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Mathematical topics in compressible flows
from single-phase systems to two-phase averaged systems

Didier Bresch∗, Gladys Narbona-Reina†, Alain Burgisser‡, Marielle Collombet‡

August 24, 2024

Abstract

We review the modeling and mathematical properties of compressible viscous flows, ranging from single-
phase systems to two-phase systems, with a focus on the occurrence of oscillations and/or concentrations. We
explain how establishing the existence of nonlinear weak stability ensures that no such instabilities occur in the
solutions because of the system formulation. When oscillation/concentration are inherent to the nature of the
physical situation modelled, we explain how the averaging procedure by homogenization helps to understand
their effect on the averaged system. This review addresses systems of progressive complexity. We start by
focusing on nonlinear weak stability — a crucial property for numerical simulations and well posedness —
in single-phase viscous systems. We then show how a two-phase immiscible system may be rewritten as
a single-phase system. Conversely, we show then how to derive a two-phase averaged system from a two-
phase immiscible system by homogenization. As in many homogenization problems, this is an example where
physical oscillation/concentration occur. We then focus on two-phase averaged viscous systems and present
results on the nonlinear weak stability necessary for the convergence of numerical schemes. Finally, we review
some singular limits frequently developed to obtain drift-flux systems. Additionally, the appendix provides a
crash course on basic functional analysis tools for PDE and homogenization (averaging procedures) for readers
unfamiliar with them. This review serves as the foundation for two subsequent papers (Part I and Part II
in this same volume), which present averaged two-phase models with phase exchange applicable to magma
flow during volcanic eruptions. Part I introduces the physical processes occurring in a volcanic conduit and
establishes a two-phase transient conduit flow model ensuring: 1) mass and volatile species conservation, 2)
disequilibrium degassing considering both viscous relaxation and volatile diffusion, and 3) dissipation of total
energy. The relaxation limit of this model is then used to obtain a drift-flux system amenable to simplification.
Part II revisits the model introduced in Part I and proposes a 1.5D simplification that addresses issues in its
numerical implementation. Model outputs are compared to those of another well-established model under
conditions typical of an effusive eruption at an andesitic volcano.
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Glossary
Two-phase mixture: Physical system consisting of two phases with different physical properties.

Two-phase averaged system: An idealized representation of a two-phase mixture for modeling purpose where
both phases are represented by interpenetrating continua regardless of their particulate or carrier nature.

Two-phase immiscible system: Physical system consisting of two phases that do not mix or dissolve to form
a homogeneous mixture, thereby experiencing interfacial tension. Most gas–liquid mixtures are immiscible
but mass transfer is possible.

Two-phase system with interfaces: An idealized representation of a two-phase mixture for modeling purpose
where phases are represented by non-overlapping continua. Generally used to describe systems composed
of at least one particulate phase such as an immiscible gas/liquid suspension or a mixture of solid-fluid
phases.

1 Introduction
The aim of this review paper is to introduce fluid mechanics modeling and the mathematical properties of the
related equations. We introduce progressively more complex models, from single phase flow to averaged two-
phase systems, to reach the level of complexity necessary to describe the fluid mechanics of volcanic eruptions.
The review can thus be used as an introduction to the two-phase flow systems describing magma flow in a
volcanic conduit that we develop in Part I of our series of two papers focused on volcanology ( [Narbona-Reina
et al., 2024]; [Burgisser et al., 2024]). It can also be read as a standalone compendium of derivation techniques
and fundamental mathematical properties of two-phase flows. An essential tool to design complex models is the
derivation of averaged two-phase systems from systems composed of two fluids separated by interfaces by using
homogenization techniques (averaging procedures). An important mathematical properties is weak nonlinear
stability, which can be obtained for both incompressible and compressible fluid systems by starting with single-
phase viscous systems and then addressing different two-phase viscous systems. Once a given suitable two-phase
model has been established, we discuss simplified formulations through relaxation limits or drift-flux systems. Such
simplified systems are then adapted to encode the physical processes occurring in volcanic conduits in [Narbona-
Reina et al., 2024]. For readers unfamiliar with the mathematical concepts we use herein, we have included
a crash course in PDE and homogenization techniques in the appendix that provides mathematical definitions
and key concepts for a more in-depth understanding. We also regularly provide short, plain language summaries
labeled Key Insight throughout our explanations. Should a section prove too detailed, these summaries are here
to help the reader to grasp the global flow of reasoning of the concerned section before moving on.

1.1 General motivations behind PDEs design

Modeling complex physical situations through systems of partial differential equations (PDEs) is a powerful tool to
better understand the interactions involved in the phenomena of interest. Two main challenges of such modeling
is being able to propose equation systems amenable to coherent numerical approaches by ensuring nonlinear
weak stability and being able to propose simplified systems by implicitly encoding small-scale phenomena using
homogenization techniques.
1) Nonlinear weak stability (Approximation – Regularization – Discretization).

The structure of the Section has strongly been inspired by the introduction of Evans’ beautiful book [Evans,
1990], which explains the motivations to study the nonlinear weak stability of systems of equations occurring in
various fields of applications. Suppose we wish to solve some nonlinear system, which we write symbolically as

A[V ] = f (1.1)
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where A[·] denotes a given nonlinear operator (which could be differential), f is a given function, and V is the
unknown. The operator A may be differential, such as, for instance,

A(∂sV, ∂s−1V, · · · , ∂V, V, t, x) = f(t, x)

where V := (v1(t, x), · · · , vp(t, x) : (0, T ) × Ω 7→ Rp) and ∂s denote any derivative of order s with respect to
times t or coordinates xj of space x. An instance of differential operator can be found in the transport equation:
A(∂tV, ∂xV, V, t, x) = ∂tV +u∂xV , for a given scalar u. Here are some examples of how this operator A is defined
for classical equations of fluid dynamics (with u∂xV which reads in a multi-dimension case u·∇xV =

∑d
j=1 uj∂xjV

for u = (u1, · · · , ud) a vector field and V depending on (x1, · · · , xd).

• Transport equation:
A(∂tV, ∂xV, V, t, x) = ∂tV +u·∇xV , where x ∈ Ω ⊂ R2 and for a given vector field u with V : (0, T )×Ω 7→
R.

• Shallow-water equations:

A(∂tV, ∂xV, V, t, x) = ∂tV + v · ∇xV +
[
hdivv
g∇xh

]
where x ∈ Ω ⊂ R2 and V = (h, v)t : (0, T )× Ω 7→ R3 with g the acceleration gravity.

• Porous media equations:
A(∂tV, ∂xV, V, t, x) = ∂tV −∆xϕ(V ) for a given nonlinear function s 7→ ϕ(s) and V : (0, T )× R.

Note that such systems, if they are differential, may be decomposed in the two main classes of boundary-value
problems and time-dependent problems. The nonlinear PDEs systems introduced herein in such form are single-
phase flow before transitioning to two-phase flows. To establish the existence or to find a numerical approximation
of a solution V of this system, a powerful idea is to invent an appropriate collection of nicer approximate systems
that can be solved exactly or numerically. We write abstractly these approximated systems as

An[Vn] = fn (1.2)

with n ∈ N? and where An[·] represents a nonlinear operator which is somehow close to A[·] for large n. fn is
close to f and Vn is a solution of (1.2). The hope is that the functions {Vn}n∈N will converge to a solution V
of the initial system (1.1) in a sense to be defined. In practice, for instance in the stationary case, the operator
An[·] may represent finite-dimensional projections such as in the Galerkin method. Let Pn denote an appropriate
projection into the computational space, which is a finite-dimensional space spanned by finite-element basis
functions {ϕj}1≤j≤n. The Galerkin method seeks an approximate solution, Vn =

∑n
j=1 Vjϕj(x) such that

PnA(∂sV, ∂s−1V, · · · , ∂V, V, t, x) = Pnf

and then calculates the limit n→ +∞ to solve the continuous equation

A(∂sV, ∂s−1V, · · · , ∂V, V, t, x) = f(t, x).

Other approximated systems include singular regularizations (to enable one to use well-known results on the
approximate system), discretization in space and/or time (to apply numerical methods such as finite-differences,
finite-elements, finite-volumes, and spectral methods), gradients of approximate energy functionals if a minimiza-
tion procedure is used (to perform calculus of variations), and systems collapsing at the limit n → +∞ into a
single equation (singular limits).
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The main difficulty in defining these approximate systems is of course the nonlinear nature of the systems, know-
ing that certain uniform estimates available for the family {Vn}n∈N, for instance coming from physical properties,
are not too strong. With such relatively poor estimates in hand, we can usually only show that the functions
{Vn}n∈N (or a subsequence) converge weakly to a limit V in some function space (in a sense related to the
bounds):

Vn ⇀ V as n→ +∞.
Now that we have somehow constructed approximate operators An[·] that tend to A[·] in some sense, in appli-
cations it is not guaranteed that the weak convergence implies

An[Vn]→ A[V ] as n→ +∞.

The obstacle we will address is that weak convergence behaves poorly with respect to nonlinearities. Nonetheless,
such weak convergence appears to be the best outcome we can achieve, as seen in explicit well-known examples we
provide later on. The key issue for many PDEs of interest lies in the explicit nonlinear structure of these systems,
which may offer additional desirable properties when the equations are manipulated adequately because usually
additional information is linked to hidden physical properties. Broadly speaking, while nonlinearity generally
prohibits the derivation of good uniform estimates on the functions {Vn}k∈N and their derivatives, in certain
settings the mere fact that Vn appropriately solves the designed approximation provides sufficient extra control
to justify taking the limit. In fact, the first step in identifying the main ingredients allowing taking the limit is to
assume we have a sequence of weak solutions {Vn}n∈N of (1.1) with uniform bounds given by the energy and to
show that there exists a subsequence of {Vn}n∈N which converges weakly in some sense to a weak solution V of
(1.1) satisfying the estimates. This will require obtaining extra bounds by manipulating the system. Establishing
the global existence of weak solutions for nonlinear PDEs requires proving such nonlinear weak stability, which
is based on compactness properties. More precisely, this requires showing that no oscillations and concentration
phenomena occur when considering an a priori sequence of global weak solutions depending on a parameter n
of the PDE system. In other words, the solutions have regularity given by the energy bound and they satisfy
the system in a weak sense. For reader unfamiliar with these concepts, we provide examples of oscillations and
concentration in the following section 1.2.1 that explain why they could prevent nonlinear weak stability. The
next step after the nonlinear weak stability procedure is to construct the approximate problems (e.g., by singular
regularizations, discretization in space/time, calculus of variations, or singular limits) while ensuring that the
solutions of such a collection of systems preserve the estimates related to the uniform estimates deduced from
the target system.
2) Small scales effects (Averaging process – Homogenization).

