕ · u = −ε2 d

dt

∫
Ω
σϕ∆ϕdx = ε2

2
d

dt

∫
Ω
σ|∇ϕ|2dx.

This quantity encodes the effect of surface tension when using a diffuse interface PDE system with an order
parameter ϕ. The limit ε→ 0 of such a system is the system for two incompressible phases separated by a sharp
interface.

2.6 Resulting macroscopic system with energy balance

Here we present the final proposed system for the 8 unknowns ϕ, ρg, Cl, pl, ul, ug, Tg, Tl, taking into account the
specific closures deduced from the energy analysis:

∂t((1− ϕ)ρl) + div((1− ϕ)ρlul) = −RH2O (2.74a)

∂t(ϕρg) + div(ϕρgug) = RH2O (2.74b)

∂t((1− ϕ)ρl(1− Cl)) + div((1− ϕ)ρl(1− Cl)ul) = 0 (2.74c)

(2.74d)
∂t((1− ϕ)ρlul) + div((1− ϕ)ρlul ⊗ ul) +∇((1− ϕ)pl)− div((1− ϕ)Dl)

−
(
pg −

2σ
R

)
∇(1− ϕ)−Kd ϕ(1− ϕ)(ug − ul)− (1− ϕ)ρlg + ug + ul

2 RH2O = 0

∂t(ϕρgug) + div(ϕρgug⊗ug) +∇(ϕpg)−div(ϕDg)−pg∇ϕ+Kd ϕ(1−ϕ)(ug−ul)−ϕρgg−
ug + ul

2 RH2O = 0
(2.74e)

∂tϕ+ ul · ∇ϕ = ϕ(1− ϕ) 3
4ηl

(
pg − pl −

2σ
R

)
, (2.74f)
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where we chose the averaged case for the exchange velocity (δ = 0 in (2.67)) and the mean curvature H̄ = 1/R
in (2.42). Closures are given by the pressure gas law

pg = c0ρgTg, (2.74g)

the bubble radius expression
R3 = 3

4πN
ϕ

1− ϕ, (2.74h)

the mass exchange expression

RH2O = 31/3ρlD (4πNϕ(1− ϕ))2/3 Cl − kh
√
pg

1− ϕ1/3 , (2.74i)

equations (2.10)-(2.11) for the viscosity tensors Dg and Dl, and the following equations for the temperatures:

∂t(ϕcpgρgTg) + div(ϕcpgρgTgug)− ϕ
(
∂t

(
pg−

2σ
R

)
+ ug · ∇pg

)
− γ(Tg − Tl)− div(ϕκg∇Tg)

−ϕ
(
2ηgD(ug) : ∇ug + λg(divug)2

)
= 0,

(2.74j)

∂t((1− ϕ)cpl
ρlTl) + div((1− ϕ)cpl

ρlTlul)−
pl
ρl
RH2O + γ(Tg − Tl)− div((1− ϕ)κl∇Tl)

−(1− ϕ)
(
2ηlD(ul) : ∇ul + ηl(divul)2

)
= 0.

(2.74k)

The energy equation of this system is (2.58).

A few alternative equations highlighting various physical processes can be built. They present different sets
of advantages. An alternative equation for (2.74f) is given by (2.45):

div ul = ϕ
3

4ηl

(
pg − pl −

2σ
R

)
− RH2O

ρl(1− ϕ) .

This expression allows to obtain the liquid pressure pl in terms of the other variables of the system:

pl = pg −
2σ
R
−4ηl

3ϕ

(
div ul + RH2O

ρl(1− ϕ)

)
. (2.75)

Another equivalent equation for the gas temperature that can replace (2.74j) can be obtained in terms of
ρg, pg, Tg when using (2.74a) and the gas law (2.74g). First we write

∂t(ϕc0ρgTg) + div(ϕc0ρgTgug)− ϕ(∂tpg + ug · ∇pg) = ∂t(ϕpg) + div(ϕpgug)− ϕ(∂tpg + ug · ∇pg)
= pg(∂tϕ+ div(ϕug))
= −pg∂t(1− ϕ) + pgdiv(ϕug)
= pg
ρl
RH2O + pgdiv(ϕug + (1− ϕ)ul).

Thus,

c0 (∂t(ϕρgTg) + div(ϕρgTgug))−
pg
ρl
RH2O − pgdiv(ϕug + (1− ϕ)ul) = ϕ(∂tpg + ug · ∇pg),

and embedding it in (2.74j) yields an alternative equation for the gas temperature:

∂t((cpg − c0)ϕρgTg) + div((cpg − c0)ϕρgTgug)+ϕ∂t
(2σ
R

)
− div(ϕκg∇Tg) + pgdiv

(
ϕug + (1− ϕ)ul

)
= γ(Tg − Tl)−

pg
ρl
RH2O + ϕ

(
2ηgD(ug) : ∇ug + λg(divug)2

) (2.76)
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3 Geometry, initial and boundary conditions
The geometry of volcanic conduits is complex and often poorly constrained. The simplest approximation is to
consider the domain to be a cylinder with a very small ratio radius/length. Thus we consider that the total bound-
ary of the domain is divided in three parts: the cylinder base at the bottom Γb, the cylinder top Γt, and the lateral
walls Γw, which make ∂Ω = Γb ∪Γt ∪Γw. Assuming an open volcanic conduit, we set an inflow boundary at the
bottom Γb and an outflow boundary at the top Γt. The system has eight unknowns (ϕ, ρg, Cl, pl, ul, ug, Tg, Tl)
for the eight equations in (2.74).

Establishing appropriate boundary conditions is not an easy task for viscous compressible flows [Strikwerda,
1977,Oliger and Sundstrom, 1978,Rudy and Strikwerda, 1981,Dutt, 1988,Poinsot and Lele, 1992]. While some
theoretical results have been developed to prove the well-posed character of the Euler equations, it is not the case
for the Navier-Stokes equations. This system can be viewed as an extension of the compressible Euler equations
with viscous terms, so it seems reasonable to consider the boundary conditions for the inviscid case and to add
the proper boundary conditions linked to the viscosity. These conditions are also differently addressed for subsonic
and supersonic flows. Here we assume subsonic flow. Let us consider the 3D compressible system with unknowns:
density ρ, velocity u, temperature T and pressure p (pressure satisfying the ideal gas relation), which is:

∂tρ+ div(ρu) = 0
∂t(ρu) + div(ρu⊗ u)− divσ = 0
(cp − c0)(∂t(ρT ) + div(ρTu))− div(κ∇T )− σ : ∇u = 0
p = c0ρT

(3.1)

with the total stress tensor σ = −pId + τ , τ being the viscous stress tensor, cp the heat capacity and κ being
the thermal conductivity. The initial conditions for this problem are given by ρ(t = 0) = ρ0, ρu(t = 0) =
ρ0u0, ρT (t = 0) = ρ0T 0, p(t = 0) = c0ρ

0T 0. In what follows, and according to the literature, the term “viscous”
is used to describe both viscous and thermal diffusion effects related to the Navier-Stokes equations. The term
“inviscid” refers then to the Euler equations where the viscosity of the fluid and the thermal diffusion are neglected
(i.e. τ = κ = 0 in the previous system).

The work developed in [Strikwerda, 1977] specifies the number of conditions to be imposed at inflow and
outflow boundaries, which we summarize in Table 1. Table 2 summarizes boundary conditions for slip and no-slip
walls following [Poinsot and Lele, 1992].

Boundary type Euler (inviscid) Navier-Stokes (inviscid & viscous)
inflow 4 5
outflow 1 4

Table 1: Inflow and outflow boundary conditions required for compressible flow problems as in (3.1)

Wall type Euler (inviscid) Navier-Stokes (inviscid & viscous)
isothermal no-slip 4 4
adiabatic no-slip 3 4
adiabatic slip 1 4

Table 2: Boundary conditions at walls required for compressible flow problems as in (3.1)
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Many types of conditions can be found in the literature, such as the ones proposed in [Rudy and Strikwerda,
1981,Dutt, 1988,Poinsot and Lele, 1992], where they are also analyzed numerically. An interesting summary is
presented in [Poinsot and Lele, 1992] (see Tables III and IV in that paper) with also a reasoning supporting the
choice of such conditions. In particular, well-posed problems are found for the inviscid case when the pressure
at the outlet boundary is imposed alongside, at the inlet boundary, either (i) the velocity and the density, or
(ii) the velocity and the temperature. The pair velocity/pressure leads to an ill-posed problem (cf. [Oliger and
Sundstrom, 1978]). As mentioned, several extensions to the viscous problem have been proposed. In particular,
following [Rudy and Strikwerda, 1981,Dutt, 1988] and [Poinsot and Lele, 1992], stable solutions are found when
we consider at the outlet boundary a fixed pressure together with zero normal viscous stress. In other words for
the total tensor σ = −pId + τ we consider (τn)n = (τn)tan = 0, where the sub-indices n and tan denote the
normal and tangential components of the outlet normal, n, respectively.

At the inlet, different choices can be found in the literature. For example, in addition to conditions (i) (resp.
(ii)) we may impose the temperature (resp. the density) compatible with the state equation, or alternatively
(τn)n = 0 or ∂nT = 0 (resp. ∂nρ = 0). A different kind of inlet conditions consists in imposing the pressure
−instead of the velocity− together with the temperature, keeping also the pressure value at the outflow boundary.
These conditions are usually found in engineering applications of gas dynamics for isentropic inflow in terms of
the total pressure (static plus dynamic components) and total temperature, see for example [Briley and McDon-
ald, 1977], or more recently [Kim et al., 2004,Carlson, 2011,Choudhary et al., 2016]. Notice that in this case,
additional conditions are needed to ensure that the velocity at the inlet enters the domain by either imposing
the flow directions, or by setting the pressures values ensuring that this condition is fulfilled. In [Benzoni-Gavage
et al., 2003] it is proven that for the Euler equations, this additional condition may be given by prescribing the
tangential velocity in 2D and the flow angles in 3D. In [Laurén and Nordström, 2018] the well-posedness of
imposing total pressure, total temperature and vanishing tangent velocity at the inlet for the 2D Euler equations
is proven. In [Odier et al., 2019], the entry angles of the flow are chosen instead to solve the problem.

Extensions to multi-component gas flows have been also developed, see for example [Baum et al., 1994,
Okong’o and Bellan, 2002, Odier et al., 2019]. These components share the same temperature and velocity,
so the system is defined as in (3.1) with additional equations for component mass fractions {φj}sj=1 such that∑s
j=1 φj = 1. Such a system is presented in equation (3.2) for gj being a source term:

∂tρ+ div(ρu) = 0
∂t(ρu) + div(ρu⊗ u)− divσ = 0
(cp − c0)(∂t(ρT ) + div(ρTu))− div(κ∇T )− σ : ∇u = 0
∂t(ρφj) + ∂t(ρφju) = gj
p = c0ρT

(3.2)

together with the initial conditions ρ(t = 0) = ρ0, ρu(t = 0) = ρ0u0, ρT (t = 0) = ρ0T 0, ρφj(t = 0) =
ρ0φ0

j , p(t = 0) = c0ρ
0T 0. In general, the same type of boundary conditions as for single component Euler or

Navier-Stokes equations described before are considered, and one must additionally impose the component mass
fractions at the inflow boundaries. So for s components, the number of conditions to be imposed at the inflow
boundaries increases by s− 1 those specified in Table 1.

To summarize, Tables 3 and 4 show a compilation of the boundary conditions proposed in the literature that
we will consider to establish those suitable for our two-phase system. For convenience, we write the additional
conditions to be considered for multi-component models with mass fraction {φj}sj=1.

Remark 3.1. In order to ensure a well-posed problem, the appropriate variables to be imposed at the boundaries
are the "characteristic variables". This method is called the Characteristic Boundary Conditions and has been
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Boundary type Euler (inviscid) Navier-Stokes (inviscid & viscous)
{u, ρ}, {u, T}, {u, ρ, T},

inflow {p, ρ, utan = 0}, {p, T, utan = 0} {p, T, utan = 0, ∂n(un) = 0}
additionally for multi-component: {φj}s−1

j=1 additionally for multi-component: {φj}s−1
j=1

outflow p p, (τn)n = (τn)tan = 0

Table 3: Inflow and outflow suitable boundary conditions for compressible flow problems of the form (3.1) and
(3.2).

Boundary type Euler (inviscid) Navier-Stokes (inviscid & viscous)
isothermal no-slip u = 0, T = Tw u = 0, T = Tw

adiabatic no-slip u = 0 u = 0, ∂nT = 0
adiabatic slip (u)n = 0 (u)n = 0, ∂nT = 0, (τn)tan = 0

Table 4: Suitable wall conditions for compressible flow problems of the form (3.1) and (3.2).

largely studied and applied for Euler and Navier-Stokes equations, see for example [Thompson, 1987, Poinsot
and Lele, 1992, Laney, 1998, Nicoud, 1999,Okong’o and Bellan, 2002, Benzoni-Gavage et al., 2003, Kim et al.,
2004, Carlson, 2011,Odier et al., 2019]. To write an hyperbolic system in characteristic formulation, one must
find the diagonalization of the Jacobian matrix of the flux function and to get a relationship between the
characteristic and primitive variables. Notice that the primitive variables are the ones known in physics and thus
easy to impose. The number of boundary conditions to be imposed at one boundary is given by the number of
entering characteristic waves that moves with a characteristic velocity given by the eigenvalues of the Jacobian
matrix. The boundary conditions are then imposed in such a way that all the characteristic variables associated to
these entering waves are determined. The outgoing waves remain undetermined since the corresponding variables
will be determined by the equations in the system. This is how one concludes in particular that the pair {velocity,
pressure} provides an ill-posed problem for the Euler equations because it determines the characteristic variable
associated to an outgoing wave. This kind of analysis is not simple and it is out of scope of the work presented
here, although it would be useful to better know how boundary conditions must be set. Here, we simply use the
related literature as guidelines to establish the boundary conditions for our model.

As discussed in [Poinsot and Lele, 1992,Choudhary et al., 2016], the mathematical/physical boundary condi-
tions are not always enough to solve the problem numerically and additional numerical boundary conditions may
be considered to avoid numerical instabilities. Here we focus on theoretical aspects and we only propose boundary
conditions to close the problem based on the works cited above. It must nevertheless be kept in mind that our
model (2.74) is a two-phase system for ten unknowns with strong couplings (mostly due to the term RH2O) that
entails a more complex situation. The viability of a subset of the proposed boundary conditions, together with
possible additional numerical boundary conditions to get stability in the numerical solutions, is analyzed in Part
II, Section 5.2 [Burgisser et al., 2024] for the 1D case.

We frame the discussion on the boundary conditions by considering equation (2.75) as a closure equation for
the liquid pressure pl, which means that equation (2.74f) is no longer considered as a part of the system. At the
outlet, we consider the conditions of viscous type presented in Table 3, by imposing the pressure value together
with zero viscous tensor for both phases. The inlet is more difficult to handle. Our magmatic system is composed
of two phases, a gas with volume fraction ϕ, and a liquid with volume fraction 1 − ϕ. The liquid phase is in
turn composed of two components, H2O and other oxides with corresponding concentrations Cl and (1 − Cl),
their mass fractions in the system being determined by ρl(1− ϕ)Cl and ρl(1− ϕ)(1−Cl), respectively. We can
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thus interpret our system as a three-component model (gaseous H2O, dissolved H2O, and dry silicate liquid)
with volume fractions ϕ, (1− ϕ)Cl, and (1− ϕ)(1−Cl), respectively. The analogy with the works dealing with
multi-component systems ( [Baum et al., 1994,Okong’o and Bellan, 2002,Odier et al., 2019]) leads us to impose
the values of the volume fraction ϕ and the concentration Cl at the inlet.

For clarity, we set aside for now the coupled nature of the system to focus on its two-phase nature with
two components in the liquid phase. The equations of the system may be split in the following two groups
corresponding to the gas (left) and to the liquid (right), respectively:

∂tρgϕ + div(ρgϕug) = RH2O

∂t(ρgϕug) + div(ρgϕug ⊗ ug)− divσg = Fg
∂t(cpgρgϕTg) + div(cpgρgϕTgug)− div(κg∇Tg) = Gg
pgϕ = c0ρgϕTg

∂tρlϕ + div(ρlϕul) = −RH2O

∂t(ρlϕul) + div(ρlϕul ⊗ ul)− divσl = Fl
∂t(cplρlϕTl) + div(cplρlϕTlul)− div(κl∇Tl) = Gl
∂t(ρlϕ(1− Cl)) + div(ρlϕ(1− Cl)ul) = 0
pl = pl(pg, ϕ,divul, RH2O)

where ρgϕ = ρgϕ, pgϕ = pgϕ, ρlϕ = ρl(1 − ϕ) and functions Fj ,Gj , j = g, l, are defined appropriately to
recover the system (2.74). The initial conditions are ρgϕ(t = 0) = ρ0

gϕ, ρgϕug(t = 0) = ρ0
gϕu

0
g, ρlϕ(t = 0) =

ρ0
lϕ, ρlϕul(t = 0) = ρ0

lϕu
0
l , ρgϕTg(t = 0) = ρ0

gϕT
0
g , ρlϕTl(t = 0) = ρ0

lϕT
0
l , ρlϕCl(t = 0) = ρ0

lϕC
0
l , pg(t = 0) =

c0ρ
0
gϕ

0T 0
g , pl(t = 0) = pl(p0

g, ϕ
0,divu0

l , R
H2O(t = 0)). The similarity of the gas equations with the general

system (3.1) is clear, so the same number and kind of conditions may be considered for both cases. Thus, from
Table 1, four conditions are needed for the inviscid case and five for the viscous case at the inlet, following the
same type of conditions presented in Table 3 for the gas variables ρgϕ, ug, Tg, pgϕ. The liquid equations have a
two-component structure with an additional equation for the fraction Cl in affinity with the system (3.2). As
argued before, in addition to the general conditions, the fraction of each component must be imposed. Thus
five conditions are needed for the inviscid case and six for the viscous case at the inlet. The type of conditions
are again those in Table 3 for the liquid variables ρlϕ, ul, Tl, pl, Cl, with Cl being the additional variable to be
prescribed.

To recover now the coupled nature of the two-phase system, the volume fraction ϕ has to be imposed at
the inlet because otherwise the system loses consistency as a whole. The density ρl is constant, so by imposing
a condition on ρlϕ we are prescribing the volume fraction ϕ as well and no additional measure is needed. If,
however, ρlϕ is not chosen as a variable to be imposed, then the system requires an additional condition on
ϕ. This is the case for example when the shortlist {pl, Tl, (ul)tan = 0} is chosen for the inviscid problem. The
situation is simpler when considering wall boundaries because the same number and type of boundary conditions
as in Tables 2 and 4 are valid for both gas and liquid.

We summarize in Tables 5 and 6 the number of boundary conditions needed for our system to be closed. As
in Table 1, one additional condition for the viscous case is needed at the inlet and three more at the outlet for
both gas and liquid.