As described in [Allaire, Grégoire, 2012], averaging processes such as homogenization extract homogeneous
effective parameters from disordered or heterogeneous media; it is a way to encode small scales into a continuum
description. Homogenization was initially developed for periodic structures. Quite often, the period size is small
compared to the size of a representative sample of the medium (often called a Representative Elementary Volume
in physics literature). Denoting the size ratio by ε, an asymptotic analysis as ε tends to zero is required. Starting
from a microscopic description of a problem, we aim to derive a macroscopic or effective description. This may
be seen as follows: Let us start with the following problem to solve

Aa(nx)[Vn] = f (1.3)

where Aa(nx) means a nonlinear operator depending on small scales through an oscillating coefficient a with
respect to the variable y = nx with n ∈ N?. The main objective is to be able to find the operator Ba such that
Vn tends to V in some sense that solves

Ba[V ] = f. (1.4)
The nonlinear operator Ba may be different from A, and a is the limit of an with an(x) = a(nx) when n tends
to infinity in a sense to be defined. In the paper, we use sometimes the parameter ε = 1/n instead of n. In
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Appendix B.3 we present a well-known example in one-dimensional space related to the Laplace operator, and we
demonstrate the convergence related to highly oscillating functions in multidimensional settings through Young
measures. We encourage people who are not aware on homogenization to consult the appendix to understand
some phenomena with simple well-known examples. Important books related to homogenization that may be
consulted include [Bakhvalov and Panasenko, 1990], [Bensoussan et al., 1978], [Jikov et al., 1995] and [Cioranescu
and Donato, 1999]. As indicated previously, we refer the reader to [Allaire, Grégoire, 2012] for discussions re-
garding a model problem of diffusion for which the homogenized operator is of the same type (also a diffusion
equation). In this context, homogenization involves defining and computing effective diffusion tensors. Our focus
is on models that have different homogenized limits, meaning that the partial differential equations before and
after the averaging procedure (homogenization) are of a different mathematical nature. For instance, Stokes
equations for a viscous fluid in a porous medium yield either Darcy’s law or Brinkman’s law as a homogenized
model. In this context of different limits, homogenization serves as a modeling tool that can justify new models
arising as homogenized limits of complex microscopic equations. This will be the topic of Section 3, where we
mathematically justify the derivation of two-phase averaged compressible systems starting from two-phase im-
miscible systems with interfaces on a periodic scale significantly smaller than the size of the domain. Note that
even though periodicity is far from real applications, this procedure enables a better characterization of closures
often presented a priori in the physics literature.

Note that the homogenization procedure can be developed without assuming periodicity conditions, using
methods such as G or H convergence (see [Giorgi and Spagnolo, 1973,Murat and Tartar, 1997]). However, this
approach does not seem to be appropriate for averaging purposes in multi-phase compressible systems. Recently,
new insights have been gained, for instance, in the works of [Capdeville et al., 2010] and [Mizuno et al., 2020],
which both develop homogenization methods to calculate an effective equivalent medium for wave propagation
above a cut-off wavelength. This method, which is very powerful for real applications, could be the subject of
mathematical analysis, including proofs of convergence and symmetry of the homogenized elastic tensor.

1.2 Obstacles to finding stable solutions

Let us first illustrate situations which may occur on sequences of solutions. Below are simple examples of
oscillations and concentration that can be kept in mind.

1.2.1 Examples of oscillations and concentration

– For oscillations. Let us consider u ∈ L∞(0, 1) such that
∫ 1
0 u(x) dx = 0. We extend u to R by 1-periodicity

and we define the sequence
un(x) := u(nx) for almost all x ∈ R.

Then we can prove that un → 0 weakly in Lp(0, 1) for all 1 < p < +∞ but it does not converge strongly to
0 in Lp(0, 1). This implies that the weak limit of a nonlinear function of un is not necessarily the nonlinear
function of the weak limit. Let us construct a sequence of functions {un(x)}n∈N such that

∫
Ω un(x) → 0

and ‖un(x)‖L2(Ω)≤ C < +∞ uniformly with respect to n. This implies un ⇀ 0 in L2(Ω) by proposition
A.11 in Appendix A. The idea is to prove that we cannot get strong convergence to 0 in L2(0, 1), i.e. that
‖un − 0‖2L2(0,1) 6→ 0, which shows that oscillations may hinder nonlinear stability. To construct the example,
we start with a function u(x) such as the sinusoidal black curve in Figure 1. We then construct on this basis
progressively more oscillating candidates: u(2x) (blue curve in Figure 1), u(3x), . . . , u(nx) (red curve in Figure 1
for a given n). The limit n→ +∞ will oscillate at high frequency, which prevents nonlinear strong convergence.
Let us take for example the function u(x) = sin(2πx) for 0 ≤ x ≤ 1 with p = 2. This function satisfies∫ 1

0 u(x) dx = 0. Based on this function, let us introduce the sequence {un}n∈N, with

un(x) = u(nx) = sin(2πnx) for 0 ≤ x ≤ 1.
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Figure 1 illustrates this sequence. When n increases, so does the number of oscillations of the function un in the
span 0 ≤ x ≤ 1.

0 0.5 1
-1

0

1

Figure 1: Example of oscillation as a property that does not ensure weak stability.

We can check that ∫ b

a
un(x)dx → 0 ∀(a, b) ⊂ (0, 1)

and the norm of this sequence is bounded uniformly in n, indeed ‖un‖2L2(0,1)=
∫ 2

0 (1− cos(4πnx))/2 = 1/2. So
we have

‖un‖2L2(0,1)→ 1/2 6= 0.

– For concentration. Let us suppose 1 ≤ p < +∞. Let v ∈ C∞c (R) such that
∫
R v(x) dx = 1 and let us define

vn(x) := n1/pv(xn) for all x ∈ R.

Then vn → 0 weakly in Lp(R) for 1 < p < +∞ but the convergence is not strong. Note that, for p = 1, vn
does not converge weakly to 0 in L1(R) but vn → δ0 weakly in the sense of the measure M(R). Consider a
sequence of functions {un(x)}n∈N such that ‖un‖L1(−1,1)= 1. Its L1 norm is then constant and we observe that
the sequence concentrates to a Dirac mass. Such Dirac mass is not L1(−1, 1), which implies no weak nonlinear
stability in L1. To construct the example, we start with a function v(x) (black lines in Figure 2). On this basis
we build progressively shorter and higher step functions: v(2x) (blue lines in Figure 2), v(3x), . . . , v(nx) (red
lines in Figure 2 for a given n). The limit n→ +∞ will concentrate these step functions into a Dirac measure.
Take for instance the function v(x) = 1 for 0 ≤ x ≤ 1 and 0 elsewhere, with p = 1. We build from this function
the sequence {vn}n∈N with

vn(x) = n v(nx) =
{
n 0 ≤ x ≤ 1

n
0 otherwise

Figure 2 illustrates this sequence. When n increases, the function vn(x) increases its value but over a decreasing
range.
We can check that

‖vn‖L1(−1,1)= 1
and that vn does not converges weakly in L1(−1, 1) because

〈vn, φ〉L1×L∞ = n

∫ 1/n

0
φ(x)dx→ 〈δ0, ϕ〉 = φ(0).
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0 1/n 0.5 1
0

1

2

n

Figure 2: Example for concentration: A property which may prevent convergence in L1: Dirac masses may
appear.

1.2.2 Oscillations-Concentration related to nonlinear stability and homogenization (averaging proce-
dure)

It is important to note that oscillations and concentration can be a consequence of mathematical phenomena
(such as a poor choice of approximate PDEs) or physical phenomena (such as small-scale effects). In the former
case, we need to find ways to demonstrate that these phenomena do not occur in the system of interest by using,
for instance, equi-integrability, the Aubin-Lions-Simon Lemma, commutation between weak limits and strictly
convex functions, or non-local compactness tools. This will prevent artificial behavior and could aid in designing
appropriate numerical schemes that yield stable simulations. It is worth noting that understanding these mathe-
matical properties and the chosen approximate system and iterative processes can also help to better understand
numerical black boxes such as the COMSOL software we used in Part II [Burgisser et al., 2024]. In the latter
case, where oscillations or concentrations arise from physical situations, we need to describe such phenomena
and depict large-scale effects using appropriate tools to describe the averaged system. To do this, suitable tools
such as Young measures, generalized Young measures, or more precisely directional oscillations, concentration,
and compensated compactness via micro local compactness forms need to be introduced. This is necessary as
we aim to derive averaged two-phase systems from two component systems with interfaces. In such situations,
the density changes value at small scales, resulting in abrupt oscillations when attempting to obtain the averaged
two-phase mixture at the macro scale.

Let us present an example of discontinuous oscillations in the density profiles which will reflect the scenario
we will see to derive an averaged two-phase system. Let us define the following profile ρ on R, see figure 3a:

ρ(x) =


ρl x ∈ (0, 1

3)
ρg x ∈ (1

3 , 1)
extended on R by periodicity

We construct the sequence {ρn} as ρn(x) = ρ(nx). Then for example for n = 2 we have:

ρ2(x) = ρ(2x) =


ρl x ∈ (0, 1

6) ∪ (1
2 ,

2
3)

ρg x ∈ (1
6 ,

1
2) ∪ (2

3 , 1)
,
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also extended in R by periodicity, see figure 3b.