Boundary type Proposed model (inviscid) Proposed model (inviscid & viscous)
inflow 4 (gas) + 5 (liquid) + 2 (N,R) + 1*(ϕ) 5 (gas) + 6 (liquid) + 2 (N,R) + 1*(ϕ)
outflow 1 (gas) + 1 (liquid) 4 (gas) + 4 (liquid)

Table 5: Inflow and outflow. Number of boundary conditions required for the proposed compressible model
(2.74). The last condition marked with an asterisk needs to be added iff ϕ is not already considered among the
variables imposed for the liquid phase.
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Boundary type Proposed model (inviscid) Proposed model (inviscid & viscous)
isothermal no-slip 4 (gas) + 4 (liquid) 4 (gas) + 4 (liquid)
adiabatic no-slip 3 (gas) + 3 (liquid) 4 (gas) + 4 (liquid)
adiabatic slip 1 (gas) + 1 (liquid) 4 (gas) + 4 (liquid)

Table 6: Walls. Number of boundary conditions required for the proposed compressible model (2.74).

Next, we propose suitable boundary conditions for our system (2.74) considering the two types of inflow con-
ditions by imposing the discriminatory variables: velocity (denoted by BCU) or pressure (denoted by BCP). As
further discussed in Part II, Section 5.2 [Burgisser et al., 2024], all the values have to be set to keep compatibility
in the system because of its strong coupled structure.

Inlet boundary conditions.
◦ BCU. We consider inflow condition by fixing the values of the velocities

(ul)|Γb
= ubl , (ug)|Γb

= ubg, such that ubl · nb < 0, ubg · nb < 0, at Γb, (3.3a)

for nb being the normal vector to the boundary Γb pointing outwards. The presence of the thermal diffusion implies
that the temperatures must be imposed, which is the additional condition related to the viscous contribution. To
extend the stable conditions found in the literature for the gas phase, we chose to give the value for the conserved
density ϕρg that must be compatible with (2.74g). For the liquid phase we also impose the density (1 − ϕ)ρl
(hence, ϕ) and the additional condition on Cl. These conditions thus are:

(ρg)|Γb
= (ρg)b, (ϕ)|Γb

= ϕb, (Cl)|Γb
= Cbl , (3.3b)

and
(Tg)|Γb

= T bg , (Tl)|Γb
= T bl . (3.3c)

◦ BCP. In this case the pressures are given at the inlet instead of the velocities. We must then impose the flow
directions, for which we will consider a vanishing tangent component of the velocity as in [Laurén and Nordström,
2018] and a zero normal derivative of the normal velocity as in [Briley and McDonald, 1977]. Since the volume
fraction is not chosen for the liquid phase, then it must be additionally prescribed. Note that the value of pl at
the boundary must be compatible with (2.75). These conditions thus are:

(pg)|Γb
= pbg, (Tg)|Γb

= T bg , (pl)|Γb
= pbl , (Tl)|Γb

= T bl , (3.4a)

((ug)tan)|Γb
= ((ul)tan)|Γb

= 0, ((Dg nb)n)|Γb
= ((Dl nb)n)|Γb

= 0, (3.4b)

(ϕ)|Γb
= ϕb, (Cl)|Γb

= Cbl . (3.4c)
Outlet boundary conditions. We impose the value of the pressures and viscous, stress-free condition for

both phases:

(pl)|Γt
= ptl , (Dl nt)n = (Dl nt)tan = 0, where utl · nt > 0, at Γt

(pg)|Γt
= ptg, (Dg nt)n = (Dg nt)tan = 0, where utg · nt > 0, at Γt

(3.5a)

where the viscous tensors are given in equations (2.10)-(2.11) and nt is the normal vector to the boundary Γt
pointing outwards. In case the velocities are inbound at this boundary, that is, utl ·nt < 0, utg ·nt < 0, we should
impose the values for the corresponding advected variables. In that case we introduce,

(ϕ)|Γt
= ϕt, (Cl)|Γt

= Ctl , (Tl)|Γt
= T tl where utl · nt < 0, at Γt

(ρg)|Γt
= (ρg)t, (Tg)|Γt

= T tg , where utg · nt < 0, at Γt.
(3.5b)
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Wall boundary conditions. We consider impermeable walls by imposing no-slip or slip conditions for the
velocity. If the wall is considered adiabatic then the normal derivatives of the temperature vanish and if it is
considered as isothermal then fixed temperatures must be defined. We can also impose a temperature gradient
at the wall by fixing the values of the derivatives. We denote nw the normal vector to the boundary Γw pointing
outwards.

No-slip isothermal wall: (ul)|Γw
= 0, (ug)|Γw

= 0, (Tg)|Γw
= Twg , (Tl)|Γw

= Twl at Γw. (3.6)

or

No-slip adiabatic wall: (ul)|Γw
= 0, (ug)|Γw

= 0, (∂nTg)|Γw
= 0, (∂nTl)|Γw

= 0 at Γw. (3.7)

or

No-slip temperature gradient wall: (ul)|Γw
= 0, (ug)|Γw

= 0, (∂nTg)|Γw
= qg, (∂nTl)|Γw

= ql at Γw.
(3.8)

or

Slip adiabatic wall: ((ul)n)|Γw
= ((ug)n)|Γw

= 0, (∂nTg)|Γw
= (∂nTl)|Γw

= 0,
(Dl nw)tan = (Dg nw)tan = 0 at Γw. (3.9)

Remark 3.2 (Simplified case used in Part II, Section 2 [Burgisser et al., 2024]). If we neglect the thermal
conductivity (i.e. κl = κg = 0), the temperature no longer follows a parabolic equation but follows a transport
equation. Thus, the values of the temperatures may only be imposed at the inlet and so the corresponding
conditions in (3.6)-(3.9) must be eliminated. We then impose inflow conditions as in (3.3) or (3.4), and outflow
conditions in (3.5). The boundary conditions at the walls are instead

Wall: (No-slip) (ul)|Γw
= 0, (ug)|Γw

= 0
or (Slip) ((ul)n)|Γw

= ((ug)n)|Γw
= 0, (Dl · nw)tan = (Dg · nw)tan = 0. (3.10)

If we also neglect the gas and liquid viscosities in the stress tensor, we obtain an Euler-type system. For the outlet
condition (3.5a), only the pressure should be prescribed. The number of inflow conditions must be reduced by
one and the walls conditions must be adapted by eliminating the conditions related to viscosity. To summarize,
the conditions are then

Outlet: (pl)|Γt
= ptl , (pg)|Γt

= ptg,

(ϕ)|Γt
= ϕt, (Cl)|Γt

= Ctl , (Tl)|Γt
= T tl where utl · nt < 0,

(ρg)|Γt
= (ρg)t, (Tg)|Γt

= T tg , where utg · nt < 0.

Wall: (No-slip) (ul)|Γw
= 0, (ug)|Γw

= 0
or (Slip) ((ul)n)|Γw

= ((ug)n)|Γw
= 0.

(3.11a)

together with

Inlet BCU:
{

(ρg)|Γb
= (ρg)b or (Tg)|Γb

= T bg

}
, (ϕ)|Γb

= ϕb, (Tl)|Γb
= T bl ,

(ul)|Γb
= ubl , (ug)|Γb

= ubg, (Cl)|Γb
= Cbl ,

or

Inlet BCP: (pg)|Γb
= pbg, (Tg)|Γb

= T bg , (pl)|Γb
= pbg, (Tl)|Γb

= T bl ,

(ϕ)|Γb
= ϕb, (Cl)|Γb

= Cbl , ((ug)tan)|Γb
= ((ul)tan)|Γb

= 0.

(3.11b)
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In the simplified case used in Part II, Section 2 [Burgisser et al., 2024] we neglect the thermal conductivity and
the gas viscosity and we keep the liquid viscosity. The boundary conditions then differ for the gas and the liquid.
Based on the development above, these conditions are:

Outlet: (pl)|Γt
= ptl , (pg)|Γt

= ptg, (Dl nt)n = (Dl nt)tan = 0,
(ϕ)|Γt

= ϕt, (Cl)|Γt
= Ctl , (Tl)|Γt

= T tl where utl · nt < 0,
(ρg)|Γt

= (ρg)t, (Tg)|Γt
= T tg , where utg · nt < 0.

Wall: (No-slip) (ul)|Γw
= 0, (ug)|Γw

= 0
or (Slip) ((ul)n)|Γw

= ((ug)n)|Γw
= 0, (Dl · nw)tan = 0.

(3.12a)

together with
Inlet BCU: (Tg)|Γb

= T bg (ϕ)|Γb
= ϕb, (Tl)|Γb

= T bl ,

(ul)|Γb
= ubl , (ug)|Γb

= ubg, (Cl)|Γb
= Cbl ,

or

Inlet BCP: (pg)|Γb
= pbg, (Tg)|Γb

= T bg , (pl)|Γb
= pbl , (Tl)|Γb

= T bl ,

((ug)tan)|Γb
= ((ul)tan)|Γb

= 0, ((Dl nb)n)|Γb
= 0,

(ϕ)|Γb
= ϕb, (Cl)|Γb

= Cbl .

(3.12b)

where we chose to keep the gas temperature as the imposed variable at the inlet.

4 Drift flux system
A drift flux formulation characterizes two-phase systems in which one velocity (pressure, temperature) is an
average of that of the two phases and the other is a relative velocity (pressure, temperature) between the two
phases [Ishii, 1977]. The objective of rewriting our two-phase system (2.74) into a drift flux form is to propose
a system that is amenable to simplification by neglecting terms that have vanishing control on the the relative
behavior of the two phases involved, gas and liquid. We first write the system as a drift flux model before
formulating it in a dimensionless form in Section 4.2. We then assess in Section 4.3 the relative importance of
physically meaningful terms under ranges of parameter values that are relevant in magmatic systems. Section 4.3
ends with a simplified model in dimensionless and dimensional drift-flux form and in the original two-phase form.
This is a generalization of the approach detailed in Section 5 of [Bresch et al., 2024] to a temperature-dependent
case involving unknowns specific to the situation of volcanic conduit flow.

Remark 4.1. For clarity, we neglect in this Section 4 the effects of surface tension that are included in (2.74).
This can be justified a priori by considering surface tension effect as a modification of the gas pressure (i.e.
surface tension is systematically additive to pressure in (2.74)):

pg −
2σ
R

= pg − 2σ
(4πN(1− ϕ)

3ϕ

)1/3
(4.1)

In Section 4.3 we present a simplified model by neglecting terms < 10−3 in the dimensionless drift flux system
using characteristic ranges for all variables that are set in Table 7. As it will be developed in Section 4.2, we use
the characteristic variables denoted by subscript 0 and the diacritical mark tilde for the dimensionless variables,
hence φ = φ0φ̃ for any variable φ. Following this procedure, let us write (4.1) in non-dimensional form

p0p̃g − 2σ0N
1/3
0 σ̃Ñ1/3

(4π(1− ϕ)
3ϕ

)1/3
.
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Thus surface tension can be neglected if

2σ0N
1/3
0

p0

(4π(1− ϕ)
3ϕ

)1/3
< 10−3 ⇐⇒ p0 > 2σ0N

1/3
0

(4π(1− ϕ)
3ϕ

)1/3
103.

We assume that a typical value of the surface tension between water vapor and silicate melt is σ0 = 10−2 and we
use the range values in Table 7, that is N0 = 1012, 106 ≤ p0 ≤ 108 Pa. For the most unfavorable case, p0 = 106

Pa, we get that surface tension can be neglected if ϕ > 3× 10−2, which corresponds to nearly the whole range
of ϕ values.

We define the bulk variables Y , ρ, u, w, p, q, T and δT , which we link to the primary unknowns with:

ρY = ϕρg (4.2)
ρ = ϕρg + (1− ϕ)ρl (4.3)
u = Y ug + (1− Y )ul (4.4)

w = ug − ul (4.5)
p = ϕpg + (1− ϕ)pl (4.6)

q = pg − pl (4.7)
T = YTTg + (1− YT )Tl (4.8)

δT = Tg − Tl (4.9)
where the coefficients for the temperature variables are given by

cpmYT = ϕρgcvg, cpm = ϕρgcvg + (1− ϕ)ρlcpl, (4.10)

where, for clarity, we used the shorthand cvg = cpg − c0 (see Remark 2.7). To ease the readability of the variable
change, the expressions of the original variables in terms of the new ones are:

pl = p−ϕq, pg = p+(1−ϕ)q, ul = u−Y w, ug = u+(1−Y )w, Tl = T−YT δT, Tg = T+(1−YT )δT
(4.11a)

and we can also notice that

ρl(1− ϕ) = ρ(1− Y ), ρu = ϕρgug + (1− ϕ)ρlul, cpm(1− YT ) = cplρl(1− ϕ). (4.11b)

The constitutive equation for the ideal gas (2.13) reads:

c0ρY Tg = ϕ(p+ (1− ϕ)q). (4.12)

To transform the system (2.74) into drift flux variables, we choose convenient combinations of the equations.
The first one is the total mass as the sum of (2.74a) and (2.74b). It is followed by the equations for the gas mass
(2.74b), the concentration (2.74c) and the volume fraction (2.74f). For the velocity equations, we consider the
sum of (2.74d) and (2.74e) that yields (4.15e) and we keep the momentum equation for the gas phase (2.74e).
Finally, for the temperature equations, we consider the alternate equation (2.76) instead of (2.74j) and we keep
(2.74k) for the liquid temperature. These primary temperature equations in drift flux form are:

(4.13)
cvgρY (∂tTg + (u+ (1− Y )w) · ∇Tg) + (p+ (1− ϕ)q)div

(
u+ (ϕ− Y )w

)
= γ(Tg − Tl) + div(ϕκg∇Tg) + ηgϕ

(
2D(ug) : ∇ug + 3(divug)2

)
− p+ (1− ϕ)q

ρl
RH2O − cvgTgRH2O
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cpl
ρ(1− Y )(∂tTl + (u− Y w) · ∇Tl) = −γ(Tg − Tl) + div((1− ϕ)κl∇Tl)

+ ηl(1− ϕ)
(

2D(ul) : ∇ul + 1
3(divul)2

)
+ p− ϕq

ρl
RH2O + cplTlR

H2O.

(4.14)

Appendix D presents a detailed calculation of the drift-flux conversion. Briefly, we chose the sum of (2.76) and
(2.74k) to get (4.15g) and we calculated (1−YT )×(4.13)−YT ×(4.14) to get (4.15h). The resulting converted
system (2.74) is:

∂tρ+ div(ρu) = 0 (4.15a)

∂t(ρY ) + div(ρY (u+ (1− Y )w)) = RH2O (4.15b)

∂t(ρ(1− Y )(1− Cl)) + div(ρ(1− Y )(1− Cl)(u− Y w)) = 0 (4.15c)

∂tϕ+ (u− Y w) · ∇ϕ = ϕ(1− ϕ)χq (4.15d)

∂t(ρu) + div(ρu⊗ u) + div(ρY (1− Y )w ⊗ w) +∇p− divD − ρg = 0 (4.15e)

(4.15f)
∂t(ρY (u+ (1− Y )w)) + div(ρY u⊗ u) + div(ρY (1− Y )2w ⊗ w)

+ div(ρY (1− Y )u⊗ w) + div(ρY (1− Y )w ⊗ u)

+ ϕ∇(p+ (1− ϕ)q)− div(ϕDg) +Kd ϕ(1− ϕ)w − ρY g −
(
u+

(1
2 − Y

)
w

)
RH2O = 0

∂t(cpmT ) + div(cpmTu) + div
(
cpm((YT − Y )T + YT (1− YT )δT )w

)
+ (p+ (1− ϕ)q)div(u+ (ϕ− Y )w)

= − q
ρl
RH2O + div(ϕκg∇(T + (1− YT )δT ) + (1− ϕ)κl∇(T − YT δT ))

+ ηgϕ
(
2D(u+ (1− Y )w) : ∇(u+ (1− Y )w) + 3(div(u+ (1− Y )w))2

)
+ ηl(1− ϕ)

(
2D(u− Y w) : ∇(u− Y w) + 1

3(div(u− Y w))2
)

(4.15g)

cpmYT (1−YT )
(
∂t(δT )+(u−Y w) ·∇(δT )+w ·∇(T +(1−YT )δT )

)
+(1− YT )(p+(1−ϕ)q)div(u+(ϕ−Y )w)

= γδT − (p+ (1− ϕ− YT )q)R
H2O

ρl
− cpmYT (1− YT )

ρY (1− Y ) (T + (1− Y − YT )δT )RH2O

+ (1− YT )div(ϕκg∇(T + (1− YT )δT )− YTdiv((1− ϕ)κl∇(T − YT δT ))
+ (1− YT )ηgϕ

(
2D(u+ (1− Y )w) : ∇(u+ (1− Y )w) + 3(div(u+ (1− Y )w))2

)
− YT ηl(1− ϕ)

(
2D(u− Y w) : ∇(u− Y w) + 1

3(div(u− Y w))2
)

(4.15h)

where χ = 3
4ηl

and D = (1− ϕ)Dl + ϕDg (see (2.10)-(2.11)).

August 24, 2024 35



The unknowns of the system are: p, q, Cl, u, w, ϕ, T, δT . The density ρ is obtained from the constitutive
equation (4.12). From the original system, we also have this relation as an alternative to equation (4.15d):

div(u− Y w) = ϕχq − RH2O

ρ(1− Y ) . (4.16)

Thus, considering (4.16) instead of (4.15d), the unknowns become p, ρ, Cl, u, w, q, Tg, Tl and ϕ is obtained from
the constitutive equation (4.12).

The alternative equations (2.54)–(2.55) for the total water content, CT , give the following equivalent con-
servation and transport equations:

∂t(ρ(1− CT )) + div(ρ(1− CT )(u− Y w)) = 0, (4.17)

∂tCT + (u− Y w) · ∇CT = −1− CT
ρ

div(ρY w). (4.18)

4.1 Alternative momentum equations

In the momentum equations, (4.15f) needs to be replaced by an alternate equation on the relative velocity w
(i.e. a equation with only w in the time derivative). This calculation is similar to those performed in the review
paper [Bresch et al., 2024] in Section 5.2 with the following equivalence in the notation: Γ = RH2O, Λ|w|=
Kdϕ(1 − ϕ), Θ = 3ϕ(1−ϕ)

4ηl
, fg = fl = g, βu = 1, βp = 0. Notice that this calculation is made for the model

in [Ambroso et al., 2008] where the viscous tensor is not considered and no exchange appears in the momentum
equation due to the term RH2O (Γ in their paper). Nevertheless we can follow the same calculations to obtain
the following equation for w:

∂tw + div((1− Y )w ⊗ w) + u · ∇w + w · ∇u− Y w · ∇w − (1− Y )w divw

= 1
ρY (1− Y )

(
−Kdϕ(1− ϕ)w + (1− Y )div(ϕDg)− Y div((1− ϕ)Dl) + (Y − ϕ)∇p− ϕ∇((1− ϕ)q)

−RH2O
(1

2 − Y
)
w

)
.

(4.19)

This formulation is useful when the asymptotic equilibrium w = 0 is satisfied in the physical system considered.
It is not the case for magmas because the gas phase can accelerate significantly compared to the liquid owing to
the large viscosity contrast between the two phases. The large density contrast between the two phases, however,
causes |u− ul|� 1 (Part II, Section 6 [Burgisser et al., 2024]). That u− ul = Y w makes an equation based on
this quantity a desirable goal. We thus follow the reasoning used to obtain (4.19) to find an equation on Y w
instead of w. From (4.15b) and (4.15e), we have:

∂t(ρY u) + div(ρY u⊗ u) + div(ρY (1− Y )w)u = uRH2O + Y
(
−div(ρY (1− Y )w ⊗ w)−∇p+ divD + ρg

)
.

Then we write (4.15f) as

(4.20)

∂t(ρY (1− Y )w) + div(ρY (1− Y )2w ⊗ w)

+ div(ρY (1− Y )u⊗ w) + ρY (1− Y )w · ∇u− (1
2 − Y )wRH2O

− Y div(ρY (1− Y )w ⊗ w) + Y (−∇p+ divD + ρg)
+ ϕ∇(p+ (1− ϕ)q)− div(ϕDg) +Kdϕ(1− ϕ)w − ρY g = 0.
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Using mass equations (4.15a), (4.15b) we can write

Y w
(
∂t(ρ(1− Y )) + div(ρ(1− Y )u)− div(ρY (1− Y )w)

)
= −RH2OY w. (4.21)

We now rewrite (4.20) as follows:

(4.22)

ρ(1− Y )∂t(Y w) + Y w∂t(ρ(1− Y )) + div(ρ(1− Y )2w)Y w
+ ρ(1− Y )2w · ∇(Y w) + div(ρ(1− Y )u)Y w + ρ(1− Y )u · ∇(Y w)

+ ρY w(1− Y ) · ∇u−
(1

2 − Y
)
wRH2O − Y 2div(ρ(1− Y )w)w

− ρY (1− Y )w · ∇(Y w) + Y (−∇p+ divD + ρg)
+ ϕ∇(p+ (1− ϕ)q)− div(ϕDg) +Kdϕ(1− ϕ)w − ρY g = 0.

This last identity can be simplified using (4.21):

(4.23)
ρ(1− Y )∂t(Y w) + div(ρ(1− Y )w)(1− Y )Y w + ρ(1− 2Y )(1− Y )w

· ∇(Y w) + ρ(1− Y )u · ∇(Y w) + ρ(1− Y )Y w · ∇u− 1
2wR

H2O

+ Y (−∇p+ divD + ρg) + ϕ∇(p+ (1− ϕ)q)− div(ϕDg) +Kdϕ(1− ϕ)w = 0.

Dividing by ρ(1− Y ), collecting similar terms together, and using ϕw = ρ
ρg
Y w in the drag term yields:

(4.24)

∂t(Y w) + div(ρ(1− Y )w)1
ρ
Y w + (1− 2Y )w · ∇(Y w) + u · ∇(Y w) + Y w · ∇u

= 1
ρ(1− Y )

(
(1− Y )div(ϕDg)− Y div((1− ϕ)Dl) + (Y − ϕ)∇p− ϕ∇((1− ϕ)q)

−Kd(1− ϕ) ρ
ρg
Y w + 1

2wR
H2O

)
.

Equations (4.19) or (4.24) may replace (4.15f).

Remark 4.2. Note that the term in (4.24)

div(ρ(1− Y )w)1
ρ
Y w

may be written as
div(ρ(1− Y )w)1

ρ
Y w = div((1− Y )w)Y w + Y (1− Y )w · ∇ρ

ρ
w. (4.25)

4.2 Dimensionless drift flux and ranges of physical parameters

The goal of this section is to transform the drift flux model into a dimensionless form that contain classical
dimensionless numbers. The resulting model features dimensionless factors that are easily compared to each
other to decide which terms have the most weight or on the contrary which ones can be neglected. The natural
application of the (full) model in Part II [Burgisser et al., 2024] suggests three relevant limits. As mentioned in
Section 4.1, |u−ul|� 1. For the temperatures it is observed that |Tg−Tl|� 1. For the water concentration, the
steady state solution is close to the equilibrium state |Cl − kh

√
pg|� 1, which in turn suggests that |RH2O|� 1.

We analyze here these cases to understand why these limits are achieved by bracketing the ranges of the physical
quantities involved.
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To isolate the three observed limits in the dimensionless system, we replace RH2O in (4.15g), (4.15h) and
(4.24) with its expression in (4.15b). The same substitution is not possible for the other quantities, Y w = u−ul,
δT = Tg−Tl, because they are affected by continuity equations, (4.24) and (4.15h), that act as relaxed equations
for the relaxation parameters Kd and γ, respectively. These equations must thus be analyzed first to find the
respective orders of Y w and δT . We then use in Section 4.3 the orders of magnitude of these two quantities to
perform the scaling of the rest of the equations. The system to be analyzed for unknowns ρ, ϕ,Cl, q, u, w, T, δT
is thus:

∂tρ+ div(ρu) = 0, (4.26a)

∂t(ρY ) + div(ρY (u+ (1− Y )w)) = RH2O (4.26b)

∂t(ρ(1− Y )(1− Cl)) + div(ρ(1− Y )(1− Cl)(u− Y w)) = 0 (4.26c)

∂tϕ+ (u− Y w) · ∇ϕ = 3ϕ
4ηl

(1− ϕ)q (4.26d)

(4.26e)∂t(ρu) + div(ρu⊗ u) + div(ρY (1− Y )w ⊗ w) +∇p− div
(
(1− ϕ)Dl + ϕDg

)
= ρg

∂t(Y w) + div(ρ(1− Y )w)1
ρ
Y w + (1− 2Y )w · ∇(Y w) + u · ∇(Y w) + Y w · ∇u

= 1
ρ(1− Y )

(
(1− Y )div(ϕDg)− Y div((1− ϕ)Dl) + (Y − ϕ)∇p− ϕ∇((1− ϕ)q)−Kd(1− ϕ) ρ

ρg
Y w

)
+ 1

2
1

ρ(1− Y )w(∂t(ρY ) + div(ρY (u+ (1− Y )w))).

(4.26f)

∂t(cpmT ) + div(cpmTu) + div
(
cpm((YT − Y )T + YT (1− YT )δT )w

)
+ (p+ (1− ϕ)q)div(u+ (ϕ− Y )w)

= div(ϕκg∇(T + (1− YT )δT ) + (1− ϕ)κl∇(T − YT δT ))
+ ηgϕ

(
2D(u+ (1− Y )w) : ∇(u+ (1− Y )w) + 3(div(u+ (1− Y )w))2

)
+ ηl(1− ϕ)

(
2D(u− Y w) : ∇(u− Y w) + 1

3(div(u− Y w))2
)
− 1
ρl
q(∂t(ρY ) + div(ρY (u+ (1− Y )w)))

(4.26g)

cpmYT (1−YT )
(
∂t(δT )+(u−Y w) ·∇(δT )+w ·∇(T +(1−YT )δT )

)
+(1− YT )(p+(1−ϕ)q)div(u+(ϕ−Y )w)

= γδT −
(

(p+ (1−ϕ−YT )q) 1
ρl

+ cpmYT (1− YT )
ρY (1− Y ) (T + (1−Y −YT )δT )

)
(∂t(ρY ) + div(ρY (u+ (1−Y )w)))

+ (1− YT )div
(
ϕκg∇(T + (1− YT )δT )

)
− YTdiv

(
(1− ϕ)κl∇(T − YT δT )

)
+ (1− YT )ηgϕ

(
2D(u+ (1− Y )w) : ∇(u+ (1− Y )w) + 3(div(u+ (1− Y )w))2

)
− YT ηl(1− ϕ)

(
2D(u− Y w) : ∇(u− Y w) + 1

3(div(u− Y w))2
)

(4.26h)
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where

Dl = ηl
(
2D(u− Y w) + 1

3div(u− Y w)
)
, Dg = ηg

(
2D(u+ (1− Y )w) + 3div(u+ (1− Y )w)

)
.

The calculated variables are Y, YT , p from

Y = ϕpg
c0ρTg

, YT = ρY cvg
cpm

, c0ρY (T + (1− YT )δT ) = ϕ(p+ (1− ϕ)q) (4.27)

We introduce the diacritical mark tilde for the dimensionless variables, that is φ = φ0φ̃ where φ0 is some refer-
ence value. As we deal with a three dimensional problem, the space variable (x, y, z) has a different characteristic
length for each component. In the present application, the domain is the volcano conduit that can be depicted as
a cylinder where the z component, representing the conduit length, spans a distance much larger than the horizon-
tal component representing the cylinder diameter. Here we are interested in analyzing a most unfavorable case,
so we consider only one characteristic length L0 for the three dimensions, which we equate to the cylinder radius.
For simplicity, some dimensional constants are kept unchanged in the calculations (D, kh, cpl, cpg, c0, κl, κg). The
dimensionless variables are thus defined as:

t = t0t̃, u = u0ũ, w = w0w̃, ρl = ρl0ρ̃l, ρg = ρg0ρ̃g, p = p0p̃, q = q0q̃,

Cl = Cl0C̃l, T = T0T̃ , δT = δT0 δ̃T ,

ηl = ηl0η̃l, ηg = ηg0η̃g, g = |g|g̃,

Kd = Kd0K̃d, γ = γ0γ̃, RH2O = R0R̃
H2O,

and the space derivative operators are denoted as

div(·) = 1
L0

d̃iv(·), ∇(·) = 1
L0
∇̃(·).

The characteristic values Cl0,Kd0, γ0 and R0 correspond to the particular expressions considered for these terms.
In the exchange term RH2O given by (2.38d), we consider N = N0Ñ , pg = pg0p̃g and we identify

R0 = 31/3(4πN0)2/3Dρl0Cl0, R̃H2O = ρ̃l(Ñ)2/3ϕ
2/3(1− ϕ)2/3

1− ϕ1/3

(
C̃l −

√
p̃g
)
, with Cl0 = kh

√
pg0,

(4.28a)
To avoid confusion with the operator D(u) = ∇u+∇tu

2 appearing in the velocity and temperature equations, we
will use the notation Du(u) for this operator in this Section, hence D̃u(u) for those without dimension. In Part
II, Section 2 [Burgisser et al., 2024], we will use the following expression for the heat transfer coefficient γ:

γ = 24κlϕNu
R2
b

, Nu = 7− 10(1− ϕ) + 5(1− ϕ)2, R3
b = 3ϕ

4πN(1− ϕ) .

Then, considering that Nu = Nu0Ñu, we identify

γ0 = 24
(4π

3

)2/3
N

2/3
0 κlNu0, γ̃ = (1− ϕ)2/3ϕ1/3ÑuÑ2/3. (4.28b)

The drag coefficient Kd is given in equation (2.12) for bubbly and permeable flow. As our application in Part
II [Burgisser et al., 2024] is based on permeable flows, we choose Kd = ηg/k, where k is the permeability
coefficient of the magma. Then we set

Kd0 = ηg0

k0
, K̃d = η̃g

k̃
. (4.28c)
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The bulk density variable Y is written as

Y = ρg0
ρl0

1
1 + ρg0

ρl0
Ỹ
Ỹ , so 1− Y = 1

1 + ρg0
ρl0
Ỹ
,

for Ỹ = ϕρ̃g

(1−ϕ)ρ̃l
= ρl0Y

ρg0(1−Y ) . Two-way variable conversion can be done with:

ρ = ρl0

(
1 + ρg0

ρl0
Ỹ

)
(1− ϕ)ρ̃l and ρY = ρg0(1− ϕ)ρ̃lỸ .

To keep the temperature equations concise, we introduce

Cp = cvg
cpl

and we write

YT = ρg0
ρl0

Cp
1

1 + ρg0
ρl0
CpỸ

Ỹ , and cpm = ρl0

(
1 + ρg0

ρl0
Cp Ỹ

)
(1− ϕ)ρ̃lcpl.

Two-way variable conversion can be done with:

1− YT = 1
1 + ρg0

ρl0
Cp Ỹ

and cpmYT = ρg0cvg(1− ϕ)ρ̃lỸ .

Several classical dimensionless numbers are found in the equations: St is the Strouhal number, Ma is the Mach
number, Re is the Reynolds number, Fr is the Froude number, Pe is the thermal Peclet number, and Br is the
Brinkman number based on a reference temperature (see [Costa et al., 2007]):

St = L0
u0t0

, Fr2 = u2
0

L0|g|
, Ma2 = ρl0u

2
0

p0
, Rel = ρl0u0L0

ηl0
, Reg = ρg0u0L0

ηg0

Pel = ρl0u0L0cpl
κl

, Peg = ρg0u0L0cvg
κg

, Brl = ηl0u
2
0

κlδT0
, Brg = ηg0u

2
0

κgδT0

The resulting dimensionless, drift flux system is lengthy, which led us to present it in Appendix E. The
simplified version of the system omitting lower-order terms is presented in the next Section.

4.3 Drift flux simplification to the main order

In this section we write the dimensionless drift flux system up to order 10−3. The complete system is written
in Appendix E. Tables 7, 8, and 9 contain characteristic value ranges of the physical quantities involved. In a
volcanic conduit, we expect different ranges of values between the bottom and the top of the conduit because of
the different gas volume fractions and pressures at each end (generally pg and ρg are high at the base and low at
the top and ϕ has the opposite trend). For completeness, we assess both situations separately to then consider
the more unfavorable case between them to write the asymptotic system.

For simplicity, we assume St ∼ 1, which implies a characteristic time of t0 ∼ 103 s. This assumption is revisited
when discussing the final simplified system in two-phase form (see (4.37) below). The particular limits we hope
to find are related to RH2O, Y w and δT . As RH2O has been already replaced in the system, we must first study
the equations of Y w and δT to find their orders and then replace them as well in the other equations of the system.
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Description Conduit bottom Conduit top Remarks
L0 10 10
t0 ? ? to be determined (see main text)
u0 10−2 1
w0 0 if ug = ul 0 if ug = ul maximum value 100
ρl0 2200 2200
ρg0 200 0, 2
p0 108 106

q0 0 if pg = pl 0 if pg = pl maximum value 106

pg0 108 106

T0 103 103

δT0 1 1
ηl0 106 106

ηg0 10−5 10−5

kh 4× 10−6 4× 10−6

cpl 103 103

cpg 2× 103 2× 103

c0 5× 102 5× 102

Cp 1.5 1.5
κl 2.3 2.3
κg 2× 10−2 2× 10−2

N0 1012 1012

Nu0 2 2

Table 7: Dimensionless quantities I: elementary values

Description Conduit bottom Conduit top Remarks
St = L0/(u0t0) 103/t0 10/t0

Fr2 = u2
0/(L0|g|) 10−6 10−2

Ma2 = ρl0u
2
0/p0 2× 10−7 2× 10−3

Rel = ρl0u0L0/ηl0 2× 10−4 2× 10−2

Reg = ρg0u0L0/ηg0 2× 106 2× 105

Pel = ρl0u0L0cpl/κl 105 107

Peg = ρg0u0L0cvg/κg 106 105 undefined if ϕ = 0

Brl = ηl0u
2
0/(κlδT0) 5× 101 5× 105

Brg = ηg0u
2
0/(κgδT0) 5× 10−8 5× 10−4 undefined if ϕ = 0

Table 8: Dimensionless quantities II: classical dimensionless numbers
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Description Conduit bottom Conduit top Remarks
ρg0/ρl0 10−1 10−4

q0/p0 0 if pg = pl 0 if pg = pl maximum value 1

w0/u0 0 if ug = ul 0 if ug = ul maximum value 100

T0/δT0 103 − 108 103 − 108

p0/(ρg0T0cpl) 0.5 0.5

Cl0 = kh
√
pg0 4× 10−2 4× 10−3

L2
0/k0 1021 1014

R0 3× 104 3× 102 for D = 10−10, or 0 if D = 0
L0R0/(ρl0u0) = 31/3(4πN0)2/3DCl0L0/u0 104 1 for D = 10−10, or 0 if D = 0

γ0L0/(ρl0u0cpl) = 24 (4π/3)2/3 Pe−1
l Nu0N

2/3
0 L2

0 105 107 if ϕ = 0

Table 9: Dimensionless quantities III: particular relations

The drift velocity Y w is involved in a relaxation equation for the drag coefficient Kd. In the dimensionless
equation (E.6) , the coefficient becomes L2

0/k0, varying from 1014 to 1021 (see Table 9). The term giving the
main order is the same at the bottom and at the top of the conduit, the order being however different:

K̃d(1− ϕ)
ρ̃g

Ỹ w̃ = O

(ρg0
ρl0

w0
u0

1
Reg

L2
0
k0

)−1 1
Ma2

−ϕ
ρ̃l(1− ϕ)∇̃

(
p̃+ q0

p0
(1− ϕ)q̃

) = O(10m1), m1 =
{
−9 bottom
−4 top

Similarly, the temperature difference (E.8) is involved in a relaxation equation for the coefficient γ. The corre-
sponding dimensionless coefficient is γ0L0/(ρl0u0cpl), which is on the order of 105 − 107 (see Table 9):

γ̃δ̃T = O

( γ0L0
ρl0u0cpl

)−1
p0

δT0ρl0cpl

(
p̃+ q0

p0
(1− ϕ)q̃

)
d̃iv (ũ+ ϕw̃)

 = O(10m2), m2 =
{
−3 bottom
−7 top

We can now study the rest of equations in the system where we embed

Ỹ w̃ =
(
ρg0
ρl0

w0
u0

1
Reg

L2
0
k0

)−1 1
Ma2

ρ̃g

K̃d(1− ϕ)
−ϕ

ρ̃l(1− ϕ)∇̃
(
p̃+ q0

p0
(1− ϕ)q̃

)
, (4.29)

δ̃T =
(

γ0L0
ρl0u0cpl

)−1
p0

δT0ρl0cpl

1
γ̃

(
p̃+ q0

p0
(1− ϕ)q̃

)
d̃iv (ũ+ ϕw̃) . (4.30)

The mass equations.
The total mass equation (E.1) is:

◦ at the bottom of the conduit:

St ∂t̃
((

1 + ρg0
ρl0

Ỹ

)
(1− ϕ)ρ̃l

)
+ d̃iv

((
1 + ρg0

ρl0
Ỹ

)
(1− ϕ)ρ̃lũ

)
= 0,

August 24, 2024 42



◦ at the top of the conduit:

St ∂t̃ ((1− ϕ)ρ̃l) + d̃iv ((1− ϕ)ρ̃lũ) = O(10−4).