We can check (see Appendix Proposition B.2 for a proof in two dimensions) the following convergence

a) Density function ρ

b) Density sequence {ρn}, with ρn = ρ(nx) plotted for n = 2 and n = 4

Figure 3: Example of discontinuous oscillations.


ρn ⇀ ρ̄ = 1

3ρl + 2
3ρg

ρ2
n ⇀ ρ2 = 1

3ρ
2
l + 2

3ρ
2
g

β(ρn) ⇀ β(ρ) = 1
3β(ρl) + 2

3β(ρg)

This may be understood as
ρn ⇀

1
3δρl + 2

3δρg in the sense of measures.
The averaged two-phase system, we will justify mathematically later-on, will reflect this kind of discontinuous
oscillations and convergence related to two-dirac masses. Remark that the fraction associated to ρl is 1/3 and
the one corresponding to ρg is 1−1/3 = 2/3. Note that no compactness in space occurs reflected by the property
that for all nonlinear function s 7→ β(s), we get

β(ρ) 6= β(ρ).
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The weak limit related to a non-linear function is not necessarily the nonlinear function of the weak limit.

The two situations mentioned above (nonlinear weak stability and homogenization) have motivated us to present
mathematical results that address each of these scenarios, including known results and open problems. The
structure of our review follows that logic. Section 2 presents well-posedness results for single-phase viscous sys-
tems with interfaces. Section 3 presents the derivation of two-phase averaged systems from two-phase systems
with interfaces and Section 4 assesses the well-posedness for two-phase averaged systems. The last Section 5
focuses on formal singular limits, which will be extensively studied in volcanic context in Part I and II of the series
( [Narbona-Reina et al., 2024]; [Burgisser et al., 2024]).

We begin by establishing the global existence of weak solutions "à la Leray" (i.e. solutions with regularity
deduced solely from energy). In his seminal paper, [Leray, 1934], J. Leray (1906-1998) introduces the concept of
weak solutions (and also defines what is now called a Sobolev space), providing a precise definition of irregular
solutions of the system. Leray shows that such weak solutions exist for the Navier–Stokes equations in their
incompressible and homogeneous version. These solutions, characterized by minimal regularity (finite energy),
are now commonly referred to as "solutions à la Leray." Although the global existence of weak solutions (turbu-
lent solutions) contributes little to the well-posedness of the system, such analysis holds a significant practical
interest. Apart from its physical significance, the minimal regularity of assumed initial data is strongly linked to
well-identified physical quantities, and the stability properties of weak solutions in the continuous model aid in
the construction of stable numerical schemes that often do not preserve strong regularity estimates.

To prove global existence of weak solutions, several steps are typically followed:

a) Formally identify uniform estimates related to the energy and additional global information.

b) Construct an approximate system compatible with the global uniform estimates.

c) Demonstrate weak stability using the uniform estimates.

Usually, we start with step a), focusing on establishing uniform physical estimates. Subsequently, we investigate
step c), assuming we have a sequence of weak solutions related to a parameter of the system with the uniform
estimates from step a) satisfied uniformly with respect to this parameter. This parameter may be related to
an approximate system or to a finite-dimensional approximation when numerical schemes are employed. The
primary objective is to prove the existence of a subsequence converging in some sense to a global weak solu-
tion of the system, satisfying the uniform estimates; this is known as nonlinear weak stability. An essential
aspect of analyzing nonlinear PDEs involves understanding oscillations and concentrations in weakly converging
sequences of functions, as these phenomena differentiate weak from strong convergence in Lebesgue spaces. This
observation is already expressed in Vitali’s classical convergence theorem, where a norm-bounded, non-oscillating,
non-concentrating sequence is seen to converge strongly.

The connection between the abstract concept of compactness and concrete oscillation and concentration
effects underscores the importance of studying questions of compactness for their own sake. Starting with simple
scalar defect measures, increasingly refined tools have been developed to study compactness. Here we focus
on mathematical fluid mechanics, explaining the different tools used to ensure weak stability or, at least, to
describe oscillations and concentration if they arise from physics. This is particularly relevant when deriving by
homogenization two-phase averaged systems from two-phase systems with interfaces separating the fluids.

In the final step c), we construct approximate solutions, which are solutions of a modified system with ap-
proximate parameters that satisfy estimates uniformly with respect to these introduced parameters. We present
several examples of approximate systems depending on the PDE system considered. We then discuss possible
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extensions of well-posedness to two-phase systems for the global existence of weak solutions.

The final part of this review is devoted to the physical and mathematical derivations of some averaged two-
phase flow systems from systems consisting of two phases separated by interfaces. To achieve such derivations,
we introduce a small space scale for each phase in the initial data for density and let the corresponding parameter
tend to 0. This process yields an averaged two-phase system starting from a single-phase system with initially
high oscillating density profiles. We also discuss recent justifications of relaxation limits on two-phase systems,
highlighting interesting open problems. In conclusion, we present some calculations related to the drift-flux system
in multi-dimensions.

2 Single-phase viscous systems (Nonlinear Stability – Well Posedness)

2.1 Incompressible flows

The Navier–Stokes equations provide a basic mathematical model for describing the motion of a fluid. The classic
paper of [Leray, 1934] shows the existence of a regular solution up to a time T and characterizes that solution
for the incompressible Navier–Stokes equations with constant viscosity and constant density. It corresponds to
the following system for t ∈ [0, T ], x ∈ Ω ⊂ Rd with d = 2, 3,

∂tu+ div(u⊗ u) +∇p− ν∆u = f,

divu = 0,
u|t=0= u0,

u|x∈∂Ω= 0,

(2.1)

where u is the velocity vector field, p is the pressure and ν is the dynamical shear viscosity. Note that u ⊗ u is
a d × d tensor with (u ⊗ u)i,j = uiuj . For the sake of brevity, we only consider periodic boundary conditions
for the systems presented here, i.e. Ω = Td for d = 2 or 3. For the homogeneous incompressible Navier–Stokes
equations (2.1), the energy balance is

sup
t∈(0,T )

∫
Ω
|u|2(t) + ν

∫ T

0

∫
Ω
|∇u|2=

∫
Ω
|u0|2+

∫ T

0

∫
Ω
f · u.

To get such a balance, it suffices to take the scalar product of the momentum equation with u and integrate on
the domain Ω, which yields

1
2
d

dt

∫
Ω
|u|2+1

2

∫
Ω
u · ∇|u|2+

∫
Ω
∇p · u+ ν

∫
Ω
|∇u|2=

∫
Ω
f · u.

Observe that since divu = 0,
div(u⊗ u) = u · ∇u+ udivu = u · ∇u.

Integrating by parts and using again that divu = 0, we obtain∫
Ω
u · ∇|u|2= 0,

∫
Ω
∇p · u = 0.

Integrating in time and taking the supremum formally gives the result.

Thus one can assume there exists a sequence {un}n∈N that is a weak solution of the incompressible Navier–
Stokes equations satisfying the energy estimates

sup
t∈(0,T )

∫
Ω
|un|2(t) + ν

∫ T

0

∫
Ω
|∇un|2< c < +∞ (2.2)
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where c does not depend on n. The main objective is to prove that we are able to take the limit with respect to
n in the weak form of the incompressible Navier–Stokes equations, namely in the equation:

〈∂tun + div(un ⊗ un)− ν∆un − f, ϕ〉D′(Ω)×D(Ω) = 0 in D′(0, T ) (2.3)

for all ϕ ∈ {ϕ ∈ D(Ω) : divϕ = 0}. See the crash course A for the introduction of 〈·〉, D and D′. It is important
to note that the pressure term does not appear in the weak form because we test the equation with divergence-free
test functions. To get pressure after solving the weak form that involves quantities linked to un, the De Rham
theorem is used [Simon, 1999].

The detailed reasoning is that, from the energy estimate control (2.2), we know that un ∈ L2(0, T ;V ) uni-
formly with V = {v : v ∈ H1(Ω) with divv = 0} and from the equation itself we know that ∂tun ∈ L1(0, T ;V ′)
uniformly because un satisfies (2.3) and we use the bounds given by the energy. Then to take the limit in (2.3),
the main difficulty is the quadratic term un ⊗ un, that is the only nonlinear quantity in terms of the sequence
{un}n∈N. To be able to take the limit in this term and then ensure the weak stability, we need to prove compact-
ness in L2((0, T )×Ω) for {un}n∈N. This comes from a control of the time and space derivative of un uniformly in
complementary spaces: The Aubin-Lions-Simon compactness Lemma helps to check compatible properties (see
Theorem B.2).

In our case, we have un ∈ L2(0, T ;V ) and ∂tun ∈ Lq(0, T ;V ′) with some q > 1 so considering H = {v :
v ∈ L2(Ω) with divv = 0} we get compactness of un in L2(0, T ;H) (choosing X0 = V , X = H an X1 = V ′

in Aubin-Lions-Simon Lemma B.2 and p = 2, q > 1), hence compactness of un in L2(0, T ;L2(Ω)) writing∫ T
0 |un|2=

∫ T
0 〈un;un〉H×H . Note that it is also possible to show that un belongs uniformly in some Nikolskii

space based on translation in time to prove compactness in time.

Key insight 1. For the incompressible Navier–Stokes equations with constant density, we have information on
the space derivative of the velocity field from the energy identity and we have information on the time derivative
of the velocity field from the momentum equation and the properties from the energy identity. The space+time
control of a quantity implies compactness on this quantity by the Aubin-Lions-Simon Lemma.

In the 70-80’s, the non-homogeneous version of the incompressible Navier–Stokes equations (i.e. with variable
density) was investigated. It corresponds to the following system

∂tρ+ div(ρu) = 0,
∂t(ρu) + div(ρu⊗ u) +∇p− 2div(µ(ρ)D(u)) = ρf,

divu = 0,
ρu|t=0= m0, ρ|t=0= ρ0

(2.4)

where D(u) = (∇u+(∇u)t)/2 is the strain tensor, which is symmetric. Note that the strain tensor 2µ(ρ)D(u) is
traceless due to the incompressibility constraint when µ(ρn) = cst. The initial velocity is defined as u0 = m0/ρ0
when ρ0 6= 0 and u0 = 0 for a vanishing initial density.