The gas mass equation (E.2) gives the limit for RH2O:

R̃H2O = O

( ρl0
ρg0

L0R0
ρl0u0

)−1 (
St ∂t̃

(
(1− ϕ)ρ̃lỸ

)
+ d̃iv

(
(1− ϕ)ρ̃lỸ ũ

)) = O(10m3), m3 =
{
−5 bottom
−4 top

The water concentration (E.3) is:

◦ at the bottom of the conduit:

St ∂t̃
(
(1− ϕ)ρ̃l(1− Cl0C̃l)

)
+ d̃iv

(
(1− ϕ)ρ̃l(1− Cl0C̃l)ũ

)
= O(10−8), (4.31)

◦ at the top of the conduit:

St ∂t̃ ((1− ϕ)ρ̃l) + d̃iv ((1− ϕ)ρ̃lũ) = O(10−3).

This equation does not give any information about C̃l because the characteristic concentration is Cl0 ∼ 10−3

at the top of the conduit (see Table 9).

Finally, the gas volume fraction (E.4) is:

ϕ(1− ϕ) 3
4η̃l

q̃ =
( Rel

Ma2
q0
p0

)−1 (
St ∂t̃ϕ+ ũ · ∇̃ϕ

)
+O(10m4), m4 =

{
−8 bottom
−6 top

with O
((

Rel

Ma2
q0
p0

)−1
)

= O(10−1).

The mixture velocity equation (E.5)

◦ at the bottom of the conduit:

(4.32)∇̃p̃ = Ma2

Fr2

(
1 + ρg0

ρl0
Ỹ

)
(1− ϕ)ρ̃l +O(10−3)

where O
(

Ma2

Fr2

)
= O(10−1).

◦ at the top of the conduit:

∇̃p̃ = Ma2

Rel

(
∇̃
(

(1− ϕ)η̃l
1
3d̃iv ũ

)
+ 2d̃iv

(
(1− ϕ)η̃lD̃u(ũ)

))
+ Ma2

Fr2 (1− ϕ)ρ̃lg̃ +O(10−3)

where O(Ma2/Rel) = O(Ma2/Fr2) = O(10−1).

The mixture temperature equation (E.7)
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◦ at the bottom of the conduit:

(4.33)St ∂t̃
((

1 + ρg0
ρl0

CpỸ
)
(1− ϕ)ρ̃lT̃

)
+ d̃iv

((
1 + ρg0

ρl0
CpỸ

)
(1− ϕ)ρ̃lT̃ ũ

)
= −ρg0

ρl0

p0
ρg0T0cpl

(
p̃+ q0

p0
(1− ϕ)q̃

)
d̃ivũ+O(10−3)

with O
(
ρg0
ρl0

p0
ρg0T0cpl

)
= O(10−2) and O(q0/p0) = O(1).

◦ at the top of the conduit:

(4.34)St ∂t̃
(
(1− ϕ)ρ̃lT̃

)
+ d̃iv

(
(1− ϕ)ρ̃lT̃ ũ

)
= O(10−4).

Pressure equation (E.9)

Cp(1− ϕ)ρ̃lỸ T̃ = cvg
c0

p0
ρg0T0cpl

ϕ

(
p̃+ q0

p0
(1− ϕ)q̃

)
+O(10m5), m5 =

{
−6 bottom
−10 top

where O
(
cvg

c0
p0

ρg0T0cpl

)
= O(Cp) = O(q0/p0) = O(1). Using the expression of Cp it can also be written as

(1− ϕ)ρ̃lỸ T̃ = p0
ρg0T0c0

ϕ

(
p̃+ q0

p0
(1− ϕ)q̃

)
+O(10m5).

We can now write the asymptotic system where only the most unfavorable cases remain:

R̃H2O = O

( ρl0
ρg0

L0R0
ρl0u0

)−1 (
St ∂t̃

(
(1− ϕ)ρ̃lỸ

)
+ d̃iv

(
(1− ϕ)ρ̃lỸ ũ

)) = O(10−4) (4.35a)

Ỹ w̃ = O

(ρg0
ρl0

w0
u0

1
Reg

L2
0
k0

)−1 1
Ma2

ρ̃g

K̃d(1− ϕ)
−ϕ

ρ̃l(1− ϕ)∇̃
(
p̃+ q0

p0
(1− ϕ)q̃

) = O(10−4) (4.35b)

δ̃T = O

( γ0L0
ρl0u0cpl

)−1
p0

δT0ρl0cpl

1
γ̃

(
p̃+ q0

p0
(1− ϕ)q̃

)
d̃iv (ũ+ ϕw̃)

 = O(10−7) (4.35c)

St ∂t̃
((

1 + ρg0
ρl0

Ỹ

)
(1− ϕ)ρ̃l

)
+ d̃iv

((
1 + ρg0

ρl0
Ỹ

)
(1− ϕ)ρ̃lũ

)
= 0, (4.35d)

St ∂t̃
(
(1− ϕ)ρ̃l(1− Cl0C̃l)

)
+ d̃iv

(
(1− ϕ)ρ̃l(1− Cl0C̃l)ũ

)
= O(10−8), (4.35e)

St ∂t̃ϕ+ ũ · ∇̃ϕ = Rel
Ma2

q0
p0

3
4η̃l

ϕ(1− ϕ)q̃ +O(10−6) (4.35f)

(4.35g)
∇̃
(
p̃+ q0

p0
(1− ϕ)q̃

)
= Ma2

Rel

(
∇̃
(1

3(1− ϕ)η̃ld̃iv ũ
)

+ 2d̃iv
(
(1− ϕ)η̃lD̃u(ũ)

))
+ Ma2

Fr2

(
1 + ρg0

ρl0
Ỹ

)
(1− ϕ)ρ̃lg̃ +O(10−3)
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(4.35h)
St ∂t̃

((
1 + ρg0

ρl0
CpỸ

)
(1− ϕ)ρ̃lT̃

)
+ d̃iv

((
1 + ρg0

ρl0
CpỸ

)
(1− ϕ)ρ̃lT̃ ũ

)
= −ρg0

ρl0

p0
ρg0T0cpl

(
p̃+ q0

p0
(1− ϕ)q̃

)
d̃ivũ+O(10−3)

(1− ϕ)ρ̃lỸ T̃ = p0
ρg0T0c0

ϕ

(
p̃+ q0

p0
(1− ϕ)q̃

)
+O(10−13). (4.35i)

Convection effects are kept in the velocity equation because it is driven by the pressure and viscosity forces.
In dimensional form, the system (4.35) and the three limits for RH2O, Y w and δT are:

RH2O = ∂t(ρY ) + div(ρY u)

Y w = − Y

(1− ϕ)Kd
∇ (p+ (1− ϕ)q)

δT = 1
γ

(p+ (1− ϕ)q) div (u+ ϕw)

∂tρ+ div(ρu) = 0
∂t(ρ(1− Y )(1− Cl)) + div(ρ(1− Y )(1− Cl)u) = 0

∂tϕ+ u · ∇ϕ = ϕ(1− ϕ) 3
4ηl

q

∇ (p+ (1− ϕ)q) = 1
3∇ ((1− ϕ)ηldivu) + 2div ((1− ϕ)ηlDu(u)) + ρg

∂t(cpmT ) + div(cpmTu) = − (p+ (1− ϕ)q) divu

(4.36)

In this system, not all drift-flux variables have an immediate physical meaning, so we convert some of them
back into their two-phase counterparts. Mass conservation involves the drift variables ρ and Y , the latter of
which we convert into a combination of ρg, ϕ, and ρl. The pressures are also converted because pl can be
written explicitly. We keep u and w because the bulk velocity is obtained from a single Stokes equation and the
drift velocity is obtained from a single Darcy equation. Finally, δT is neglected owing to its very small order. The
strict drift-flux system (4.36) can thus be rewritten in a system depending on, respectively, ρ, ϕ,Cl, u, and T :

∂t((1− ϕ)ρl) + div((1− ϕ)ρlu) = −RH2O

∂tρ+ div(ρu) = 0
∂t((1− ϕ)ρl(1− Cl)) + div((1− ϕ)ρl(1− Cl)u) = 0

∇pg = 1
3∇ ((1− ϕ)ηldivu) + 2div ((1− ϕ)ηlDu(u)) + ρg

∂t(cpmT ) + div(cpmTu) = −pgdivu

(4.37a)

where the variables w and pl are respectively given by:

w = − 1
(1− ϕ)Kd

∇pg

pl = pg −
4ηl
3ϕ

(
divu+ RH2O

(1− ϕ)ρl

) (4.37b)
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and the variables pg, ρg, and cpm are respectively given by:

pg = ρgc0T

ϕρg = ρ− (1− ϕ)ρl
cpm = ρgϕcvg + (1− ϕ)ρlcpl

(4.37c)

This system (4.37) highlights the essential physical processes governing volcanic conduit flows. The mass
exchange is a major control of flow dynamics and cannot be neglected. At the time scale assumed here (103

s), the main transient terms are those related to mass exchange and conservation. This drove us to propose in
Section 5 a limit case of mass exchange by establishing a relaxed system in which Cl = Ceql . The bulk magma
flow can be represented by a viscous, steady-state Stokes flow. We expect that transient terms in the momen-
tum play an important role at time scales < 103 s, such as those involved in pulsatory eruptive dynamics (e.g.,
Strombolian and Vulcanian regimes). Conversely, the largest length scale is the conduit length, which is on the
order of several kilometers (say 10 km). A Strouhal number, St = L0/(u0t0), of 1 thus implies that the transit
time of a parcel of magma from the base to the top of the conduit occurs over t0 ∼ 106 s, and that the transient
term of the liquid momentum equation can no longer be neglected. Part II, Section 6 [Burgisser et al., 2024],
illustrates transient behaviors lasting 103 − 105 s and the conditions to obtain steady-state solutions in which all
transient terms can be neglected.

Unlike the vanishing small temperature differences, bulk magma temperature is expected to vary because of
gas expansion (quantified by pgdivu). This is noteworthy as the non isothermal character of the flow has often
been neglected in conduit flow studies. One notable exception is the series of works by La Spina and collabora-
tors [La Spina and de’ Michieli Vitturi, 2012,La Spina et al., 2014,La Spina et al., 2017], in which temperature
changes are explicitly taken into account. This drove us to carry out a detailed comparison between our model
and that of [La Spina and de’ Michieli Vitturi, 2012] in Section 6.

In Part II [Burgisser et al., 2024], Section 2, we neglect surface tension effects, temperature diffusion, and
shear effects in the gas phase. Other effects absent from the first-order system (4.37) are kept and quantified.
Scaling argument for neglecting surface tension were stated at the beginning of Section 4. Our scaling choice in
Table 7 is not the best to estimate whether gas viscosity can be neglected because we chose L0 as the conduit
diameter. The gas flow, however, occurs within the interconnected bubble network, which has a characteristic
cross-section on the order of (4πN0/3)1/3 (see equation (4.1)), which is O(10−6L0). Taking this correction
factor into account, the ηg term in the mixture velocity equation is at most O(10−14) whereas all the other terms
are > O(1). In the drift flux velocity equation, the ηg term is at most O(10−4) whereas all the other terms
are at least one order of magnitude larger. Shear effects can thus be neglected in the gas momentum equation.
In the temperature equation, the viscous dissipation due to the gas is at most O(10−15) and heat diffusion
terms are at most O(10−5), whereas the leading order terms are O(1). In the relative temperature equation, the
viscous dissipation due to the gas is at most O(10−12) and heat diffusion terms are at most O(10−4), whereas
the leading order terms are > O(1). Thus, neglecting temperature diffusion does not affect the two-phase flow
dynamics. Finally, the system (4.37) suggests that relative velocities can be captured to the main order with a
Darcy equation (4.37b). This simplification is only accurate within limits that are explored in Part II, Section
6 [Burgisser et al., 2024].
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5 Relaxed system
In this section we analyze a particular case of the proposed system (2.74) that we assume to be at the chemical
equilibrium, that is, Cl = Ceq

l (see equation (2.39)):

Cl = kh
√
pg.

This limit is achieved for small Peclet number when the diffusive effect is more important that the viscous one,
which corresponds to a infinite diffusion coefficient D. Since RH2O is defined in terms of the D (see equation
(2.38d)), this limit implies that RH2O is not defined, so it can no longer be part of the new, relaxed system. In
other words, one equation must be eliminated from the system (2.74) to establish the relaxed system since now
we know Cl in terms of pg. So we sum up the equations of mass and momentum conservation, respectively to
eliminate the term in RH2O. The relaxed system at the chemical equilibrium for unknowns ϕ, ρg, ul, ug, pl, Tg, Tl
then reads:

∂tρ+ div((1− ϕ)ρlul + ϕρgug) = 0, (5.1a)

∂t((1− ϕ)ρl(1− Cl)) + div((1− ϕ)ρl(1− Cl)ul) = 0 (5.1b)

(5.1c)
∂t((1− ϕ)ρlul + ϕρgug) + div((1− ϕ)ρlul ⊗ ul + ϕρgug ⊗ ug)

+∇((1− ϕ)pl + ϕpg) + 2σ
R
∇(1− ϕ)− div((1− ϕ)Dl + ϕDg)− ρg = 0

∂t(ϕρgug)+div(ϕρgug⊗ug)+∇(ϕpg)−div(ϕDg)−pg∇ϕ+Kd ϕ(1−ϕ)(ug−ul)−ϕρgg−
ug + ul

2 (∂t(ϕρg)+div(ϕρgug)) = 0
(5.1d)

∂tϕ+ ul · ∇ϕ = ϕ(1− ϕ) 3
4ηl

(
pg − pl −

2σ
R

)
(5.1e)

∂t(ϕcpgρgTg) + div(ϕcpgρgTgug)− ϕ
(
∂t

(
pg−

2σ
R

)
+ ug · ∇pg

)
− γ(Tg − Tl)

−2ηgD(ug) : ∇ug − λg(divug)2 − div(ϕκg∇Tg) = 0,
(5.1f)

∂t((1− ϕ)cpl
ρlTl) + div((1− ϕ)cpl

ρlTlul) + pl(∂t((1− ϕ)) + div((1− ϕ)ul)) + γ(Tg − Tl)
−2ηlD(ul) : ∇ul − λl(divul)2 − div((1− ϕ)κl∇Tl) = 0.

(5.1g)

where ρ = (1− ϕ)ρl + ϕρg and pg = c0ρgTg. Note that equation (5.1b) is no longer used to solve Cl but that
it can be used now to solve ρg and ϕ together with (5.1a).

The system being still complicated, we consider two additional relaxation limits. The first one is to assume
an infinite drag coefficient Kd, which leads to a system with a unique velocity ug = ul = u. This is a restrictive
assumption according to our dimensional analysis in Section 4.3. The second limit assumes an infinite heat
transfer coefficient γ, which leads to a unique temperature Tg = Tl = T . Our dimensional analysis shows that
this is a generally valid assumption. The unknowns of the system are reduced to ϕ, ρg, u, pl and T and we have
to build equations without RH2O, Kd and γ. We thus add the equations of mass, momentum and temperatures
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of the two phases to eliminate one equation for each eliminated unknown, respectively. The system is now given
by the following equations:

∂tρ+ div(ρu) = 0, (5.2a)

∂t((1− ϕ)ρl(1− Cl)) + div((1− ϕ)ρl(1− Cl)u) = 0 (5.2b)

(5.2c)∂t(ρu) + div(ρu⊗ u) +∇((1− ϕ)pl + ϕpg) + 2σ
R
∇(1− ϕ)− divD − ρg = 0

∂tϕ+ u · ∇ϕ = ϕ(1− ϕ) 3
4ηl

(
pg − pl −

2σ
R

)
(5.2d)

(
ϕcvgρg + (1− ϕ)cpl

ρl
)
(∂tT + u · ∇T ) + (cpgρgT − pl − cpl

ρlT )(∂tϕ+ u · ∇ϕ)

+ (ϕcpgρgT + (1− ϕ)pl + (1− ϕ)cpl
ρlT )divu+ ϕcvgT (∂tρg + u · ∇ρg)+ϕ∂t

(2σ
R

)
−D : ∇u− div(((1− ϕ)κl + ϕκg)∇T ) = 0,

(5.2e)

where now pg = c0ρgT , cvg = cpg − c0, and D = (1 − ϕ)Dl + ϕDg = −∇(ϕλdiv u) − 2div(ϕηD(u)) with
λ = (1− ϕ)λl + ϕλg, η = (1− ϕ)ηl + ϕηg (see (2.10)-(2.11)). We now neglect the temperature diffusion term,
κl = κg = 0, which is a valid assumption according to our dimensional analysis.

We now prove that ∂tϕ + u · ∇ϕ may be expressed with respect to divu. In such case, thanks to (5.2d)
there is a dilatancy effect (as introduced in Remark 2.5). [Fowler and Robinson, 2018] present a similar relaxation
analysis, which will be shown to be a particular case of the relaxed system developed herein. In [Fowler and
Robinson, 2018], the equation for the gas volume fraction is ∂t(1 − ϕ) + div((1 − ϕ)u) = 0 for their unique
velocity u, so in their system ∂tϕ+ u · ∇ϕ = (1− ϕ)divu.

We introduce the variable Qg = 1−Cl = 1−khpνg , which uses a more general, power-law form of Henry’s law.
This generalization is motivated by the fact that we have hither to used ν = 0.5, whereas the Fowler-Robinson
work is based on ν = 1. Keeping ν unspecified for now will become handy to relate our work to that of [Fowler
and Robinson, 2018].

From equation (5.2b), Qg satisfies

−Qg(∂tϕ+ u · ∇ϕ) + (1− ϕ)(∂tQg + u · ∇Qg) + (1− ϕ)Qgdivu = 0. (5.3)

From equation (5.2a) we write

(ρg − ρl)(∂tϕ+ u · ∇ϕ) + ϕ(∂tρg + u · ∇ρg) + ρdivu = 0. (5.4)

Since our objective is to find an equivalent expression for ∂tϕ+ u · ∇ϕ in terms of divu, we want to cancel the
terms on ρg and Qg. First we use that Qg = 1− kh(c0ρgT )ν , which yields the following material derivative:

∂tQg + u · ∇Qg = Q′g(pg)c0T (∂tρg + u · ∇ρg) +Q′g(pg)c0ρg(∂tT + u · ∇T )

and then we use (5.2e) to get

cpm(∂tT + u · ∇T ) = −cpr(∂tϕ+ u · ∇ϕ)

− Pmdivu− ϕ(cpg − c0)T (∂tρg + u · ∇ρg)−ϕ∂t
(2σ
R

)
+D : ∇u

(5.5)
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where

cpm = ϕcvgρg + (1− ϕ)cplρl
cpr = cpgρgT − (pl + cplρlT )
Pm = ϕcpgρgT + (1− ϕ)(pl + cplρlT ) = cpgρgT − (1− ϕ)cpr.

(5.6)

Embedding these expressions into (5.3) yields:

−
(
Qg(pg) + (1− ϕ)

Q′g(pg)c0ρgcpr

cpm

)
(∂tϕ+ u · ∇ϕ)

+ (1− ϕ)
(
Qg(pg)− Pm

Q′g(pg)c0ρg

cpm

)
divu

+ (1− ϕ)
(
Q′g(pg)c0T −

ϕQ′g(pg)c0ρg

cpm
cvgT

)
(∂tρg + u · ∇ρg)

+ (1− ϕ)
Q′g(pg)c0ρg

cpm
D : ∇u−(1− ϕ)

Q′g(pg)c0ρg

cpm
ϕ∂t

(2σ
R

)
= 0

(5.7)

Now we compute the combination (5.4)× (1− ϕ)
(
Q′g(pg)c0T −

ϕQ′
g(pg)c0ρg

cpm
cvgT

)
+ (5.7)× ϕ that gives

(∂tϕ+ u · ∇ϕ)N + (1− ϕ)Mdivu

− ϕ(1− ϕ)
Q′g(pg)c0ρg

cpm

(
D : ∇u−ϕ∂t

(2σ
R

))
= 0

(5.8)

where
M := ϕ

(
Qg(pg) + Pm

Q′g(pg)c0ρg

cpm

)
+ ρQ′g(pg)c0T (1 + ϕρg

cpm
cvg) (5.9)

N := −ϕ
(
−Qg(pg) + (1− ϕ)Q

′(pg)c0ρgcpr
cpm

)
+ (ρg − ρl)(1− ϕ)Q′g(pg)c0T (1 + ϕρg

cpm
cvg) (5.10)

Then we find

∂tϕ+ u · ∇ϕ = (1−ϕ)Adivu+ϕ(1−ϕ) 1
N
Q′g(pg)c0ρg

cpm

(
D : ∇u−ϕ∂t

(2σ
R

))
where A = −M

N
. (5.11)

Notice that when ρg

ρl
→ 0, N ≈ρl→∞ ρl(1−ϕ)khc0T andM≈ρl→∞ −ρl(1−ϕ)khc0T then −N/M≈ 1, so in

that case we find (notice that howeverM→∞)

∂tϕ+ u · ∇ϕ = (1− ϕ)divu, when ρg
ρl
→ 0,

which coincides with the expression in [Fowler and Robinson, 2018]. In the general form, using that Q′(pg) =
−νCl/pg, (5.11) can be written as:

∂tϕ+ u · ∇ϕ = (1− ϕ)Adivu+ ϕ(1− ϕ) 1
Ns

ν

Tcpm

(
D : ∇u−ϕ∂t

(2σ
R

))
(5.12)

where
A = −M

N
= −Ms

Ns
. (5.13)
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Figure 4: Rayleigh-Plesset correction factor A (5.13) as a function of ϕ for two extreme values of ρg (conduit
base and top).

and

Ms = −ν ρ
ρg

(1 + fe) + ϕ+ (1− ϕ)νϕcpr
Tcpm

− νϕcpgρg
cpm

,

Ns = −ν(1− ρ

ρg
)(1 + fe) + ϕ− (1− ϕ)νϕcpr

Tcpm
,

(5.14)

where fe = ϕcvgρg/cpm is the fraction of total enthalpy carried by the gas phase. The terms multiplied by ν in
the factorsMs and Ns are ratios of energy densities (units of J/m3). Thus, the factor A is a correction factor
to the Rayleigh-Plesset dilatancy (2.47) that accounts for the work done by changing phases when degassing
occurs under a fully relaxed fashion to maintain chemical equilibrium. A is a function of thermodynamical con-
stants and of four variables (ϕ,pl,ρg, and T ). Using the same numerical values as in the assessment of the main
order approximation of the drift flux system (Section 4.3, Table 7), we find that A depends very weakly on pl.
Table 7 also suggests that using only one value of T is sufficient. The behavior of A can thus be captured by
varying ϕ from 0 to 1 and ρg within the bounds of Table 7. Figure 4 shows the evolution of A as a function
of ϕ at the conduit base and top. A is close to 1 except at high gas volume fraction. At the limit ϕ → 1,
A = cvg/((3ν − 1)cpg − (2ν − 1)c0), which is equal to 1.5 with the values of Table 7.

Note that along the lines of Remark 2.5 we can also relate (5.12) with (5.2d) to write

divu = 1
A

3ϕ
4ηl

(pg − pl) + ϕ
1
Ns

ν

Tcpm
D : ∇u. (5.15)

finding also a dilatancy-like relation that can be compared with (4.16) without drift velocity w:

divu = 3ϕ
4ηl

(pg − pl)−
RH2O

ρl(1− ϕ) .

The relaxation thus converts the gas exsolution rate RH2O into a modified viscous heating regardless of the
expression chosen for RH2O (see Remark A.1).

One can build a conservation equation on the quantity Θ = (1− ϕ)Qg(pg):

∂tΘ + div(Θu) = 0.
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We prefer to use the alternative equation for the total water content, CT , to change this conservation equation
on Θ into a perhaps more intuitive transport equation:

∂tCT + u · ∇CT = 0.

All the calculations made before allows us to write the following system (neglecting viscosity and surface
tension):

∂tρ+ div(ρu) = 0,
∂tCT + u · ∇CT = 0,

∂t(ρu) + div(ρu⊗ u) +∇
(
(1− ϕ)(pl − pg)

)
+∇pg = ρg,

(5.16a)

where pg and ϕ are given in terms of ρ and CT solving the algebraic constraint

(ϕρg + (1− ϕ)ρlQg(pg))/ρ = CT ,

(1− ϕ)ρl + ϕρg = ρ,

pg = c0ρgT, Qg(pg) = 1− khpνg .
(5.16b)

where pl is solution of the nonlinear relation

divu = 1
A

3ϕ
4ηl

(pg − pl). (5.16c)

and the gas volume fraction ϕ is the solution of the following equation

(∂tϕ+ u · ∇ϕ)Ns + (1− ϕ)Msdivu = 0 (5.16d)

Note that (5.16) is a closed system with the unknowns (ρ, CT , u, T, ϕ, pl, pg, ρg) where A,Ms, and Ns are
given by (5.13)–(5.14). The system obtained by [Fowler and Robinson, 2018] can be retrieved exactly by choosing
ν = 1 and letting ρg/ρl tend to zero.

6 Incompressible vs. compressible liquid phase
One assumption of our conduit flow model is that the liquid is incompressible and thus that ρl is constant. In
a series of papers [La Spina and de’ Michieli Vitturi, 2012, La Spina et al., 2014, La Spina et al., 2017], a one-
dimensional conduit flow model of two compressible phases is analyzed and applied, the model being originally
presented in [Romenski et al., 2010]. In this model a unique temperature is considered and the system is written
with a drift-flux structure (see Section 4). Depending on the application, different relaxation terms are chosen
in [La Spina and de’ Michieli Vitturi, 2012,La Spina et al., 2014,La Spina et al., 2017]. Here we chose the mass
conservation equations of the bulk density, ρ = ϕρg + (1 − ϕ)ρl, given in [La Spina et al., 2017], which is a
version of the model close to the one we propose herein:

∂tρ+ ∂x(ρu) = 0 (6.1)

with u = Y ug + (1−Y )ul where Y = ρgϕ/ρ (see (4.2) sqq. in Section 4). The equations on ϕ and ρl are given
by:

∂t(ρϕ) + ∂x(ρϕu) = 1
τp

(pg − pl) (6.2)
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and
∂t(ρl(1− ϕ)) + ∂x(ρl(1− ϕ)ul) = − 1

τd
ρl(1− ϕ)(Cl − Ceql ) (6.3)

where Cl satisfies:
∂t(ρl(1− ϕ)Cl) + ∂x(ρl(1− ϕ)Clul) = − 1

τd
ρl(1− ϕ)(Cl − Ceql ). (6.4)

For the momentum equations, we chose the form given in [La Spina et al., 2014] p. 286-287 in the case when
τ (c) → +∞ because they use the two phase velocities:

(6.5)
∂t(ϕρgug) + ∂x(ϕρgu2

g + ϕpg) =
((1− ϕ)ρlpg + ϕρgpl

ρ

)
∂xϕ−

ϕ(1− ϕ)ρlρg
ρ

(sl − sg)∂xT

− ϕ(1− ϕ)ρlρg
ρ2

1
τf
Y (1− Y )(ug − ul) + ϕρgg

and

∂t((1− ϕ)ρlul) + ∂x((1− ϕ)ρlu2
l + (1− ϕ)pl) = −

((1− ϕ)ρlpg + ϕρgpl
ρ

)
∂xϕ+ ϕ(1− ϕ)ρlρg

ρ
(sl − sg)∂xT

+ ϕ(1− ϕ)ρlρg
ρ2

1
τf
Y (1− Y )(ug − ul) + (1− ϕ)ρlg − β̃ul

(6.6)

with τf , β̃ constants and where µi = ei + pi/ρi − siT for i = g, l (precised later on). Note that the authors
consider two compressible components with pressure state laws in the form [La Spina and de’ Michieli Vitturi,
2012]

pi = (cpi − cvi)ρiT − p̄i
where T is the single temperature, cvi is the heat capacity at constant volume and p̄i quantifies the effects of
the molecular attraction in phase i at a reference pressure, density, and sound speed. This is in contrast with our
work, where the liquid phase is incompressible with a constant liquid density and the gas phase is compressible
with p̄g = 0 and c0 = cpg − cvg. Our pressure, pl, is an unknown given (without surface tension effect) by the
relation

divul = ϕ
3

4ηl
(pg − pl)−

RH2O

ρl(1− ϕ) .

The total energy conservation to characterize the temperature is chosen by considering that the mixture is
mainly governed by the total density ρ and the averaged velocity u. They thus start from the quantity∫

Ω
ρ(E + |u|

2

2 )

where E = e + Y (1 − Y )w2/2 with the internal energy e = Y eg(ρg, sg) + (1 − Y )el(ρl, sl) recalling that
pi = ρ2

i ∂ei/∂ρi, T = ∂ei/∂si = T where i = g, l. They then derive the momentum equations on u and w
and the corresponding equation on the total energy from the Lagrangian associated to such variables. Their
conservation energy reads

∂t(ρ(E + u2

2 )) + ∂x
(
ρl(1− ϕ)ul(el + pl

ρl
+ u2

l

2 ) + ρgϕug(eg + pg
ρg

+
u2
g

2 ) (6.7)

−ρlρgϕ(1− ϕ)
ρ

(sg − sl)wT
)

= −ρgu− β̃u2
l .

August 24, 2024 52



Remark 6.1. One difference with our system is that the La Spina model has the following pressure at the interface

(pI)LS = (1− ϕ)ρlpg + ϕρgpl
ρ

= (1− Y )pg + Y pl

instead of our interface pressure
〈pint,g〉 = pg.

As a result, the difference between interface pressures reads

(pI)LS − 〈pint,g〉 = ϕρg(pg − pl)
ρ

= Y (pl − pg).

Remark 6.2. Another difference is that the La Spina model includes in the momentum equations the term

−ϕ(1− ϕ)ρlρg
ρ

(sl − sg)∂xT = −ρY (1− Y )(sl − sg)∂xT

that is absent from our model.

Remark 6.3. A similar approach of deriving two-phase systems has been introduced by Shugrin [Shugrin, 1994].
In this approach, one starts from thermodynamics, derives the equations on u and w and then deduces the
equation on ug and ul. [Gavrilyuk, 2020] proved that different two-phases equations may be obtained depending
on the governing unknowns chosen. As indicated in his abstract, "a very surprising fact is that one can obtain
different governing equations from the same Lagrangian. Different types of the governing equations are due to
the choice of independent variables and the corresponding virtual motions. Even if the total momentum and total
energy equations are the same, the equations for individual components differ from each other by the presence
or absence of gyroscopic forces (also called ‘lift’ forces). These forces have no influence on the hyperbolicity of
the governing equations, but can drastically change the distribution of density and velocity of components."

Let us now explain how the equations on the mean velocity u and the drift velocity w are obtained in the
La Spina model. The authors start from a Lagrangian with the unknowns u and w and deduce the following
equations:

∂t(ρu) + ∂x(ρl(1− ϕ)u2
l + ρgϕu

2
g + (1− ϕ)pl + ϕpg) = −ρg − β̃ul (6.8)

and

∂tw + ∂x

(
u2
g

2 −
u2
l

2 + eg + pg
ρg
− el −

pl
ρl
− (sg − sl)T

)
= − 1

τf
ϕ(1− ϕ)ρlρg

ρ3 w + 1
ρl(1− ϕ) β̃ul. (6.9)

The equations on the variables ug and ul are then deduced from these u and w equations. For the readers
convenience, we present the reverse (i.e. how to deduce equations on u and w from equations on ug and ul).
We follow the procedure described in the review paper, Section 5.2 [Bresch et al., 2024]. Table 10 lists useful
relationships to convert phase variables into drift-flux variables.

The equation on u (6.8) is easily obtained adding the momentum equation on ug to the momentum equation
on ul and using relationship 1 from Table 10. To obtain the equation on w, we use the relationship 2 of Table
10 and the equation on ϕρgug from which we subtract the equation on ρY u obtained from the equations on u
multiplied by Y , and use the equation on Y . After calculations, we get

(6.10)
∂tw + ∂x

(
u2
g

2 −
u2
l

2

)
+ 1
ρY (1− Y )

(
∂x(ϕpg)− Y ∂xp−

((1− ϕ)ρlpg + ϕρgpl
ρ

)
∂xϕ

)
− (sg − sl)∂xT

= − 1
τf
ϕ(1− ϕ)ρlρg

ρ3 w + 1
ρl(1− ϕ) β̃ul.
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Relationship Formula
1 ρl(1− ϕ)u2

l + ρgϕu
2
g = ρu2 + ρY (1− Y )w2

2 ρgϕug = ρY (u+ (1− Y )w) = ρY u+ ρY (1− Y )
3 u2

g

2 −
u2

l
2 = uw + (1

2 − Y )w2

Table 10: Relationships to convert phase variables into drift-flux variables (see also the review paper, Section
5.2 [Bresch et al., 2024]).

To obtain equation (6.9) on w, we first note relationship 3 in Table 10 and that

∂x(ϕpg)− Y ∂xp−
((1− ϕ)ρlpg + ϕρgpl

ρ

)
∂xϕ = ρY (1− Y )

(
∂xpg
ρg
− ∂xpl

ρl

)

Then we use the definitions µi = ei+pi/ρi−siT with pi = ρ2
i ∂ei/∂ρi and ∂ei/∂si = T coming from the identity

Tdsi = dei −
pi
ρ2
i

dρi

to establish that
∂x(µg − µl) = 1

ρg
∂xpg −

1
ρl
∂xpl − (sg − sl)∂xT.

Finally, we remark that
T∂xsi = ∂xei − pi∂xρi/ρ2

i .

Remark 6.4. In the equation on w from our model, the terms coming from the pressure and volume fraction ϕ
are

1
ρg
∂xpg −

1
ρl
∂xpl + 1

(1− ϕ)ρl
(pg − pl)∂xϕ.

The difference between these terms and the equivalent terms in the La Spina equation on w is

− 1
(1− ϕ)ρl

(pg − pl)∂xϕ− (sg − sl)∂xT.

The first quantity comes from the difference in the expressions of the interface pressure in the two systems (see
Remark 6.1). The second quantity comes from the derivation of the two-phase system from a Lagrangian quantity
when choosing u and ρ as the reference velocity and density.

The relaxation parameters τp, τd, τf are linked respectively to the pressure, the dissolved gas, and the velocity.
The mixture energy E depends on (ρ, Y, ϕ,w, sg, sl). So when each relaxation parameter tends to zero, we find
the following respective equilibrium limits: pg = pl, Cl = Ceq

l , and ul = ug.

One can easily check the equivalence of equations (6.1), (6.3), (6.4), (6.8) with our equations (4.15a),
(2.74a), (2.74c), (4.15e) for the 1D case, neglecting the tension surface effect and taking Dg = 0. By fitting
these equations, we find the relaxation parameter for the dissolved gas, denoted as τd, to be

τd = ρl(1− ϕ)(Cl − Ceq
l )

RH2O
= S −R

4πR2ND

since from (2.34) and (2.38d), we have RH2O = 4πR2N(1−ϕ)ρlD
Cl−kh

√
pg

S−R , where R is the local bubble radius
and S −R is half the interbubble distance. Hence the relaxation exsolution coefficient in our model would be a
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1/D function of the ratio between the interbubble distance and the surface area of the bubbles. Conversely, we
could give an expression for the exchange term for the system given by La Spina (along the lines of Remark ??)
as

RH2O
LS = ALSRH2O with ALS = 1

τd

(1− ϕ)1/3(1− ϕ1/3)
31/3D (4πNϕ)2/3 .

Focusing now on the continuity equations for ϕ, (6.2) and (2.74f), our model and that of La Spina differ
on the velocity transport. In the La Spina model, we found that the carrier velocity is the mixture velocity, u,
while in our model it is instead the liquid velocity. Our ϕ equation comes from the microscopic analysis related
to the Rayleigh-Plesset equation in Section 2.3. Following [Leighton, 2007], we assumed that the macroscopic
velocity related to the transport of the bubbles in the melt is the velocity field of the fluid phase, ul. The La
Spina model uses a different choice; the transport is ensured by the mixture velocity u. Assuming for simplicity
that transport velocities are identical, an equivalence between the two models would be achieved for the following
pressure relaxation parameter:

τp = 4ηl
3ρϕ(1− ϕ) = ηl

ρl

4
3ϕ(1− ϕ)

ρl
ρ

where ηl/ρl is the kinematic liquid viscosity and we can write ρl
ρ =

(
ϕ
ρg

ρl
+ (1− ϕ)

)−1
.

We here recall that the La Spina equation (6.9) on w reads

∂tw + ∂x

(
u2
g

2 −
u2
l

2 + µg − µl

)
= − 1

τf
ϕ(1− ϕ)ρlρg

ρ3 w + 1
ρl(1− ϕ) β̃ul

where ∂E/∂Y = µg−µl+(1−2Y )|w|2/2 with µg−µl = (eg +pg/ρg−sgT )− (el+pl/ρl−slT ). The term β̃ul
with β̃ = 8ηl

r2
c
, where rc is the radius of the cylindrical conduit, replaces the diffusion term −∂x((1− ϕ)Dl) as it

is usually done in one-dimensional problems to keep wall effects (see Part II, Section 3 [Burgisser et al., 2024]).
The equation for the drift velocity for our system is given in (4.19). As before we neglect Dg and replace the
diffusion liquid term by β̃ul, which yields:

∂tw + ∂x

(
uw + (1− Y )w2 − 1

2w
2
)
− 1
ρY (1− Y ) ((Y − ϕ)∂xp− ϕ∂x((1− ϕ)q))

= − 1
ρY (1− Y )

(
Kdϕ(1− ϕ) +RH2O

(1
2 − Y

))
w + β̃ul

ρ(1− Y )

Relationship 3 in Table 10 yields uw+ (1−Y )w2− 1
2w

2 = 1
2(u2

g−u2
l ). The last term coincides with those in the

La Spina equation since ρ(1 − Y ) = ρl(1 − ϕ). The first term on the right-hand side of the La Spina equation
may be compared with the drag term in our model with coefficient Kd providing the following definition of the
velocity relaxation parameter:

τf = 1
Kd

ρlρgY (1− Y ) = 1
Kd

Y (1− Y )
ϕ(1− ϕ) .