This system has been studied for instance by [Kazhikhov and Smagulov, 1977] assuming 0 < c ≤ ρ0 ≤ C <
+∞, by [Simon, 1986] assuming 0 ≤ ρ0 ≤ C < +∞ before the renormalization concept introduced by [DiPerna
and Lions, 1989], and then by P.–L. Lions in his book [Lions, 1998] considering µ a continuous, positive function
on [0,+∞). Note that for such system, assuming the same constraint on the initial density ρ0, the uniform
elements of information are the energy

sup
t

∫
Ω
ρ|u|2(t) +

∫ T

0

∫
Ω

2µ(ρ)|D(u)|2=
∫

Ω
ρ0|u0|2+

∫ T

0

∫
Ω
f · u

August 24, 2024 13



and the constraint
0 ≤ ρ ≤ C < +∞

Since the velocity field satisfies the divergence-free constraint, the propagation in time of the initial bounds on
the density is ensured. This is a general property of the transport equation

∂tρ+ u · ∇ρ+ ρdivu = 0

for a vector field for which we have a control of divu in L1
tL
∞
x . The case of divergence-free velocity field is

thus straightforward. When, however, it is not a-priori divergence free and if we do not control divu in L1
tL
∞
x ,

concentration profiles of the density are implying possible blow-up phenomena (ρ tending to +∞).

Thus, since the density remains bounded in this case and we consider divu = 0, the step of demonstrating
weak stability amounts to the following problem:
Assume that a sequence of weak solution of (2.4) satisfies

sup
t

∫
Ω
ρn|un|2(t) +

∫ T

0

∫
Ω

2µ(ρn)|D(un)|2< c < +∞ (2.5)

and the constraint
0 ≤ ρn ≤ C < +∞ (2.6)

uniformly with respect to n with C > 0. More precisely, assume that the sequence {(ρn, un)}n∈N satisfies in a
weak sense the approximated system mass, momentum and divergence free constraint namely the mass equation
in the distribution sense D′((0, T )× Ω):

∂tρn + div(ρnun) = 0, divun = 0, (2.7)

and the momentum equation

〈∂t(ρnun) + div(ρnun ⊗ un)− 2div(µ(ρn)D(un));ϕ〉D′(Ω)×D(Ω) = 0 in D′(0, T ) (2.8)

for all ϕ ∈ D(Ω) such that divϕ = 0.
Then let us prove a nonlinear weak stability property by proving that there exists a subsequence of
{(ρn, un)}n∈N that converges weakly in a sense to be defined to (ρ, u) and that also satisfies (2.8)–(2.7) in
a weak sense as well as the initial data ρ|t=0= ρ0 and (ρu)|t=0= m0. To prove this property, we first focus on
the proof of the uniform estimates (2.5) and (2.6), and in a second step we take the limit.

Let us begin with the proof of (2.5). Firstly, from the energy estimate and assuming µ(ρn) > c > 0 uniformly
in n, we have a bound on D(un) in L2((0, T )×Ω). Next, to conclude a uniform bound of un in L2(0, T ;H1(Ω))
we need an information on 1

|Ω|
∫

Ω un in L2(0, T ) to be able to apply the Poincaré-Wirtinger estimate, namely the
inequality ∥∥∥∥V − 1

|Ω|

∫
Ω
V

∥∥∥∥2

L2(Ω)
≤ C‖∇V ‖2L2(Ω).

By integrating in space the mass equation, we have the conservation of the mass (
∫

Ω ρn = cst > 0). To conclude
on the control of 1

|Ω|
∫

Ω|un|2, using that a2 ≤ 2((a− b)2 + b2), we observe that∣∣∣ 1
|Ω|

∫
Ω
|un|2

∣∣∣2 ≤ 2
∣∣∣un − 1

|Ω|

∫
Ω
|un|2

∣∣∣2 + 2|un|2

and therefore(∫
Ω
ρn

) 1
|Ω|

∫
Ω
|un|2≤ 2

∫
Ω
ρn|un|2+2

∫
Ω
ρn

∣∣∣∣un − 1
|Ω|

∫
Ω
un

∣∣∣∣2 ≤ C + C

∫
Ω

∣∣∣∣un − 1
|Ω|

∫
Ω
un

∣∣∣∣2 ≤ C + C‖∇u‖2L2
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for all t ∈ (0, T ). We conclude with the estimate (2.5).
Let us now prove (2.6). To get the first bound on ρn, it suffices to multiply the mass equation by ρp−1

n to get,
using the divergence free property of un:

∂tρ
p
n + div(ρpnun) = 0

and therefore, integrating in space
d

dt

∫
Ω
ρpn dx = 0

which gives ∫
Ω
ρpn(t, ·) dx =

∫
Ω
ρpn(0, ·) dx.

Letting p tend to +∞ and using that ρ0
n is uniformly bounded by C, we get ρn < C. To prove the lower bound,

it suffices to write the equation satisfied by β(ρn) = min(0, ρn) and show that it is equal to 0 if initially it is the
case. Remark that multiplying the mass equation by β′(ρn) and using that divun = 0, we have

∂tβ(ρn) + div(β(ρn)un) = 0

and therefore integrating in space ∫
Ω
β(ρn)(t) =

∫
Ω
β(ρ0).

Observe now that
∫

Ω β(ρ0) = 0 because initially ρ0 ≥ 0 and therefore β(ρ0) = 0 This implies that for all
t ∈ [0, T ], ∫

Ω
β(ρn)(t) = 0

which implies β(ρn(t)) = 0 a.e. because s 7→ β(s) is a positive function and therefore ρn(t) ≥ 0 a.e.. To justify
mathematically the calculation that provides the equation on β(ρn) with low regularity, one needs to use the
renormalization technique introduced in [DiPerna and Lions, 1989] that we will not detail here.

Thus we state the bounds recovered from the energy estimate and the mass equation:

ρn ∈ L∞((0, T )× Ω), un ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)) uniformly with respect to n.

Let us now study the limit to complete the proof of nonlinear weak stability. This limit concerns the nonlinear
quantities ρnun and ρnun ⊗ un and then the diffusive term µ(ρn)D(un). Let us first focus on the first two. We
will use the fact that if we have a product to be controlled, we will be able to prove the weak stability if we
control time derivative of one of the quantity and control the space derivative of the other in appropriate spaces.
Note that time derivatives are present in ∂tρn and in ∂t(ρnun), which occur in the mass and the momentum
equations, respectively.

To take the limit in ρnun, it suffices to have strong convergence in some space for ρn in duality with the
space where we have the weak convergence for un. More precisely, let us work with the following writing∫ T

0

∫
Ω
ρnun · ∇ϕ =

∫ T

0
〈ρn;un · ∇ϕ〉H−1(Ω)×H1(Ω)

for all ϕ ∈ D((0, T )× Ω) = C∞0 ((0, T )× Ω).
Let us first recall that ∂tρn ∈ L2(0, T ;H−1(Ω)) with ρn ∈ L∞((0, T ) × Ω) and thus is compact in

L2(0, T ;H−1(Ω)) (by using the Aubin-Lions-Simon Lemma B.2 with X0 = L2(Ω), X = X0 = H−1(Ω) and
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p = q = 2). Knowing that un is uniformly bounded in L2(0, T ;H1(Ω)) converging (up to a subsequence) to u
weakly in L2(0, T ;H1(Ω)), we can take the limit in the duality product.

Concerning the term ρnun⊗un, it is interesting to note that we have a control on ∂t(P (ρnun)) ∈ L1(0, T ;W−1,1(Ω))
where P is the Leray-Hopf projector (see [Galdi, 2011]) on the divergence-free space using the momentum equa-
tion and the information coming from the energy (using the Aubin-Lions-Simon Lemma B.2 with X0 = L2(Ω),
X = H−1(Ω), X1 = W−1,1(Ω) and p = q = 2). Now we write∫ T

0

∫
Ω
ρn|un|2=

∫ T

0
〈P (ρnun);un〉H−1(Ω)×H1(Ω)

where P is the Leray-Hopf projector on the divergence-free space. We take the limit in this quantity to conclude
the convergence ∫ T

0

∫
Ω
ρn|un|2→

∫ T

0

∫
Ω
ρ|u|2.

To do so, let us first see how to get the strong convergence of ρn to ρ. We know that ρn → ρ in C([0, T );Lp(Ω))
weakly for all 0 < p < +∞. We introduce the sequence ρ0

n such that ρ0
n → ρ0 in Lp(Ω) for all 0 < p < +∞ and

ρn|t=0= ρ0
n. We remark that using the conservation of the Lp norm then

lim
n→+∞

∫
Ω
|ρn|p(t) = lim

n→+∞

∫
Ω
|ρ0
n|p=

∫
Ω
|ρ0|p=

∫
Ω
|ρ|p(t).

This conclude the strong convergence of ρn to ρ in C([0, T );Lp(Ω)) for all p < +∞. Thus √ρ
n
un weakly

converges in L2((0, T ) × Ω) and, using the convergence of √ρ
n
un in norm L2((0, T ) × Ω), this provides the

strong convergence (weak convergence + convergence in norm =⇒ strong convergence).

The last limit to take involves the viscous quantity µ(ρn)D(un). The strong convergence on ρn is enough.
Using the property of s 7→ µ(s) to get the convergence of µ(ρn) to µ(ρ) in L2((0, T ) × Ω), combined with the
weak limit of D(un) in L2((0, T )× Ω), we get the convergence of µ(ρn)D(un) to µ(ρ)D(u).

Key insight 2. For the incompressible Navier–Stokes equations with non-constant density, we have a uniform
bound of the space derivative of the velocity field in L2(0, T ;H1(Ω)) from the energy identity and we have uniform
bounds of the time derivative of the density from the mass equation using the bounds given by the energy and
L∞ bound on the density. We conclude the stability of the product ρnun by combining these properties and
writing the product as a dual product 〈ρn, un〉H−1(Ω)×H1(Ω) and using Aubin-Lions-Simon Lemma to deduce
some compactness of ρn in L2(0, T ;H−1(Ω)). Importantly, if one sequence does not oscillate in time and the
other does not oscillate in space, we can then hope to have stability on the product. This is also the case if we
want to take the limit in ρnun⊗un. On the one hand, we have a bound of the space derivative of un and on the
other hand we have a bound of the time derivative of ρnun by using the momentum equation and the bounds
deduced from the energy estimates and from the mass equation with divun = 0.