To compare the energy balances of the two models, we first rewrite the La Spina energy equation (6.7) as

(6.11)
∂t(ρ

u2

2 + ρE) + ∂x
(
ρgϕug

u2
g

2 + ρl(1− ϕ)ul
u2
l

2
)

+ ∂x
(
ρgϕug(eg + pg

ρg
) + ρl(1− ϕ)ul(el + pl

ρl
)− ρY (1− Y )(sgT − slT )w

)
= −ρgu− β̃u2

l

August 24, 2024 55



Note that this equation could be fully recast as a function of u, w, and Y by using :

(6.12)
ρgϕug(eg + pg

ρg
) + ρl(1− ϕ)ul(el + pl

ρl
)− ρY (1− Y )(sgT − slT )w

= ρu
(
Y (eg + pg

ρg
) + (1− Y )(el + pl

ρl
)
)

+ ρY (1− Y )w
(
(eg + pg

ρg
− sgT )− (el + pl

ρl
− slT )

)
and

(6.13)ρgϕug
u2
g

2 + ρl(1− ϕ)ul
u2
l

2 = ρu(u
2

2 + Y (1− Y )w
2

2 ) + ρY (1− Y )uw2 + ρY (1− Y )w(1
2 − Y )w2

Using the relationships 1 and 2 of Table 10, we can recast our energy equation (2.58) with drift-flux variables to
match the form of (6.11):

(6.14)

∂t
(
ρ
u2

2 + ρY (1− Y )w
2

2 + ρ(Y cvgT + (1− Y )cplT )
)

+ ∂x
(
ρgϕug

u2
g

2 + ρl(1− ϕ)ul
u2
l

2
)

+ ∂x
(
ρgϕug(cvgT + pg

ρg
) + ρl(1− ϕ)ul(cplT + pl

ρl
)
)

= −ρgu− 3 + ϕ

4 β̃u2
l

−Kdϕ(1− ϕ)|ug − ul|2 − ϕ(1− ϕ) 3
4ηl

(pg − pl)2 − δRH2O |ug − ul|
2

2

In both model we can define E = Y (1− Y )w2/2 + Y eg + (1− Y )el, but the definitions of the internal energies
differ:

eg(ρg, sg)LS is found using pg = ρ2
g∂eg/∂ρg and T = ∂eg/∂sg,

el(ρl, sl)LS is found using pl = ρ2
l ∂el/∂ρl and T = ∂el/∂sl,

whereas for our model these quantities are:

eg = cvgT, el = cplT.

The main difference between our energy equation and that of La Spina thus comes from the addition in the
latter of the entropy quantity ∂x(ρY (1 − Y )(sg − sl)Tw), which explains the concurrent addition of the term
ρY (1 − Y )(sg − sl)∂xT in the momentum equation (see Remark 6.2). A more minor difference is that the La
Spina model does not feature the term 3ϕ(1−ϕ)(pg − pl)2/(4ηl), which quantifies the work done by growing or
shrinking bubbles against the surrounding viscous liquid.

Conclusions
There are several ways to create two-phase flow models, mostly because of the diversity of ways to average mi-
croscopic processes to the macroscopic scale of the transport equations. One goal of this Part I of our three-part
series of works dedicated to two-phase flow modeling is to detail the steps needed to obtain a self-consistent set
of equations adapted to the modeling of magma flow in a volcanic conduit. We adopted a series of assumptions
to reduce the physical processes to sets that are compatible with the two-phase flow framework.

The three-phase nature of the magma was simplified by considering a gas–liquid mixture where the gas is
pure H2O. The incompressible liquid phase ignores the presence of crystals but is composed of dissolved H2O
and dry silicate liquid. Fragmentation is not considered explicitly (although doing so does not change the struc-
ture of the proposed transport equations). Under these assumptions, the mass and momentum conservation
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yield 5 transport equations with 7 unknowns: gas volume fraction and density (ϕ, ρg), dissolved water content
(Cl), liquid pressure and velocity (pl, ul), and gas velocity and temperature (ug, Tg). Closing this partial system
involves microscopic processes. The physics of gas bubble growth adds one equation for the gas volume fraction
(ϕ) and a novel closure for the mass exchange term (RH2O). Neglecting nucleation and coalescence yields a
constant bubble number density with respect to the liquid (N). Scaling these processes up to the macroscopic
scale yields a system without energy balance with 7 unknowns for 6 transport equations. Finally, considering the
energy balance adds liquid temperature (Tl) and the equations for both temperatures. The final system (2.74)
has 8 transport equations on 8 unknowns (ϕ, ρg, Cl, pl, ul, ug, Tg, Tl) as well as algebraic closures for the gas
pressure (pg) and bubble radius (R). A 1.5D implementation and application of this model is presented in Part
II, Sections 5-6 [Burgisser et al., 2024].

Establishing appropriate boundary conditions is not an easy task for viscous compressible flows. The two-
phase, multi-component nature of our system adds complexity to that task. We started from a literature review
of the number and type of conditions to be imposed on single-phase, multi-component Euler or Navier-Stokes
equations. We then extended the underlying reasoning to establish sets of boundary conditions suitable to our
system. Our analysis suggests that maintaining compatibility between conditions at the boundaries and within
the system restricts the possible sets of conditions. We listed valid sets of boundary conditions linked to imposing
pressures and stress-free conditions at the outlet and either velocity or pressure at the inlet.

Using principles from the review paper [Bresch et al., 2024], Section 5.2, we rewrote our two-phase system
following a drift flux structure so that velocities, pressures, and temperatures are separated into a bulk and a
differential component. Dimensional arguments led us to focus on the mass-averaged drift velocity, Y w, instead
of the classical drift velocity w. A dimensionless version of this novel drift flux system was used to assess the
relative importance of physically meaningful terms. Considering ranges of parameter values relevant to magmatic
systems led us to propose a simplified model (4.37) valid up to order 10−3. This simplified system suggests that
mass exchange is a major control of flow dynamics. Bulk magma temperature is expected to vary because of gas
expansion but temperature differences can be neglected. Relative velocities can be captured to the main order
with a Darcy equation and pressures differences partly control magma acceleration. The accuracy and limitations
of these simplifications are assessed in Part II, Section 6 [Burgisser et al., 2024].

The simplified system highlights the importance of mass exchange. This drove us to propose a limit case
of mass exchange of the proposed system (2.74) by establishing a relaxed system at chemical equilibrium (i.e.
Cl = Ceq

l ). This system (5.16) has a single velocity and a single temperature without diffusive effects. We
demonstrate that it is a generalization of the system obtained by [Fowler and Robinson, 2018].

Finally, we explored the consequences of choosing different sets of initial assumptions to create a two-phase
flow model by comparing our new system (2.74) to that of La Spina and co-workers [La Spina and de’ Michieli Vit-
turi, 2012, La Spina et al., 2014, La Spina et al., 2017]. Unlike our compressible/incompressible mixture, these
authors assume energy conservation from thermodynamics in a system where both phases are compressible. Their
model construction starts from a Lagrangian on the bulk and drift velocities u and w. The equations on ug and
ul and the energy conservation then deduced from these initial mass and momentum equations. The main dif-
ferences arising from these different constructions are liquid pressure relationships, which differ because of the
contrasted definitions of the internal energies of both phases, the carrier velocity of ϕ (u in the La Spina model
and ul in our model), the interface pressures, and the mass exchange (based on a constant time scale in the La
Spina model and based on diffusion in our model). This comparison illustrates that different two-phase equations
may be obtained depending on the governing unknowns chosen. Numerical evaluations of these differences is
carried out in Part II, Section 6 [Burgisser et al., 2024].
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A Details on the microscopic analysis
This section contains details on the microscopic analysis developed in Section 2.2.

A.1 Rayleigh-Plesset equation

In this section we present the derivation of the Rayleigh-Plesset equation. We consider Lagrangian coordinates
as it has been introduced in Section 2.2.1 (see Figure 5 for sketch and notation).

Figure 5: Configuration of a spherical bubble in an infinite liquid (adapted from [Brennen, 1995])

Rayleigh-Plesset with a bubble in an infinite medium. The Rayleigh-Plesset equation originally presented
in [Scriven, 1959] is based on the analysis of the behavior of a bubble of radius R, the center of which is assumed
to be at rest. The gas inside the bubble is at the vapour pressure, Pv, and density, ρv. Both are assumed constant.

The integration of the incompressibility equation, 1
r2∂r(r2ur) = 0 in r ∈ [R,∞) gives the radial velocity of

the liquid adjacent to the bubble wall (i.e. the velocity orthonormal to the wall). As boundary condition we use
the Lagrangian coordinates to introduce the velocity of the bubble surface,

ur(t,R) = (1− ρv
ρl

)dR
dt

:= (1− ρv
ρl

)Ṙ,

which yields
ur(t, r) = (1− ρv

ρl
)R

2

r2 Ṙ, r ≥ R. (A.1)

The momentum equation in radial coordinates reads,

ρl(∂tur + ur∂rur) = −∂rP + 2
( 1
r2∂r(ηlr

2∂rur)− ηl
2ur
r2

)
(A.2)

where P is the pressure in the fluid adjacent to the bubble. If ηl is assumed constant, the viscosity term on the
right hand side vanishes for the radial velocity (A.1), leading to

ρl(∂tur + ur∂rur) = −∂rP. (A.3)
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This equation is integrated in r ∈ [R,∞) using the dynamic mechanical equilibrium (cf. chapter 4 of
[Toramaru, 2022]) given by the Young-Laplace equation as the boundary condition at the bubble interface, that
is,

PB−(−σrr(R)) = 2σ̃
R
, with σrr = −P+2ηl∂rur the stress orthonormal to the bubble wall (see Figure 5),

where PB is the pressure in the bubble (the sum of the pressure in the bubble gas, Pg, and the vapour pressure
due to the temperature changes, Pv) and σ̃ is the surface tension of the bubble. So we obtain the value of the
pressure P at the bubble surface:

P(R) = PB − 2 σ̃
R
− 4ηl

Ṙ
R
. (A.4)

We integrate equation (A.3) in r from R to ∞, remarking that

ρl(∂tur + ur∂rur) = (ρl − ρv)
(
R2

r2 R̈+ 2RR̈2

r2 + 1
2∂r(

R4

r4 )R̈2
)

using expression (A.1). This integration using the boundary condition on P(R) then leads to the Rayleigh-Plesset
equation:

1
ρl − ρv

(
PB − P∞ − 2 σ̃

R

)
= RR̈+ 3

2Ṙ
2 + 4ηl

ρl

Ṙ
R

(A.5)

where P∞ is the pressure of the liquid far from the bubble. This derivation can be found in several references,
such as [Leighton, 1994,Brennen, 1995].

A usual simplification is found when the evaporation or condensation effect is neglected (Pv = 0 under a
constant temperature) and the vapour density is considered small in front of the liquid density giving

1
ρl

(
Pg − P∞ − 2 σ̃

R

)
= RR̈+ 3

2Ṙ
2 + 4ηl

ρl

Ṙ
R
.

An even more simplified equation is found when the inertial terms are neglected, which is the case for magma
with high viscosity liquid and small particle Reynolds number [Arefmanesh and Advani, 1991,Proussevitch et al.,
1993b,Proussevitch and Sahagian, 1998]:

Ṙ
R

= 1
4ηl

(
Pg − P∞ − 2 σ̃

R

)
. (A.6)

Rayleigh-Plesset with a bubble population. To extend this work to a magma containing many bubbles,
the magma is considered as a set of identical spherical cells composed of a spherical gas bubble of radius R
in a surrounding liquid melt of radius S > R, so the bubbles do not interact with each other. The packing
arrangement considers that these cells slightly overlap uniformly in the suspension in a way such that the gas
volume fraction of magma is (see Figure 2 for a sketch and notation):

ϕ̃ = R
3

S3 , (A.7)

The reasoning to deduce the Rayleight-Plesset equation may be adopted to this case as it has been developed
in [Arefmanesh and Advani, 1991,Lensky et al., 2001] for a general non-constant viscosity. Here we consider that
ηl is constant in the melt cell as in [Proussevitch et al., 1993b] and we also neglect the inertial terms (that means
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the total time derivative) and set Pv = 0 . The radial velocity is still given by (A.1) but now for r ∈ [R,S] and
we integrate the momentum equation (A.2) in r ∈ [R,S], which yields, after integration in space:

P(S)− P(R) = 0. (A.8)

It remains to express P(S) and P(R). At the bubble surface (r = R) we use the boundary condition (A.4) so
we have

P(R) = Pg − 2 σ̃
R
− 4ηl

Ṙ
R
. (A.9)

At the limit of the melt cell (r = S), it is assumed (cf. [Arefmanesh and Advani, 1991, Proussevitch et al.,
1993b,Lensky et al., 2001]) that

σrr(S) = (−P + 2ηl∂rur)|r=S = −Pamb (A.10)

where Pamb is the external ambient pressure to the cell. Plugging expressions (A.9) and (A.10) in (A.8) yields

Pg − Pamb − 2 σ̃
R

= 4ηlṘ
(

1
R
− R

2

S3

)
⇒ Ṙ

R
= 1

4ηl(1− ϕ̃)

(
Pg − Pamb −

2σ̃
R

)
. (A.11)

where we used (2.18). Note that there is a modification of the left hand side compared to (A.6) because the
factor 1− ϕ̃ appears in the denominator. [Toramaru, 2022] interprets ηl(1− ϕ̃) as the effective viscosity of the
liquid that is modified by the presence of the bubbles.

In our case, we consider that including a bubble population instead of a single bubble means that there is a
continuity of the liquid phase that implies a continuity of the pressure and the viscosity component of the normal
stress. As a result, the boundary of the melt cell (see equation (A.10)) follows:

Pamb = Pl − 2ηl(∂rur)|r=S so P(S) = Pl, (A.12)

and the resulting equation reads:
Ṙ = R

4ηl

(
Pg − Pl −

2σ̃
R

)
. (A.13)

Equation (A.13) coincides with the original Rayleigh-Plesset equation (A.6) for P∞ = Pl. Following the [Tora-
maru, 2022] interpretation, this assumption is equivalent to considering that the effective viscosity equals the
liquid viscosity.

A.2 Mass exchange term RH2O in the literature.

As mentioned in Section 2.2.2, we analyzed two propositions from the literature ( [Lyakhovsky et al., 1996];
[Mancini et al., 2016]), to define the water mass balance and its impact on the exchange mass term RH2O.

Approaches to find ∂rC at the interface. The first approach is from [Lyakhovsky et al., 1996]. Since the
boundary condition at the bubble interface r = R in (2.27) is taken to consider the equilibrium state at that place,
it seems suitable (or at least compatible) to search for the value of the concentration gradient at the interface
with the same assumption. In [Lyakhovsky et al., 1996], an explicit expression is found for the concentration
gradient at the bubble interface for the quasi-static case (small Peclet number) given in terms of the cell size
(see equation 13 in that paper):

(∂rC)|r=R =
C0 − C|r=R −

ρ̃g

ρl

R3

S3
0

R− 3
2(S2 −R2)R2

S3
0

∼
C0 − kh

√
Pg

R− 3
2(S2 −R2)R2

S3
0

with S3
0 = S3 −R3 (A.14)
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where for the last approximation the authors assumed ρ̃g � ρl. For the case of a tiny bubble, S � R, equation
(A.14) yields (∂rC)|r=R = C0−kh

√
Pg

R .

The second approach is given by [Mancini et al., 2016]. The water mass balance (2.30) is written in terms
of the water mass at the equilibrium,Meq

g :

dMg

dt
= A
R2

0
D(Meq

g −Mg) (A.15)

for a dimensionless coefficient A and a characteristic radius R0, both of them to be defined. To find the
equilibrium water mass,Meq

g , the authors use the conservation equation (2.29) for C = Ceq that reads:

Meq
g + 4πρlCeqS3 −R3

3 = 4π
3 S

3
0C0ρl,

leading to
Meq

g = 4π
3 ρlS3

0 (C0 − Ceq). (A.16)

Identification of (A.15) with (2.30) using (A.16) and the definition ofMg gives

(∂rC)|r=R = 1
3
A
R2

0

S3
0
R2

((
C0 −

ρ̃gR3

ρlS3
0

)
− Ceq

)
(A.17)

or, using that S3
0 = S3 −R3,

(∂rC)|r=R = 1
3
A
R2

0

S3 −R3

R2

(
C∗ − kh

√
Pg
)
, with C∗ = C0 −

ρ̃gR3

ρl(S3 −R3) . (A.18)

Embedding (A.14) or (A.18) in equation (2.30) yields the water mass balance at the bubble interface.

Limit behavior of the rate of mass exchange. We analyze the behavior of the rate of mass exchange
dMg

dt as made in Remark 2.3 for the previous approaches. In particular we check if the following limits to be
satisfied:

lim
R→0

dMg

dt
= 0 and lim

R→S

dMg

dt
=∞. (A.19)

When the first approach (A.14) is considered, (2.30) reads

dMg

dt
= 4πρlD

R
1− 3

2
R(S2−R2)
S3−R3

(C0 − kh
√
Pg)

As S3−R3 = (S −R)(S2 +SR+R2), then S2−R2

S3−R3 = S+R
S2+SR+R2 and we also obtain both desired limits. When

the second approach (A.18) is considered, (2.30) reads

dMg

dt
= 4πρlD

1
3
A
R2

0
(S3 −R3)

((
C0 −

ρ̃gR3

ρl(S3 −R3)

)
− kh

√
Pg

)

and we are only able to write

lim
R→0

dMg

dt
= 4π

3 ρlDS3(C0 − kh
√
Pg) lim

R→0

A
R2

0
,
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lim
R→S

dMg

dt
= 4π

3 ρlD lim
R→0

(
A
R2

0
(S3 −R3)

((
C0 −

ρ̃gR3

ρl(S3 −R3)

)
− kh

√
Pg

))
The limits depend on the behavior of AR2

0
and so we cannot be conclusive at this point. The choice of [Mancini

et al., 2016] of A = 1 and R0 = R yields the undesirable limits of ∞ for R → 0 and −4πDρgS/3 for R → S.
Other values for A and R0 are discussed below in Remark A.1.