2.2 Compressible flows

Note that usually incompressible and compressible flows are treated separately in the literature. It is however
interesting to realize that (2.4) is a particular case of the more general system

∂tρ+ div(ρu) = 0,

∂t(ρu) + div(ρu⊗ u) +∇p− 2div
(
µ(ρ)

(
D(u)− 1

d
divu Id

))
= ρf,

ρu|t=0= m0, ρ|t=0= ρ0

(2.9)
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where d is the space dimension and p is given by solving a nonlinear constraint

F(divu, |D(u)|, p, ρ) = 0

with an implicit function theorem. Choosing the relation

F(divu, |D(u)|, p, ρ) = divu

yields the non-homogeneous incompressible Navier–Stokes equations (2.4). Alternatively, choosing the following
simple relation

F(divu, |D(u)|, p, ρ) = p− p(ρ) +
(
λ(ρ) + 2µ(ρ)

d

)
divu (2.10)

where the pressure state law s 7→ p(s) is given, yields the barotropic compressible Navier–Stokes equations:
∂tρ+ div(ρu) = 0,

∂t(ρu) + div(ρu⊗ u) +∇p(ρ)− 2div
(
µ(ρ)

(
D(u)− 1

d
divu Id

))
−∇

((
λ(ρ) + 2µ(ρ)

d

)
divu

)
= ρf,

ρu|t=0= m0, ρ|t=0= ρ0.
(2.11)

Here we do not discuss general boundary conditions but consider for simplicity the periodic boundary conditions
Ω = Td with d = 2 or 3. The existence of global weak solutions of such system depends entirely on the as-
sumptions taken for the shear and volume viscosities s 7→ µ(s), s 7→ λ(s) and for the pressure s 7→ p(s). In
the volcanological application presented in Part I [Narbona-Reina et al., 2024] for a gas-liquid mixture, we use
a relation which is similar to (2.10) with F = 0 that links the liquid pressure to the gas pressure and to the
divergence of the liquid velocity (see Subsection 2.3 of that paper).

Barotropic compressible Navier–Stokes equations. We consider the compressible Navier–Stokes equations (2.9)
with the nonlinear constraint p = p(ρ) + (λ(ρ) + 2µ(ρ)/d)divu that yields the system (2.11). As in the incom-
pressible case, we seek to establish the differential equation of energy that is coming from that system (2.11):

d

dt

∫
Ω

(
ρ

2 |u|
2+ρe(ρ)

)
+
∫

Ω
(2µ(ρ)|D(u)|2+λ(ρ)|divu|2) =

∫
Ω
ρf · u. (2.12)

where 1
2 |u|

2 is the kinetic energy and the internal energy e(ρ) is

e(ρ) =
∫ ρ

0
p(s)/s2ds. (2.13)

Equation (2.12) is obtained by taking the scalar product with u of the momentum equation and using the mass
equation to obtain after integrating on the domain Ω

1
2
d

dt

∫
Ω
ρ|u|2+

∫
Ω

(2µ(ρ)|D(u)|2+λ(ρ)|divu|2) +
∫

Ω
∇(p(ρ)) · u =

∫
Ω
ρf · u. (2.14)

As we do not have a divergence-free equation, we use the mass equation to write the convective part as:(
∂t(ρu) + div(ρu⊗ u)

)
· u = ρu · (∂tu+ u · ∇u)

= 1
2ρ(∂t|u|2 + u · ∇|u|2)

= 1
2(∂t(ρ|u|2) + div(ρu|u|2))

August 24, 2024 17



that we integrate to find the first term in (2.12). The main novelty compared to the incompressible flow is that
the term involving the pressure p(ρ) does not vanish in the weak formulation; it yields the term

∫
Ω u · ∇p(ρ) in

the energy calculation. To treat such a term, we use the mass equation to deduce that

∂t(ρe(ρ)) + div(ρe(ρ)u) + p(ρ)divu = 0

with e given by (2.13). Integrating this equality in space and adding the result to the previous relation yields the
energy balance (2.12).

2.2.1 Constant viscosities

We focus again here on the multi-dimensional case (d = 2 or 3) with periodic boundary conditions for simplicity.
In the case where µ and λ are constant with λ+ 2µ/d > 0, the existence of global weak solutions of (2.11) has
been proved first by [Lions, 1993] and [Lions, 1998] with a pressure law p(s) = asγ for γ ≥ 3d/(d + 2), then
by [Feireisl et al., 2001] for γ > d/2. By constructing approximate system and limit and by using the stability
process, [Feireisl, 2002] proved the existence of global weak solutions more generally with a pressure law satisfying
p ∈ C2([0,+∞)) with p(0) = 0 and

aργ−1 − b ≤ p′(ρ) ≤ a−1ργ−1 + b

where a, b > 0 and γ > d/2. More recently, an important result concerning the existence of global solutions has
been obtained by [Plotnikov and Weigant, 2015] when d = 2 with a pressure state law p(ρ) = aρd/2 = aρ.

Remark 2.1. The lower value d/2 is linked to the equi-integrability property that guarantees the weak convergence
of ρnun ⊗ un in L1((0, T ) × Ω), which means no concentration phenomena. This can be seen by first recalling
that

ρnun ⊗ un ∈ L∞(0, T ;L1(Ω))

by using the energy estimate. In addition, we also know from the energy estimates that ρn ∈ L∞(0, T ;Lγ(Ω))
from the pressure information and un ⊗ un ∈ L1(0, T ;Ld/(d−2)(Ω)) from the viscous term. Therefore

ρnun ⊗ un ∈ L1(0, T ;Lε(Ω))

for some ε > 0. By interpolation we get the equi-integrability by using that the quantity is s-integrable for
s > 1. Note that similar equi-integrabilty estimates in the constant viscosities case if γ < d/2 have been
found by [Plotnikov, 2023] and by [Mellet and Vasseur, 2007] in the density dependent case (see later on) when
considering the quantity ρn(1 + |un|2) log(1 + |un|2).

Note that in all these results, the pressure law is at least an increasing function after a fixed value. Recently
this monotony assumption after a fixed value has been removed by [Bresch and Jabin, 2018a], who proved the
global existence of weak solutions for non monotone pressure p ∈ C([0,+∞)) with p locally Lipschitz on (0,+∞)
with p(0) = 0 satisfying

C−1ργ − C ≤ p(ρ) ≤ Cργ + C (2.15a)
and

|p′(s)|≤ psγ−1 (2.15b)
with p > 0 and γ ≥ 2d/(d + 2). This result has been improved by [Bresch et al., 2021] to take into account
pressure terms of the form p(ρ, t, x) (i.e. a pressure law depending on ρ but also on space and time), which is a
prerequisite to treat the case of heat-conducting, compressible Navier–Stokes equations where the pressure law
p depends on the density ρ and the temperature θ, such as the truncated virial pressure law. Note that such
pressure p(ρ, t, x) is obtained when assuming that the temperature is given by an iterative constructing scheme.
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This case of compressible Navier–Stokes system with heat conductivity and a truncated virial pressure law has
been recently considered in [Bresch et al., 2023b] to prove global existence of weak solutions solving by the way
a mathematical problem which remained open for a long time.

Let us focus on the case of a non monotone pressure satisfying (2.15) to prove the existence of global
weak solutions of the system (2.11). The following quantity, that we will call effective flux,

F = (λ+ 2µ)divu− p(ρ)

plays a crucial role in all these proofs. There is a kind of weak compactness property on this quantity, which
provides some regularization in space on it. If we look at the momentum equation

∂t(ρu) + div(ρu⊗ u) +∇p(ρ)− µ∆u− (λ+ µ)∇divu = ρf

and express the divergence of it, we can write the effective flux property

−∆F = divG, G = −∂t(ρu)− div(ρu⊗ u) + ρf (2.16)

This property is essential to obtain compactness properties on the density and we will explain it later on a simpler
system.

Key insight 3. When the shear and bulk viscosities are constant, the effective flux F = (λ + 2µ)divu − p(ρ)
satisfies the elliptic equation (2.16), which allows one to replace divu by p(ρ)/(λ + 2µ) in some sense when
looking for compactness in space on {ρn}n∈N.

As in the incompressible case, we want to take the limit in the weak form of the Navier–Stokes equations.
To do so, we assume that the pressure satisfies (2.15) and we introduce a sequence {(ρn, un)}n∈N such that

< ∂tρn + div(ρnun), ϕ >D′×D= 0

and
< ∂t(ρnun) + div(ρnun ⊗ un)− µ∆un − (λ+ µ)∇divun +∇p(ρn)− ρnf, ϕ >D′×D= 0,

for all ϕ ∈ D where D = {ϕ : ϕ ∈ C∞(Ω)}. The equivalent property on the effective flux may be written for

Fn = (λ+ 2µ)divun − p(ρn)

as
−∆Fn = divGn, Gn = −∂t(ρnun)− div(ρun ⊗ un) + ρnf. (2.17)

Using the same reasoning than in the incompressible case, we can use the Aubin-Lions-Simon Lemma (Lemma
B.2) to take the limit in the nonlinear quantities ρnun and ρnun ⊗ un. We only have to look to what space
∂tρn and ∂t(ρnun) belong to use the bounds deduced from the energy estimates. More precisely, we have
∂tρn ∈ L1(0, T ;W−1,1(Ω)) and ∂t(ρnun) ∈ L1(0, T ;W−1,1(Ω)). For the compactness related to ρn, it suffices
to choose B = H−1(Ω), X = Lγ and Y = W−1,1(Ω) in Aubin-Lions-Simon Lemma (note that X is compactly
embedded in B since γ > 6/5). This is obtained by duality since H1(Ω) is compactly embedded in Lr(Ω) for
r < 6 in space dimension less or equal to 3. For the compactness related to un, it suffices to choose B = H−1(Ω),
X = Lr(Ω) with r = 6γ/(6 + γ) and Y = W−1,1(Ω) (note that X is compactly embedded in B since r > 6/5).
To take the limit, we start by writing∫ T

0

∫
Ω
ρnun · ψ = 〈ρn;un · ψ〉L2(0,T ;H−1(Ω))×L2(0,T ;H1(Ω))
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for all ψ ∈ D((0, T )× Ω) and∫ T

0

∫
Ω
ρnvnwnψ = 〈ρnvn;wnψ〉L2(0,T ;H−1(Ω))×L2(0,T ;H1(Ω))

for vn and wn components of un and ψ ∈ D((0, T )× Ω). Then we can take the limit in the system to obtain

∂tρ+ div(ρu) = 0

∂t(ρu) + div(ρu⊗ u)− µ∆u− (λ+ µ)∇(divu) +∇p(ρ) = ρf

where p(ρ) is the limit of p(ρn) in a sense to be precised. If we are looking at nonlinear weak stability, the main
difficulty is to prove that

p(ρ) = p(ρ). (2.18)
If we want to describe a physical situation where possible density oscillations appear, then we have to characterize
the limit. This is the subject of Section 3, where the derivation of two-phase averaged systems is explained.