Remark A.1. The previous propositions of [Lyakhovsky et al., 1996] and [Mancini et al., 2016] can also be
written under the structure of our proposed approach in (2.31). Thus, in the definition given in equation (A.14),
we write the denominator as follows

R− 3
2(S2 −R2)R

2

S3
0

= RS3

S3 −R3

(
1
2

(R
S

)3
− 3

2
R
S

+ 1
)

= 1
2
RS3

S3 −R3

(R
S
− 1

)((R
S

)2
+ R
S
− 2

)
,

that using (2.18) it becomes,

R− 3
2(S2 −R2)R

2

S3
0

= 1
2
ϕ̃1/3(2− ϕ̃2/3 − ϕ̃1/3)

1− ϕ̃ (S −R).

Then using the definition of ϕ, (A.14) also reads

(∂rC)|r=R ∼ AL
C0 − kh

√
Pg

S −R
with AL = 1− ϕ̃

ϕ̃1/3(1− 1
2 ϕ̃

2/3 − 1
2 ϕ̃

1/3)
. (A.20)

The proposition in (A.18) presented in [Mancini et al., 2016] reads as

(∂rC)|r=R = AM
C∗ − kh

√
Pg

S −R
, with AM = 1

3
A
R2

0
(S −R)R1− ϕ̃

ϕ̃
, C∗ = C0 −

ρ̃gϕ̃

ρl(1− ϕ̃) . (A.21)

Note that AM can also be written as

(A.22)AM = 1
3
A
R2

0
R2 (1− ϕ̃)(1− ϕ̃1/3)

ϕ̃4/3 .

The values of A and R0 need to be set. One way to do so is to use equation (2.31) as a reference. In other
words, to fit (A.21) with (2.31) we may set (C)|r=S = C∗ and AM = 1, so that AR2

0
= 3 ϕ̃

1−ϕ̃
1

R(S−R) . Then, if
we define for instance R0 = S − R, then A = 3 ϕ̃

1−ϕ̃(ϕ̃−1/3 − 1). Another way was chosen in Part II, Section
6.1.2 [Burgisser et al., 2024] for consistency with [Mancini et al., 2016] ; A was set to 1 and R0 was set to R. �

Macroscopic mass exchange rate. We present the mass exchange term RH2O for the two proposals. If with
the first approach (A.20) we identify (C)|r=S with C0, we can write

RH2O
L = ALRH2O with AL = 1− ϕ̃

ϕ̃1/3(1− 1
2 ϕ̃

2/3 − 1
2 ϕ̃

1/3)
, (A.23)

and then
lim
ϕ̃→0

RH2O
L = 31/3ρlD(4πN )2/3(C0 − kh

√
Pg) lim

ϕ̃→0

ϕ̃2/3

1− ϕ̃1/3AL

= 31/3ρlD(4πN )2/3(C0 − kh
√
Pg) lim

ϕ̃→0

ϕ̃1/3

1− ϕ̃1/3
1− ϕ̃

(1− 1
2 ϕ̃

2/3 − 1
2 ϕ̃

1/3)
= 0
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and
lim
ϕ̃→1

RH2O
L = 31/3ρlD(4πN )2/3(C0 − kh

√
Pg) lim

ϕ̃→1

(1− ϕ̃)2/3

1− ϕ̃1/3 AL

= 31/3ρlD(4πN )2/3(C0 − kh
√
Pg) lim

ϕ̃→1

(1− ϕ̃)5/3

(1− 1
2 ϕ̃

2/3 − 1
2 ϕ̃

1/3)(1− ϕ̃1/3)

= 31/3ρlD(4πN )2/3(C0 − kh
√
Pg) lim

ϕ̃→1

(1− ϕ̃)2/3(1 + ϕ̃1/3 + ϕ̃2/3)5/3

1− 1
2 ϕ̃

2/3 − 1
2 ϕ̃

1/3

=∞

where in the last equality we used again 1 − ϕ̃ = (1 − ϕ̃1/3)(1 + ϕ̃1/3 + ϕ̃2/3). In order to consider the second
approach (A.21), we must identify (C)|r=S with C∗ = C0− ρ̃gϕ̃

ρl(1−ϕ̃) . Note that for this definition, when ϕ̃ tends to
zero we find C∗ = C0 but, on the contrary, when ϕ̃ tends to one, C∗ is not bounded. This last limit is consistent
with the fact that when there is only gas, the concentration tends to infinity. Focusing on RH2O, we can similarly
write

RH2O
M = AMRH2O with AM = 1

3
A
R2

0

( 3
4πN

)2/3 (1− ϕ̃)1/3(1− ϕ̃1/3)
ϕ̃2/3 . (A.24)

where we used (A.22) together with the definition of ñ. Then

lim
ϕ̃→0
RH2O
M = ρlD(C∗ − kh

√
Pg) lim

ϕ̃→0
(1− ϕ̃) A

R2
0

= ρlD(C∗ − kh
√
Pg) lim

ϕ̃→0

A
R2

0

and
lim
ϕ̃→1

RH2O
M = ρlD(C∗ − kh

√
Pg) lim

ϕ̃→1
(1− ϕ̃) A

R2
0
.

B Relating the proposed temperature equations to thermodynamics
We followed the approach of deducing the temperature equations, (2.56) and (2.57), a posteriori to obtain a
dissipative energy balance. Classically, in single-phase, compressible flows models, the mass and momentum
equations are completed with the energy equation from the thermodynamic theory. As we show below, the tem-
perature equation can be obtained from the energy equation through the thermal equations of state (e.g., [Kolev,
2007,Müller and Müller, 2009]).

From the thermodynamics of compressible fluids [Müller and Müller, 2009], the general, single-phase balance
of the total energy E for a fluid with density ρ, velocity u and internal energy e, E = 1

2 |u|
2+e, reads

∂t(ρE) + div(ρEu) = div(Σu) + div(κ∇T ) + ρ(f · u) + r (B.1)

where Σ = −pId +D is the total stress tensor and D is the viscous tensor. The term κ∇T is the flux of internal
energy according to Fourier’s law with thermal conductivity coefficient κ, f represents the potential energy and r
is the external absorption/emission energy contribution (in this work, we ignore the contributions from chemical
reaction and nuclear, radiative, or electromagnatic processes).

Building two-phase flow systems involves homogenization procedures (see Section 2.3) that rest on various
sets of assumptions. Because of this variety, two-phase systems may share the same total energy balance, but
feature different partitions between the phases (see Remark 6.3). Unlike single-phase flows, two-phase energy
balances involve the material derivative of the phase volume fraction ϕ, which is the work done by the expansion
of volume fraction [Gidaspow, 1994]. In our case, we first established the mass and momentum conservation
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equations of our two-phase system (2.52) by leaving some quantities undefined: the interface quantities 〈pint,g〉
and 〈uI〉, and an equation for the gas temperature Tg. We then used the calculation of the total energy balance
obtained explicitly from the mass and momentum equations to find suitable relationships for these quantities.
The equation for the gas temperature needing to be consistent with thermodynamics, we based ourselves on
the standard structure coming from the thermodynamic theory to propose relevant adjustments or extensions
that match the specificity of our two-phase model. One of these extensions is the inclusion of the heat transfer
between the two phases, which is quantified by the term γ(Tg − Tl). This term, involving the additional variable
Tl, drove us to prescribe the closure equation (2.57) for the liquid temperature. In other words, our approach
aims at finding a minimal model that ensures energy dissipation.

The total energy balance (B.1), which is constructed from first law of thermodynamics (e.g., [Brennen, 2005]),
contains the contribution from the momentum equation, which can be seen by splitting it into a balance for the
internal energy e and one for the kinetic energy 1

2 |u|
2:

∂t(ρe) + div(ρeu) = Σ : ∇u+ div(κ∇T ) + r, (B.2)

and
∂t

(1
2ρ|u|

2
)

+ div
(1

2ρ|u|
2u

)
= −Σ : ∇u+ div(Σu) + ρ(f · u).

As the kinetic energy balance is constructed from the momentum and mass transport equation, it can be
viewed as a transport equation of energy [Gidaspow, 1994,Bird et al., 2007, Ishii and Hibiki, 2011]. To find the
corresponding temperature equations, we use the equation of state of the fluid, which in particular provides the
following rule for derivatives,

ρDte = ρcpDtT + p

ρ
Dtρ+ T

ρ

(
∂ρ

∂T

)
p
Dtp,

where Dtξ = ∂tξ + u · ∇ξ is the material derivative for any variable ξ. Then we get

∂t(cpρT ) + div(cpρTu) + T

ρ

(
∂ρ

∂T

)
p
Dtp−D : ∇u− div(κ∇T )− r + p

ρ
(∂tρ+ div(ρu))

= (cpT − e)(∂tρ+ div(ρu)).
(B.3)

For an ideal gas, p1 = c0ρ1T1. Using Σ1 : ∇u1 = −p1 divu1 + D1 : ∇u1 and that cp1 is constant, we find the
temperature equation

∂t(cp1ρ1T1) + div(cp1ρ1T1u1)−Dtp1 −D1 : ∇u1 − div(κ1∇T1)− r1

= ((cp1 − c0)T1 − e1)(∂tρ1 + div(ρ1u1))
(B.4)

or equivalently

∂t((cp1 − c0)ρ1T1) + div((cp1 − c0)ρ1T1u1)− Σ1 : ∇u1 − div(κ1∇T1)− r1

= ((cp1 − c0)T1 − e1)(∂tρ1 + div(ρ1u1)).

As the internal energy is e1 = (cp1 − c0)T1, we obtain (B.2) whether the mass is conserved or not.

For a compressible fluid with constant density ρ2, the same procedure yields the temperature equation obtained
from (B.3):

∂t(cp2ρ2T2) + div(cp2ρ2T2u2) + p2divu2 −D2 : ∇u2 − div(κ2∇T2)− r2 = (cp2T2 − e2)ρ2divu2, (B.5)

where the term p2divu2 depends on the compressibility law chosen. Again, if the internal energy is e2 = cp2T2,
we get (B.2).
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As mentioned above, the internal energy balance for multiphase flows involves an additional term that takes
into account the work done by the expansion of the volume fraction ϕi [Gidaspow, 1994]. For each phase i, the
equivalent equation to (B.2) is thus

∂t(ϕiρiei) + div(ϕiρieiui) = −piDtϕi + ϕiΣi : ∇ui + div(ϕiκi∇Ti) + ri, (B.6)

Following the same procedure as before yields the alternate equation to (B.3) for each phase,

∂t(cpiϕiρiTi) + div(cpiϕiρiTiui) + ϕi
Ti
ρi

(
∂ρi
∂Ti

)
pi

Dtpi − ϕiDi : ∇ui − div(ϕiκi∇Ti)− ri

+piDtϕi + ϕi
pi
ρi

(∂tρi + div(ρiui)) = (cpiTi − ei)(∂t(ϕiρi) + div(ϕiρiui)).
(B.7)

For an ideal gas, with the fractional density ϕ1ρ1 and pressure p1 = c0ρ1T1, we get the equivalent equation to
(B.4),

∂t(cp1ϕ1ρ1T1) + div(cp1ϕ1ρ1T1u1)− ϕ1Dtp1 − ϕ1D1 : ∇u1 − div(ϕ1κ1∇T1)− r1
= ((cp1 − c0)T1 − e1)(∂t(ϕ1ρ1) + div(ϕ1ρ1u1))

where the term on the right hand side vanishes for e1 = (cp1 − c0)T1. Our proposed equation for the gas tem-
perature (2.56) follows this structure, considering surface tension plus heat exchange as the external contribution
r1. From the energy equation (2.58) we deduce that the associated internal energy would be eg = (cpg − c0)Tg.
For a compressible fluid with constant density ρ2 and fractional density ϕ2ρ2, (B.7) yields:

∂t(cp2ϕ2ρ2T2) + div(cp2ϕ2ρ2T2u2)− ϕ2D2 : ∇u2 − div(ϕ2κ2∇T2)− r2 + p2(∂tϕ2 + div(ϕ2u2))
= (cp2T2 − e2)(∂t(ϕ2ρ2) + div(ϕ2ρ2u2)),

that is the equivalent equation to (B.5). Again the term on the right-hand side vanishes for e2 = cp2T2. Our
proposed equation for the liquid temperature (2.57) also follows this structure, r2 containing again the heat
exchange. Note that from (2.52a) we have the value of ∂tϕ2 + div(ϕ2u2), providing the term pl

ρl
RH2O appearing

in (2.57). The corresponding internal energy would be el = cplTl.

As for our system the internal energies are eg = (cpg − c0)Tg, el = cplTl, the total energy balance obtained
in (2.58) becomes:

∂t
(
ϕρg(1

2 |ug|
2+eg) + (1− ϕ)ρl(1

2 |ul|
2+el)− (ϕρg + (1− ϕ)ρl)(g ·X) + ϕ2σ

R

)
+div

(
ϕρg(1

2 |ug|
2+eg)ug + (1− ϕ)ρl(1

2 |ul|
2+el)ul − (ϕρgug + (1− ϕ)ρlul)(g ·X)

)
−div(ϕΣgug + (1− ϕ)Σlul)− div (ϕκg∇Tg + (1− ϕ)κl∇Tl)

+Kdϕ(1− ϕ)|ug − ul|2+ϕ(1− ϕ) 3
4ηl

(
pg − pl − 2σ

R

)2
= 0.

(B.8)

where we added and subtracted div(pgug) to (2.58) using pg = c0ρgTg and we denoted Σg = −pgId + Dg,
Σl = −plId +Dl, with Dg,Dl the viscosity tensors defined in (2.10)-(2.11). This equation is identical to (B.1) if
we neglect surface tension and we consider the potential energy as the gravitational potential, f = ∇(g ·X). The
terms on the last line represent the loss of energy due to the drag terms on the relative velocities and pressures.
Finally, the internal energy equations for gas and liquid phases can be written from the proposed temperature
equations (2.56) and (2.57) using (2.13), (2.52a) and (2.52b):

∂t(ϕρgeg)+div(ϕρgegug) = −pg (∂tϕ+ ug · ∇ϕ)+ϕΣg : ∇ug+div(ϕκg∇Tg)+γ(Tg−Tl)−ϕ∂t
(2σ
R

)
(B.9)
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∂t((1− ϕ)ρlel) + div((1− ϕ)ρlelul) = −pl (∂t(1− ϕ) + ul · ∇(1− ϕ)) + (1− ϕ)Σl : ∇ul
+div((1− ϕ)κl∇Tl)− γ(Tg − Tl)

(B.10)

These equations follow the same structure as equation (B.6) where the external contributions are rg = γ(Tg −
Tl)−ϕ∂t

(
2σ
R

)
and rl = −γ(Tg − Tl). By subtracting the internal energy equations (B.9), (B.10) from the total

energy (B.8), we can also get the kinematic energy balance:

∂t

(
(1− ϕ)ρl

|ul|2

2 + ϕρg
|ug|2

2 − (g ·X)((1− ϕ)ρl + ϕρg)
)

+ div
(

(1− ϕ)ρlul
|ul|2

2 + ϕρgug
|ug|2

2 − (g ·X)((1− ϕ)ρlul + ϕρgug)
)

= −
(
ϕΣg : ∇ug + (1− ϕ)Σl : ∇ul

)
+ div(ϕΣgug + (1− ϕ)Σlul)−Kdϕ(1− ϕ)|ug − ul|2 + pg(ug − ul)∇ϕ.

(B.11)

The last term comes from the remaining terms

−2σ
R
∂tϕ+ pg (∂tϕ+ ug · ∇ϕ) + pl (∂t(1− ϕ) + ul · ∇(1− ϕ))− ϕ(1− ϕ) 3

4ηl

(
pg − pl −

2σ
R

)2

= −2σ
R
∂tϕ+ pg (∂tϕ+ ug · ∇ϕ)− pl (∂tϕ+ ul · ∇ϕ)−

(
pg − pl −

2σ
R

)
(∂tϕ+ ul · ∇ϕ)

= pg(ug − ul)∇ϕ,

where we used (2.52f).

Our proposed temperature equations are thus compatible with thermodynamics. They keep the structure of clas-
sical equations and they provide a dissipative energy balance for the proposed system. We also refer the reader to
Section 6 where we conduct a comparison with the thermodynamics-derived model proposed in [Romenski et al.,
2010,La Spina and de’ Michieli Vitturi, 2012].

C From compressible-compressible to incompressible-compressible at low Mach
Connecting seamlessly compressible-compressible formulations to incompressible-compressible formulations is not
trivial. [Varsakelis and Papalexandris, 2011] generalize the concept of low-Mach-number approximation to multi-
phase flows and apply it to a two-phase flow model by performing a joint, low-Mach-number limit for the two
phases. Here we show that it is possible to obtain our incompressible-compressible system representing liquid–gas
flows with respective indices g and l from a compressible-compressible system governing two gas phases with re-
spective indices (g, 1) and (g, 2) by performing a low-Mach-number limit Ma→ 0 with respect to the phase (g, 2).

For simplicity, we replace the Mach number Ma by a parameter ε. We also assume that all quantities are
dimensionless. To perform the asymptotic calculation, we choose a perfect gas law for the phase (g, 1),

pεg,1 = r0 ρ
ε
g,1T

ε
g,1,

and use a simplified stiff gas pressure state law for the other phase (g, 2):

ρεg,2 = ρ̃+ ε
(
pεg,2 − αT εg,2

)
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where α > 0 is a fixed constant, ε is the Mach number associated to the gas (g, 2), and ρ̃ is a given positive
constant that is chosen to be equal to our constant fluid density ρl. The asymptotic is obtained by looking at
solutions that are expanded with respect to ε as follows:

ρεg,i = ρ0
g,i + ερ1

g,i + ε2ρ2
g,i + · · ·

T εg,i = T 0
g,i + εT 1

g,i + ε2T 2
g,i + · · ·

ϕεg,i = ϕ0
g,i + εϕ1

g,i + ε2ϕ2
g,i + · · ·

uεg,i = u0
g,i + εu1

g,i + ε2u2
g,i + · · ·

Cεl = C0
l + εC1

l + ε2C2
l + · · ·

where ε is assumed to be sufficiently small. The equations involving the phase (g, 2) are the most relevant ones
because the (g, 2) pressure law depends critically on ε. These equations are

∂t(ϕεg,2ρεg,2) + div(ϕεg,2ρεg,2uεg,2) = −RεH2O,

∂tϕ
ε
g,2 + uεg,2 · ∇ϕεg,2 = ϕεg,2(1− ϕεg,2) 3

4ηl
(pεg,1 − pεg,2),

∂t(ϕεg,2ρεg,2uεg,2) + div(ϕεg,2ρεg,2uεg,2 ⊗ uεg,2) +∇
(
ϕεg,2p

ε
g,2

)
− div(ϕεg,2Dεg,2)− pεg,1∇ϕεg,2

−Kdϕ
ε
g,2(1− ϕεg,2)(uεg,1 − uεg,2)− ϕεg,2ρεg,2g +

uεg,1 + uεg,2
2 RεH2O = 0,

∂t(ϕεg,2cp,2ρεg,2T εg,2) + div(ϕεg,2cp,2ρεg,2T εg,2uεg,2)− ε
T εg,2
ρεg,2

ϕεg,2(∂tpεg,2 + uεg,2 · ∇pεg,2)

−
pεg,2
ρεg,2

RεH2O + γ(T εg,1 − T εg,2)

− div(ϕεg,2k2∇T εg,2)− ϕ2
(
2η2D(uεg,2) : ∇uεg,2 + λ2(divuεg,2)2

)
= 0.

(C.1a)

Note that the stiff gas pressure state law and the expansions of the unknowns we consider imply the following
pressure expansion with respect to the Mach number:

pεg,2 = 1
ε
p−1
g,2 + p0

g,2 + εp1
g,2 + · · · =

ρ0
g,2 − ρ̃
ε

+ (ρ1
g,2 + αT 0

g,2) + ε2(ρ2
g,2 + αT 1

g,2) + · · · .

In the gas fraction equation on ϕεg,2, the main contribution at order ε−1 only involves the pressure p−1
g,2. This

contribution is
ϕ0
g,2(1− ϕ0

g,2)p−1
g,2 = 0,

which can be written as
ϕ0
g,2(1− ϕ0

g,2)(ρ0
2,g − ρ̃) = 0. (C.2)

Using the momentum equation related to uεg,2, we get at order ε−1 that

∇(ϕ0
g,2(ρ0

2,g − ρ̃)) = 0

and therefore
ϕ0
g,2(ρ0

g,2 − ρ̃) = C(t).

Coupling this result with the constraint (C.2) yields

(1− ϕ0
g,2)C(t) = 0,
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which implies that C(t) = 0 or ϕ0
g,2 = 1 identically because C(t) does not depend on space. The second choice

is not possible because it implies a single phase system. Thus,

ϕ0
g,2(ρ0

2,g − ρ̃) = 0.

Note that if ϕ0
g,2 = 0 at some point in space, it means that phase (g, 2) is zero at that point and we therefore

can choose ρ0
g,2 = ρ̃. Therefore the conclusion is that ρ0

g,2 = ρ̃ everywhere. Note that this implies that p−1
g,2 = 0,

which is be used later on when looking at the temperature equation on T 0
g,2.

We address now the mass and gas fraction equations at order ε0. Using that ρ0
g,2 = ρ̃ = constant, we obtain

that
∂t(ϕ0

g,2ρ
0
g,2) + div(ϕ0

g,2ρ
0
g,2u

0
g,2) = −R0

H2O

and therefore
∂tϕ

0
g,2 + div(ϕ0

g,2u
0
g,2) = −1

ρ̃
R0
H2O. (C.3)

The volume fraction equation yields

∂tϕ
0
g,2 + u0

g,2 · ∇ϕ0
g,2 = ϕ0

g,2(1− ϕ0
g,2) 3

4ηl
(p0
g,1 − p0

g,2) (C.4)

with p0
g,2 = ρ1

g,2 + αT 0
g,2. Combining (C.3) and (C.4) yields:

ϕ0
g,2divu0

g,2 = −1
ρ̃
R0
H2O + ϕ0

g,2(1− ϕ0
g,2) 3

4ηl
(p0
g,1 − p0

g,2)

where p0
g,1 = r0ρ

0
g,1T

0
g,1. Note that p0

g,2 corresponds to pl in our incompressible-compressible system. Importantly,
p0
g,2 = ρ1

g,2 + αT 0
g,2, where ρ1

g,2 is an unknown. The salient unknown to consider is therefore p0
g,2 because it

appears everywhere. In the temperature equation at the main order, (C.1a)4, the quantity with ε in front yields
the quantity

T 0
g,2
ρ0
g,2

ϕ0
g,2

(
∂tp
−1
g,2 + ug,2 · ∇p−1

g,2

)
which is zero because p−1

g,2 = 0. Also, the quantity related to RH2O in (C.1a)4 simplify to

p0
g,2
ρ0
g,2
R0
H2O.

Therefore we obtain that

∂t(ϕ0
g,2cp,2ρ

0
g,2T

0
g,2) + div(ϕ0

g,2cp,2ρ
0
g,2T

0
g,2u

0
g,2)

−
p0
g,2
ρ0
g,2
R0
H2O + γ(T 0

g,1 − T 0
g,2)

− div(ϕ0
g,2k2∇T 0

g,2)− ϕ2
(
2η2D(u0

g,2) : ∇u0
g,2 + λ2(divu0

g,2)2
)

= 0

(C.5a)

which is the equation on Tl that we have considered. The main order of the other equations (e.g., that of
Cl and those related to the phase (g, 1)) easily yield equations that are identical to the ones we use in our
incompressible-compressible system.
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D Detailed calculations of the drift flux system
The drift flux system (4.15) is obtained from the original system (2.74) by performing the change of variables
detailed in Section 4 (see in particular the relationships (4.11)). Obtaining the equations for mass, concentration
and volume fraction, (4.15a)-(4.15d) is straightforward. Here we detail the calculations for the remaining equa-
tions (4.15e)-(4.15h), which are less obvious.

Equation (4.15e) is the sum of (2.74d) and (2.74e). From the definition of the drift flux variables we can
easily achieve the conversion into drift-flux variables. We only detail the conversion of the divergence term, where
we use relationships (4.11) to write

div((1− ϕ)ρlul ⊗ ul + ϕρgug ⊗ ug) = div((1− Y )ρ(u− Y w)⊗ (u− Y w))
+ div(Y ρ(u+ (1− Y )w)⊗ (u+ (1− Y )w))

= div(ρ(1− Y )(u⊗ u)− ρY (1− Y )(u⊗ w)− ρY (1− Y )(w ⊗ u)
+ ρY 2(1− Y )(w ⊗ w)) + div(ρY (u⊗ u) + ρY (1− Y )(u⊗ w)

+ ρY (1− Y )(w ⊗ u) + ρY (1− Y )2(w ⊗ w))
= div(ρu⊗ u+ ρY (1− Y )w ⊗ w)

Equation (4.15f) is the momentum equation for the gas phase (2.74e). We also only detail the divergence term,
the other terms being easily converted:

div(ρgϕug ⊗ ug) = div(ρY (u+ (1− Y )w)⊗ (u+ (1− Y )w))
= div(ρY (u⊗ u) + ρY (1− Y )(u⊗ w) + ρY (1− Y )(w ⊗ u) + ρY (1− Y )2(w ⊗ w))

The coefficient of RH2O is calculated using the definitions of the velocities,
1
2(ug + ul) = 1

2(u+ (1− Y )w + u− Y w) = u+ (1
2 − Y )w.

Equation (4.15g) is the sum of (2.76) and (2.74k). In the primary variables, that sum reads

∂t((cpg − c0)ϕρgTg + (1− ϕ)cpl
ρlTl) + div((cpg − c0)ϕρgTgug + (1− ϕ)cpl

ρlTlul)
− div(ϕκg∇Tg + (1− ϕ)κl∇Tl) + pgdiv

(
ϕug + (1− ϕ)ul

)
+ (pg − pl)

ρl
RH2O − ϕ

(
2ηgD(ug) : ∇ug + λg(divug)2

)
− (1− ϕ)

(
2ηlD(ul) : ∇ul + ηl(divul)2

)
= 0.

Using the definition of cpm in (4.10) and T in (4.8), the time derivative term reads

∂t((cpg − c0)ϕρgTg + (1− ϕ)cpl
ρlTl) = ∂t(cpmYTTg + cpm(1− YT )Tl) = ∂t(cpmT )

We develop the divergence term where we replace all variables to get

div((cpg − c0)ϕρgTgug + (1− ϕ)cpl
ρlTlul) = div(cpmYT (T + (1− YT )δT )(u+ (1− Y )w)

+ cpm(1− YT )(T − YT δT )(u− Y w))
= div(cpmu(YT (T + (1− YT )δT ) + (1− YT )(T − YT δT ))

+ cpmw(YT (T + (1− YT )δT )(1− Y )− (1− YT )(T − YT δT )Y ))
= div(cpmuT + cpmwT (YT − Y )

+ cpmwδT (1− YT )(YT (1− Y ) + Y YT ))
= div(cpmuT + cpmw((YT − Y )T + YT (1− YT )δT ))

The remaining terms in the temperature equations are directly obtained by using (4.11) to convert the original
variables.
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Equation (4.15h) is calculated as (1− YT )× (4.13)− YT × (4.14). This combination yields:
(1− YT )cvgρY (∂tTg + (u+ (1− Y )w) · ∇Tg)− YT cpl

ρ(1− Y )(∂tTl + (u− Y w) · ∇Tl)
+ (1− YT )(p+ (1− ϕ)q)div

(
u+ (ϕ− Y )w

)
= γ(Tg − Tl) + (1− YT )div(ϕκg∇Tg)− YTdiv((1− ϕ)κl∇Tl)

+ (1− YT )ηgϕ
(
2D(ug) : ∇ug + 3(divug)2

)
− YT ηl(1− ϕ)

(
2D(ul) : ∇ul + 1

3(divul)2
)

− ((1− YT )(p+ (1− ϕ)q) + YT (p− ϕq))R
H2O

ρl
− ((1− YT )cvgTg + YT cplTl)RH2O.

The time derivative terms are

(1− YT )cvgρY ∂tTg − YT cpl
ρ(1− Y )∂tTl = (1− YT )cpmYT∂tTg − YT cpm(1− YT )∂tTl = cpmYT (1− YT )∂t(δT )

The velocity terms are
(1− YT )cvgρY (u+ (1− Y )w) · ∇Tg − YT cpl

ρ(1− Y )(u− Y w) · ∇Tl
= cpmYT (1− YT )((u− Y w) · ∇(Tg − Tl) + w · ∇Tg)
= cpmYT (1− YT )((u− Y w) · ∇(δT ) + w · ∇(T + (1− YT )δT ))

Finally, we develop the term in RH2O,

−((1− YT )(p+ (1− ϕ)q) + YT (p− ϕq))RH2O

ρl
− ((1− YT )cvgTg + YT cplTl)RH2O

= −(p+ (1− ϕ)q − YT q))R
H2O

ρl
−
(
(1− YT ) cpmYT

ρY (T + (1− YT )δT ) + YT
cpm(1−YT )
ρ(1−Y ) (T − YT δT )

)
RH2O

= −(p+ (1− ϕ− YT )q))RH2O

ρl
− cpmYT (1−YT )

ρY (1−Y ) ((1− Y )(T + (1− YT )δT ) + Y (T − YT δT ))RH2O

= −(p+ (1− ϕ− YT )q))RH2O

ρl
− cpmYT (1−YT )

ρY (1−Y ) (T + (1− Y − YT )δT )RH2O

Like before, the rest of the terms are obtained by using (4.11).

E Dimensionless drift flux system
Mass equations

The mass equations for ρ, Cl, and ϕ, (4.26a), (4.26b), (4.26c), and (4.15d) are:

St ∂t̃
((

1 + ρg0
ρl0

Ỹ

)
(1− ϕ)ρ̃l

)
+ d̃iv

((
1 + ρg0

ρl0
Ỹ

)
(1− ϕ)ρ̃lũ

)
= 0, (E.1)

St ∂t̃
(
(1− ϕ)ρ̃lỸ

)
+ d̃iv

(
(1− ϕ)ρ̃lỸ

(
ũ+ w0

u0

1
1 + ρg0

ρl0
Ỹ
w̃

))
= ρl0
ρg0

L0R0
ρl0u0

R̃H2O, (E.2)

St ∂t̃
(
(1− ϕ)ρ̃l(1− Cl0C̃l)

)
+ d̃iv

(
(1− ϕ)ρ̃l(1− Cl0C̃l)

(
ũ− ρg0

ρl0

w0
u0

1
1 + ρg0

ρl0
Ỹ
Ỹ w̃

))
= 0, (E.3)

St ∂t̃ϕ+
(
ũ− ρg0

ρl0

w0
u0

1
1 + ρg0

ρl0
Ỹ
Ỹ w̃

)
· ∇̃ϕ = Rel

Ma2
q0
p0

ϕ(1− ϕ) 3
4η̃l

q̃ (E.4)

The exchange coefficient on the right-hand side of the second equation, L0R0
ρl0u0

, also appears in other equations of
the system. Using (4.28a), it reads

L0R0
ρl0u0

= 31/3(4πN0)2/3DCl0L0
u0

.
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Mixture velocity equation

Equation (4.26e) in dimensionless form is:

St ∂t̃
((

1+ ρg0
ρl0

Ỹ

)
(1−ϕ)ρ̃lũ

)
+d̃iv

((
1+ ρg0

ρl0
Ỹ

)
(1−ϕ)ρ̃lũ⊗ ũ

)
+d̃iv

(
ρg0
ρl0

w2
0
u2

0

1
1 + ρg0

ρl0
Ỹ

(1−ϕ)ρ̃lỸ w̃⊗ w̃
)

+ 1
Ma2 ∇̃p̃−

1
Rel

d̃iv
(

(1− ϕ)η̃l

(
1
3d̃iv

(
ũ− ρg0

ρl0

w0
u0

Ỹ w̃

1 + ρg0
ρl0
Ỹ

)
Id + 2D̃u

(
ũ− ρg0

ρl0

w0
u0

Ỹ w̃

1 + ρg0
ρl0
Ỹ

)))

− ρg0
ρl0

1
Reg

d̃iv
(
ϕη̃g

(
3d̃iv

(
ũ+ w0

u0

1
1 + ρg0

ρl0
Ỹ
w̃

)
Id + 2D̃u

(
ũ+ w0

u0

1
1 + ρg0

ρl0
Ỹ
w̃

)))

= 1
Fr2

(
1 + ρg0

ρl0
Ỹ

)
(1− ϕ)ρ̃lg̃

(E.5)

Velocity equation on Y w

Equation (4.26f) in dimensionless form is:

(E.6)ρg0
ρl0

w0
u0

St ∂t̃

(
Ỹ w̃

1 + ρg0
ρl0
Ỹ

)
+ ρg0
ρl0

w2
0
u2

0

1
ρ̃l(1− ϕ)

Ỹ w̃(
1 + ρg0

ρl0
Ỹ
)2 d̃iv(ρ̃l(1− ϕ)w̃)

+ ρg0
ρl0

w2
0
u2

0

(
w̃ − 2ρg0

ρl0

Ỹ w̃

1 + ρg0
ρl0
Ỹ

)
· ∇̃

(
Ỹ w̃

1 + ρg0
ρl0
Ỹ

)
+ ρg0
ρl0

w0
u0
ũ · ∇̃

(
Ỹ w̃

1 + ρg0
ρl0
Ỹ

)
+ ρg0
ρl0

w0
u0

Ỹ w̃

1 + ρg0
ρl0
Ỹ
· ∇̃ũ

= 1
ρ̃l(1− ϕ)

(
ρg0
ρl0

1
Reg

1
1 + ρg0

ρl0
Ỹ

d̃iv
(
ϕη̃g

(
3d̃iv

(
ũ+w0

u0

1
1 + ρg0

ρl0
Ỹ
w̃

)
Id+2D̃u

(
ũ+w0

u0

1
1 + ρg0

ρl0
Ỹ
w̃

))))

− 1
ρ̃l(1− ϕ)

(
ρg0
ρl0

1
Rel

Ỹ

1 + ρg0
ρl0
Ỹ

d̃iv
(

(1− ϕ)η̃l

(
1
3d̃iv

(
ũ− ρg0

ρl0

w0
u0

Ỹ w̃

1 + ρg0
ρl0
Ỹ

)
Id + 2D̃u

(
ũ− ρg0

ρl0

w0
u0

Ỹ w̃

1 + ρg0
ρl0
Ỹ

))))

+ 1
ρ̃l(1− ϕ)

1
Ma2

((
ρg0
ρl0

Ỹ

1 + ρg0
ρl0
Ỹ
−ϕ

)
∇̃p̃− q0

p0
ϕ∇̃((1−ϕ)q̃)

)
− ρg0
ρl0

w0
u0

1
Reg

Kd0L
2
0

ηg0

K̃d(1− ϕ)
ρ̃g

Ỹ w̃

+ 1
2
ρg0
ρl0

w0
u0

1
ρ̃l(1− ϕ)

(
St ∂t̃

(
(1− ϕ)ρ̃lỸ

)
+ d̃iv

(
(1− ϕ)ρ̃lỸ

(
ũ+ w0

u0

1
1 + ρg0

ρl0
Ỹ
w̃

)))
w̃

Using (4.28c), the drag term coefficient reads:

Kd0L
2
0

ηg0
= L2

0
k0
.

Temperature equations

We write equations (4.26g) and (4.26h) in dimensionless form by using again ρgϕ = ρY to write (ϕ − Y )w =
−
(
1− ρl

ρg

)
(1− ϕ)Y w. Equation (4.26g) becomes:
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St ∂t̃
((

1 + ρg0
ρl0

CpỸ
)
(1− ϕ)ρ̃lT̃

)
+ d̃iv

((
1 + ρg0

ρl0
CpỸ

)
(1− ϕ)ρ̃lT̃ ũ

)
+ ρg0
ρl0

w0
u0

d̃iv
((

1 + ρg0
ρl0

CpỸ
)
(1− ϕ)ρ̃l

(( Cp
1 + ρg0

ρl0
Cp
− 1

1 + ρg0
ρl0
Ỹ

)
T̃ + δT0

T0

Cp

1 + ρg0
ρl0
CpỸ

δ̃T

)
Ỹ w̃

)

+ ρg0
ρl0

p0
ρg0T0cpl

(
p̃+ q0

p0
(1− ϕ)q̃

)
d̃iv

(
ũ− w0

u0

(ρg0
ρl0
− ρ̃l
ρ̃g

) 1
1 + ρg0

ρl0
Ỹ

(1− ϕ)Ỹ w̃
)

= −
(
ρg0
ρl0

)2 q0
p0

p0
ρg0T0cpl

(
St ∂t̃

(
(1− ϕ)ρ̃lỸ

)
+ d̃iv

(
(1− ϕ)ρ̃lỸ

(
ũ+ w0

u0

1
1 + ρg0

ρl0
Ỹ
w̃

)))
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(E.7)

The relative temperature equation (4.26h) becomes:
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))
δ̃T

)(
St ∂t̃

(
(1− ϕ)ρ̃lỸ

)
+ d̃iv

(
(1− ϕ)ρ̃lỸ
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(E.8)

Using (4.28b), the heat transfer coefficient, γ0L0
ρl0u0cpl

reads:

γ0L0
ρl0u0cpl

= 24
(4π

3

)2/3 Nu0
Pel

N
2/3
0 L2

0

Pressure

Finally we write the calculated mixture pressure p from (4.27)
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