Back to demonstrating nonlinear weak stability, we note that the pressure state law s 7→ p(s) is a nonlinear
function and we only have Lebesgue information on {ρn}n∈N. We have no control on the space derivative at all but
we have a control on the time derivative ∂tρn thanks to the mass equation. We need thus to use a more complex
tool to deduce compactness in space for the density sequence. The proof of (2.18) is made of two steps. The first
one [S1] is to obtain better integrability on the density, and the second one [S2] is to really identify p(ρ) with p(ρ).

Proof of [S1]. The extra integrability on the density provides equi-integrability of the pressure and therefore
the absence of concentration phenomena. It has been proved by [Lions, 1998] and [Feireisl et al., 2001] that it
is possible to get the following extra integrability on the density:∫ T

0

∫
Ω
ργ+ω
n dxdy ≤ C < +∞

where
ω = 2γ

d
− 1,

and therefore, since p(ρn) ∈ L∞(0, T ;L1(Ω)) and thanks to (2.15),

p(ρ) ∈ L1+ε((0, T )× Ω) for some ε > 0 if γ > d/2.

Proof of [S2]. Let us identify that p(ρ) = p(ρ). We also have the property on the effective flux for this limit
equation because we can write

−∆F̄ = divG with F̄ = (λ+ 2µ)divu− p(ρ) (2.19)

and G is the same as in (2.16). Since p is a nonlinear function of ρ, we need to prove the strong convergence
ρn → ρ in L1((0, T )×Ω). To do so, we will use Lemma B.1 that helps to get compactness if we are able to com-
mute the weak convergence with strictly convex functions. To apply this lemma, we must prove its hypothesis for
f(s) = s log s. As this is not an easy development, we refer the reader to [Bresch and Jabin, 2018a] for its details.

However, for completeness, we explain the procedure of steps [S1] and [S2] for a simpler system with a mono-
tone pressure. We then give some insights of the more complex case of non-monotone pressure following [Bresch
and Jabin, 2018a].
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We consider the quasi-static Stokes equations with the pressure law p(ρ) = ργ :
∂tρn + div(ρnun) = 0,
− µ∆un − (λ+ µ)∇divun +∇ργn = g,

ρn|t=0= ρ0
n

(2.20)

with γ > 1 and for a given function g ∈ L2γ((0, T ) × Ω) and an initial condition ρ0
n which is assumed to be

compact in space. Note that (2.15) is exactly satisfied.

Proof of [S1] with (2.20). This is how to get an extra estimate on the density, and hence on the pressure.
The equivalent energy estimate of (2.12) is for such a system:

d

dt

∫
Ω
ρne(ρn) +

∫
Ω

(µ|∇un|2+(λ+ µ)|divun|2) =
∫

Ω
g · u

where e(ρn) = ργ−1
n /(γ − 1). As we assumed g in L2γ((0, T ) × Ω), we have an energy inequality control by

Cauchy-Schwarz. Taking the divergence of the momentum equation, we get again the property on the effective
flux, which is now written as

−∆Fn = divg with Fn = (λ+ 2µ)divun − ργn, (2.21)

and which may also be written as
−(λ+ 2µ)divun + ργn = ∆−1divg.

The advantage of the relation above compared to the more complex case (2.19) is that here g is a given function
and it does not depend on ρ, unlike un and G in (2.19).

We multiply the result by ργn and integrate in space to get∫
Ω
ρ2γ
n = (λ+ 2µ)

∫
Ω
ργndivun +

∫
Ω
ργn∆−1divg.

By Cauchy-Schwarz, we conclude that ρn ∈ L2γ((0, T ) × Ω) uniformly in n if ∆−1divg ∈ L2γ((0, T ) × Ω)
because due to the energy we know that divun ∈ L2γ((0, T )×Ω) uniformly in n. Note that we obtain a gain of
integrability for the quasi-static compressible Stokes system.

The gain of integrability for the full compressible Navier–Stokes equations follows the same lines but the
result is of lower order because of the quantity coming from the total time derivative ∂t(ρnun) + div(ρnun⊗un)
in G has to be treated. This calculation has been done by [Lions, 1998] and [Feireisl et al., 2001]. Furthermore,
recalling that the compressible Navier–Stokes system is an hyperbolic/parabolic system, new findings are needed
to treat the density because one cannot hope to use the Aubin-Lions-Simon Lemma for a nonlinear function of
the density. In the work by [Lions, 1998] and [Feireisl et al., 2001] the authors present a tool to show this strong
convergence, that is, the property of commutation between strictly convex function and weak convergence. For
that, a monotonicity at least after a fixed value is needed for the pressure state law.

Proof of [S2]-(2.20). This second step consists in proving the hypothesis of Lemma B.1. We need to prove
the weak convergence of the function f(ρn) = ρn log ρn in L1((0, T )× Ω), that is, we must prove∫

Ω
ρ log ρ = lim

n

∫
Ω
ρn log ρn =

∫
Ω
ρ log ρ. (2.22)
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Recall that the following mass equations for ρ and ρn are, respectively:

∂tρ+ div(ρu) = 0

∂tρn + div(ρnun) = 0

Applying the renormalization procedure −we divide each equation by its variable (ρ and ρn, respectively) and
then combine it with the resulting equation− yields the following equations

∂t(ρ log ρ) + div(ρu log ρ) + ρdivu = 0 (2.23)

and
∂t(ρn log ρn) + div(ρnun log ρn) + ρndivun = 0

and, taking the limit,
∂t(ρ log ρ) + div(ρ log ρu) + ρdivu = 0 (2.24)

where again f(v) denotes the weak limit of f(vn). Subtracting (2.23) and (2.24) and integrating in space and
time yields ∫

Ω
(ρ log ρ− ρ log ρ)(t) +

∫ T

0

∫
Ω

(ρdivu− ρdivu) =
∫

Ω
(ρ0 log ρ0 − ρ0 log ρ0).

As for the incompressible case, we introduce the sequence {ρ0
n}n∈N such that ρ0

n → ρ0 in Lp(Ω) for all 0 < p <
+∞ and ρn|t=0= ρ0

n. Let us assume compactness on the sequence ρ0
n (see Remark 2.2 below), then∫

Ω
(ρ0 log ρ0 − ρ0 log ρ0) = 0

and consequently ∫
Ω

(ρ log ρ− ρ log ρ)(t) = −
∫ T

0

∫
Ω

(ρdivu− ρdivu). (2.25)

Applying Lemma B.2 to our case for the weak lower semi-continuity of the convex function Φ(ρ) = ρ log ρ, we
know that ∫

Ω
ρ log ρ(t) ≤

∫
Ω
ρ log ρ(t). (2.26)

Then, in order to get (2.22), it suffices to prove∫ T

0

∫
Ω

(ρdivu− ρdivu) ≤ 0 (2.27)

because in this case, thanks to (2.25), we get∫
Ω
ρ log ρ(t) ≥

∫
Ω
ρ log ρ(t),

which, together with (2.26), implies that the equality
∫

Ω ρ log ρ(t) =
∫

Ω ρ log ρ(t) is ensured for all time t, and
hence we have (2.22). Therefore, under (2.27), we have that (2.22) is proven and we are able to apply Lemma
B.1 to get the compactness in space in L1((0, T ) × Ω) of the density, which gives us the convergence on the
pressure law, thus ending the proof of [S2]-(2.20).

The remaining task is to prove (2.27). To do so, we use the property of the effective flux (2.21), which
implies for the limit F = (λ+ 2µ)divu− p(ρ) the following equation

−∆F = divg (2.28)
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Therefore for all τ ∈ (0, T ) and φ ∈ D(0, τ), we get

(2.29)lim
n→+∞

∫ τ

0

∫
Ω
φ(ρn p(ρn)− (λ+ 2µ)ρndivun) =

∫ τ

0

∫
Ω
φ(ρ p(ρ)− (λ+ 2µ)ρdivu).

This property is obtained by testing the equation (2.21) by ϕnφ with a test function ϕn = ∆−1(1Ωρn) and testing
(2.28) by ϕφ with a test function ϕ = ∆−1(1Ωρ), and subtracting the results. We use the relationship (2.29),
which in some sense says that we can exchange div u by p(ρ)/(λ + 2µ). Then, proving (2.27) is equivalent to
prove that we have the right sign on ∫ T

0

∫
Ω

(
ρ p(ρ)− ρp(ρ)

)
≤ 0. (2.30)

This property is ensured by Lemma B.4 for a pressure state law p that is a non-decreasing function, such as in
our example p(ρ) = ργ . This completes the proof for the quasi-static Stokes (2.20) equations with the pressure
law p(ρ) = ργ .

Remark 2.2. Importantly, we assume here compactness on the initial density sequence {ρ0
n}n∈N. There are

physical situations in which this is not the case, such as if we want an averaged system made of several compressible
phases. We will discuss this issue when deriving a multiphase (averaged) system starting from a compressible
system and high-oscillating data. If oscillations occur on the initial density, then p(ρ) is not p(ρ) and the result
will depend on the measure family associated to the initial density (see Section 4 for a concrete example).

Key insight 4. For the compressible Navier–Stokes equations with constant viscosities and a non-decreasing
pressure state law that depends on the density, we conclude on the stability of ρnun and ρnun ⊗ un in a similar
way than for the density-dependent incompressible Navier–Stokes equations. The main remaining difficulty is to
show that p(ρn) converges in some sense to p(ρ). To to so, we know that

∂tρn + div(ρnun) = 0, ∂tρ+ div(ρu) = 0.

We also have
∂t(ρnun) + div(ρnun ⊗ un)− µ∆un − (λ+ 2µ)∇divun +∇p(ρn) = 0,

and
∂t(ρu) + div(ρu⊗ u)− µ∆u− (λ+ 2µ)∇divu+∇p(ρ) = 0,

with p(ρ) the weak limit of p(ρn). We can thus show first that p(ρn) ∈ Ls((0, T ) × Ω) uniformly with s > 1.
The main difficulty lies in proving that p(ρ) = p(ρ). This is done by using a compactness Lemma involving
commutation between a weak limit and a strictly convex function that is defined by working with the equations
written above. We then use an important property on the effective flux showing that we control the space
derivatives of (λ+ 2µ)divun− p(ρn), which, formally, means that div un behaves as p(ρn)/(λ+ 2µ). The proof
can be concluded only if the pressure state law s 7→ p(s) is non decreasing. To design appropriate numerical
schemes, it is important that the approximate system satisfies at the discrete level properties such as that on the
effective flux. For compressible Navier–Stokes equations, this has been for instance studied by [Gallouët, 2018].

Insights into the non-monotone pressure case. When the pressure law is non monotone and satisfies
(2.15), we are not able to prove (2.30) because Lemma B.4 cannot be used, which in turn causes us to fail
proving (2.27) and, consequently, [S2]. To address this complex case, a new tool has been introduced by [Bresch
and Jabin, 2018a]. It is based on a non-local tool with the use of appropriate dynamical weights: a semi-norm
that includes critical regularity issues for the compressible Navier–Stokes system in bounded domains with values
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of the semi-norm in different places of the domain.

The non-monotone pressure case is an open problem in general but it is possible to address it using this
non-local tool when the diffusion terms are defined as follows

D = −div(A(t)∇u)− (µ+ λ)∇divu (2.31)

where
A(t) = µId + (δA)(t)

with µ > 0 and 2µ/d+ λ− ‖δA‖L∞> 0. Assuming

γ > d/2
(

(1 + 1/d) +
√

1 + 1/d2
)
,

there exists C? such that if
‖δA‖L∞≤ C?(2µ+ λ)

there exists global weak solution of the system for the compressible Navier–Stokes equations with the diffusion
given by (2.31) and p(ρ) = aργ with γ ≥ 3d/(d+ 2).

The study of [Bresch and Jabin, 2018a] also treats the case where the viscosity may be not the same in different
directions, that is, for anisotropic materials. This extension is possible because this case entails the same
problem as that of non monotone pressure, so it can be addressed with the same tools. To highlight the key
points of the [Bresch and Jabin, 2018a] result, let us illustrate the anisotropic case by considering the following
compressible momentum equation

∂t(ρu) + div(ρu⊗ u)− µx∆xu− µz∂2
zu+∇p(ρ) = 0,

where µx, µz are the viscosities in the respective directions. If we apply the divergence on this equation, we get
again the effective flux property

−∆µFµ = div(∂t(ρu) + div(ρu⊗ u)) with Fµ = divu+ (∆µ)−1∆p(ρ),

where we denoted the operator ∆µf = µx∆xf + µz∂
2
zf. Therefore, div u is linked to the pressure quantity in a

non-local fashion. If we follow the development presented before, we find an issue in step [S2]; we are not able
to provide a sign to the quantity ∫ T

0

∫
Ω

(
ρ Ap(ρ)− ρAp(ρ)

)
with A = (∆µ)−1∆ which is a zero order operator. Note that the sign of this quantity coincides with the sign
of
∫ T

0
∫

Ω(ρdivu − ρdivu) in (2.27) thanks to the effective flux property. Even if the pressure is monotone, this
information is lost for Ap(ρ), leaving us with the same problem as in the case a non-monotone pressure. This is
a non-local quantity and this explains in some sense why the non-local method introduced by [Bresch and Jabin,
2018a] has also been able to treat viscous anisotropy in the system.

To treat this viscous anisotropy, the authors adapted the non-local compactness tool given by Lemma B.3.
The line of reasoning is that if we were able to apply Lemma B.3, we would get the compactness of ρn in
L1((0, T ) × Ω) and we could conclude [S2]. For this to work, we must prove the hypothesis in Lemma B.3 for
p = 1. We already have ∂tρh ∈ L1(0, T ;W−1,1(Ω)), which is one of the required hypothesis. We thus only have
to prove that

Rh0 = lim sup
n

( 1
‖Kh0‖L1

∫
Ω2
Kh0(x− y)|ρn(t, x)− ρn(t, y)| dxdy

)
→ 0 as h→ 0 (2.32)
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for Kh0 a Kernel satisfying some particular hypothesis.

To prove (2.32), let us first show that the propagation of the intermediate regularity (namely non regularity
on ρ but regularity on u) given in Lemma B.3 is satisfied when the velocity field is regular and when we have a
control on its derivative, that is, if divu ∈ L1(0, T ;L∞(Ω)) then the density is propagated regularly. However,
from the energy of the system we only have u ∈ L2(0, T ;H1(Ω)), so div u may blow up (i.e. divu may tend
to +∞, thus creating a concentration), which leaves us unable to prove this requirement of Lemma B.3. This
obstacle can be lifted by looking at how the quantity

∫
Ω2 Kh0(x − y)|ρk(t, x) − ρk(t, y)| dxdy is propagated in

time, where Kh0 is a Kernel defined later on. For simplicity, we use the shorthand gxk = gk(t, x) and gyk = gk(t, y)
for any function gk. We start with the equations

∂tρ
x
k + divx(ρxkuxk) = 0

and
∂tρ

y
k + divy(ρyku

y
k) = 0.

Subtracting these two equations and using the renormalization technique, we can write

∂t|ρxk−ρ
y
k|+divx(uxk|ρxk−ρ

y
k|)+divy(uyk|ρ

x
k−ρ

y
k|) = 1

2(divxuxk+divyuyk)|ρ
x
k−ρ

y
k|−

1
2(divxuxk−divyuyk)(ρ

x
k+ρyk)sk

where sk = sign(ρxk − ρ
y
k). We now multiply this equation by Kh0(x− y) and integrate it with respect to x and

y over Ω2. Defining Rh0 =
∫

Ω2
(Kh0(x− y)|ρxk − ρ

y
k|) dxdy, we get

∂tRh0 =
∫

Ω2
∇Kh0(x− y)(uxk − u

y
k)|ρ

x
k − ρ

y
k|

−
∫

Ω2
Kh0(x− y)(divxuxk − divyuyk)ρ

x
ksk +

∫
Ω2
Kh0(x− y)|ρxk − ρ

y
k|divxuxk.

This gives the extra quantities we have to bound to be able to use a Grönwall Lemma. Such expression shows
that the right-hand side is not simply comparable to Rh0 without assuming some L∞ bounds in space on divuk
(for the last two terms) and at least (for the first term) on M(|∇uk|), which is the maximal function of |∇uk|.
The maximal function is defined as follows

M(f)(x) = sup
r≤1

1
|B(0, r)|

∫
B(0,r)

f(x+ z) dz.

Note that
∇Kh0(x− y)|uxk − u

y
k|≤ C Kh0(x− y)(D|x−y|u(x) +D|x−y|u(y))

where the square function is defined by

Dhu(x) = 1
h

∫
|z|≤h

∇u(x+ z)
|z|d−1 dz.

Then, since we do not have enough regularity on divu, we must find other way to demonstrate that the hy-
pothesis (2.32) is valid to apply Lemma B.3. In next lines we show how this problem has been tackled in [Bresch
and Jabin, 2018a]. The main idea is to introduce dynamical weights wn in Rh0 considering

Rh0,w = lim sup
n

( 1
‖Kh0‖L1

∫
Ω2
Kh0(x− y)|ρxn − ρyn|(wxn + wyn) dxdy

)
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where the kernel Kh0 is defined by
Kh0 =

∫ +∞

h0
Kh

dh

h

with Kh as in Lemma B.3. Let us see how this quantity help us to prove that Rh0 → 0 as h0 → 0.
The dynamical weight wn is assumed to satisfy the following equation

∂twn + uk · ∇wn + λPnwn = 0, wn|t=0= 1 (2.33)

with λ a parameter which is chosen sufficiently large and Pn ≥ 0 an appropriate damping quantity linked to the
unknown ρn and un. The dynamical weights can be viewed as passive tracers in the flow that track the regularity
on divun,∇un and ργn. To ensure this behavior for compressible Navier–Stokes equations, the damping term Pn
is chosen as:

Pn = |divun|+M |∇un|+ργn.

Note that a comparison between the square function and the maximal function is used namely we know that
there exists C > 0, for any u ∈W 1,p(Td) with p ≤ 1 such that

Dhu(x) ≤ CM(|∇u|)(x).

First, as Pn is a damping term, since we start with wn|t=0= 1, this ensures that

0 ≤ wn ≤ 1.

Assuming Pnρn ∈ L1((0, T ) × Ω) uniformly, then dividing the equation (2.33) by wn, multiplying by ρn and
integrating we conclude that ∫

Ω
ρn|logwn|≤ C < +∞ (2.34)

uniformly with respect to n. These properties will be used to get rid of the weights. Note that it is possible to
consider less rigid assumptions on Pn by relaxing the property on wn but we choose the stronger assumption to
simplify the calculations in this sketch of the proof. This is how to get rid of the weights and stay convergent to
zero as h0 → 0. We decompose

Ω2
η = {(x, y) : wxn ≥ η or wyn ≥ η}

and
(Ω2

η)c = {(x, y) : wxn ≤ η and wyn ≤ η}.

The integral of Rh0 in (2.32) can thus be decomposed in Ω2
η and (Ω2

η)c. We then use the previous properties
related to wn. We look first at the integral corresponding to Ω2

η,

(Rh0)1 = 1
‖Kh0‖L1

∫
Ω2
η

Kh0(x− y)|ρxn − ρyn| dxdy

≤ 1
‖Kh0‖L1

∫
Ω2
η

Kh0(x− y)|ρxn − ρyn|
wxn
η
dxdy

≤ 1
‖Kh0‖L1

∫
Ω2
η

Kh0(x− y)|ρxn − ρyn|
wxn + wyn

η
dxdy

≤ Rh0,w

η
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The integral corresponding to (Ω2
η)c yields

(Rh0)2 = 1
‖Kh0‖L1

∫
(Ω2
η)c
Kh0(x− y)|ρxn − ρyn| dxdy

≤ 1
‖Kh0‖L1

∫
(Ω2
η)c
Kh0(x− y)ρxn

|logwxn|
|log η| dxdy

≤ 1
|log η|

∫
(Ω2
η)c
ρxn|logwxn| dxdy

≤ C

|log η|

where in the last inequality we used (2.34). Thus Rh0 = (Rh0)1 + (Rh0)2 satisfies the following relation

Rh0 ≤ C
(
Rh0,w

η
+ 1
|log η|

)
where the weights are only present in Rh0,w. To get the convergence of Rh0 to zero when h0 → 0, it suffices to
choose η in terms of h0 such that η converges to zero slower than Rh0,w does.

The flexibility of this compactness tool is that we have to prove a convergence to 0 when h0 → 0. Thus we
can start from the quantity Rh0,w with the appropriate weights to prove convergence to zero and thus enabling
us to apply Lemma B.3. We then prove some properties on the weight to show that we can get rid of them while
conserving the convergence to zero.

Remark 2.3. It seems impossible to address the case of density dependent viscosities with such mathematical
tools. It necessitates another set of tools, which is the subject of the next section.

Key insight 5. If the pressure state law is not monotone or anisotropic viscosities are involved, the tool related to
a strictly convex function to prove compactness on ρn seems to be inappropriate. To conclude stability, the idea
is to introduce a quantitative non-local tool composed of dynamical weights that act as passive tracer monitoring
the behavior of quantities of interest such as div u. To find such weights we have to solve a PDE with two parts:
a transport quantity (in some sense they follow the flow) and a damping quantity to be chosen depending on the
problem (in some sense this quantity will cause the weights to vanish if the quantity of interest blows up into a
concentration) because the final step will be to get rid of the weights to conclude compactness. With this tool it
is possible that divergent behavior of ργ , M(|∇un|), and |divun| occurs, but such concentrations are restricted
to small sets. Such a compactness tool is helpful when dealing with PDEs with non-local quantities.

2.2.2 Density dependent viscosities

If one assumes that the viscosity depends on the density, the property on the effective flux we described previous
Section cannot be obtained. This is because taking the divergence of the momentum equation yields a commu-
tator related to the density. The density is not a priori regular and even the energy estimate does not provide
bounds on ∇ρ so we cannot bound the commutator. The reader interested in the compressible Navier–Stokes
equations with density-dependent viscosities may consult F. Rousset’s presentation (in French) at the Bourbaki
seminar [Rousset, 2017] as well as [Bresch et al., 2018] and [Bresch and Jabin, 2020].
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We consider the following system
∂tρ+ div(ρu) = 0,
∂t(ρu) + div(ρu⊗ u)− 2div(µ(ρ)D(u))−∇(λ(ρ)divu) +∇p(ρ) = 0,
ρu|t=0= m0, ρ|t=0= ρ0

(2.35)

with s 7→ p(s) = asγ where a > 0 and γ > 1 are given constants. The energy conservation reads

d

dt

∫
Ω

(1
2ρ|u|

2+ρe(ρ)
)

+ 2
∫

Ω
µ(ρ)

∣∣∣∣D(u)− 1
d

divu Id
∣∣∣∣2 +

∫
Ω

(
λ(ρ) + 2µ(ρ)

d

)
|divu|2= 0 (2.36)

where e(ρ) =
∫ ρ

0 p(s)/s2ds. The case of density-dependent viscosities has attracted attention since the discovery
by D. Bresch and B. Desjardins in [Bresch and Desjardins, 2004] of a new mathematical entropy (now called BD
entropy) in dimension 2 or 3 that provides an a priori estimate on the gradient of a density function. Let us first
assume a relationship between shear viscosity µ(ρ) and bulk viscosity λ(ρ):

λ(ρ) = 2(µ′(ρ)ρ− µ(ρ)). (2.37)

This is how the BD entropy is formulated. To get such an extra estimate on ∇ρ, one needs to recognize that if
ρ satisfies the mass equation

∂tρ+ div(ρu) = 0

then µ(ρ) satisfies the equation

2∂tµ(ρ) + 2div(µ(ρ)u) + λ(ρ)divu = 0

and therefore taking the gradient of this relation yields

2∂t(∇(µ(ρ))) + 2div((∇µ(ρ))⊗ u) + 2div(µ(ρ)∇tu) +∇(λ(ρ)divu) = 0.

Denoting ϕ′(ρ) = µ′(ρ)/ρ and adding the result to the momentum equation in (2.35) we get

∂t(ρ(u+ 2∇ϕ(ρ))) + div(ρ(u+ 2∇ϕ(ρ))⊗ u)− 2div(µ(ρ)A(u)) +∇p(ρ) = 0 (2.38)

where A(u) = (∇u−∇tu)/2. Taking the scalar product of this identity with u+ 2∇ϕ(ρ) and integrating with
respect to the space variable, we get

d

dt

∫
Ω

(ρ|u+ 2∇ϕ|2+ρe(ρ)) + 2
∫

Ω
µ(ρ)|A(u)|2+2

∫
Ω
p′(ρ)ϕ′(ρ) |∇ρ|

2

ρ
= 0. (2.39)

This is the new conserved quantity that has been identified by [Bresch and Desjardins, 2004] and which is now
called the BD entropy. This identity is complementary to the energy identity (2.36). It will provide uniform bounds
on the gradient of the density sequence {ρn}n∈N and a bound on

√
µ(ρn)A(un) uniformly in L2((0, T )× Ω).

Remark 2.4 (a degenerate Parabolic/Hyperbolic system). It is important to specify which types of shear viscosity
µ(ρ) and bulk viscosity λ(ρ) are appropriate because to get the uniform bounds we have to ensure that

λ(ρ) = 2(µ′(ρ)ρ− µ(ρ)), µ(ρ) ≥ 0, λ(ρ) + 2µ(ρ)/d ≥ εµ(ρ) for some ε > 0.

The second and third conditions ensure the control of the derivatives in the energy relation (2.36). Assuming
µ(ρ) = ρα, for α a constant, this implies that λ(ρ) = 2(α− 1)ρα and therefore we need that

2(α− 1) + 2/d > ε > 0.
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This implies that α > 1− 1/d > 0 and therefore the viscosity µ(ρ) vanishes when ρ vanishes. Note that a more
general calculus can be made by replacing λ(ρ) by 2(µ′(ρ)ρ− µ(ρ)) in the inequality

λ(ρ) + 2µ(ρ)/d ≥ εµ(ρ)

to obtain
µ′(ρ)
µ(ρ) ≥

d− 1 + ε

ρd
for all ρ > 0

and therefore for ρ ≤ 1, we get
µ(ρ) ≤ Cρ(d−1+ε)/d.

This indicates that we have to treat a degenerate hyperbolic/parabolic system (i.e. a system where the shear vis-
cosity vanishes when ρ vanishes). There is also an additional constraint in such a system because the velocity field
is not necessarily defined when the density vanishes. This requires to understand what are the appropriate quanti-
ties to involve into the calculation. Note that the dual formulation to take the limit in ρnun and ρnun⊗un cannot
be used here (unlike in the case of constant viscosities) because we loose the estimates un ∈ L2(0, T ;H1(Ω)).

Now equipped with the concept of BD entropy, let us focus on the nonlinear weak stability. For a sequence
{ρn, un}n∈N satisfying (2.35) in a distribution sense, we start with the two uniform bounds from the energy and
the BD entropy,

sup
t∈(0,T )

1
2

∫
Ω

(ρn|un|2+ρne(ρn))(t) + 2
∫ T

0

∫
Ω
µ(ρn)|D(un)− 1

d
divun Id|2

+
∫ T

0

∫
Ω

(λ(ρn) + µ(ρn)
ρn

)|divun|2≤ c < +∞
(2.40)

and

sup
t∈(0,T )

∫
Ω

(ρn|un + 2∇ϕ(ρn)|2+ρne(ρn))(t) + 2
∫ T

0

∫
Ω
µ(ρn)|A(un)|2

+ 2
∫ T

0

∫
Ω
p′(ρn)ϕ′(ρn) |∇ρn|

2

ρn
≤ c < +∞.

(2.41)

The reasoning step is to prove the nonlinear weak stability by knowing that we obtain the control of space
derivatives for the density. This allows to take the limit in a simple way for the pressure p(ρn) using the Aubin-
Lions-Simon Lemma: as we did in the previous sections, we have the control on the space derivative of a function
of the density and the control on the time derivative of the density using the mass equation. The difficulty lies as
usual on the terms involving the velocity, namely ρnun, ρnun⊗ un and µ(ρn)D(un), λ(ρn)divun. Since this is a
complex task, we focus on a didactic example with given viscosities by considering the simple case µ(ρn) = ρn
that gives λ(ρn) = 2(µ′(ρn)ρn−µ(ρn)) = 0. Our task is to prove the controls of ρnun, ρnun⊗un and ρnD(un).
Taking first the term ρnun, we note that

∇(ρnun) = √ρn∇
(
un
√
ρn
)

+√ρnun · ∇
√
ρn

and therefore it belongs to L2(0, T ;L2(Ω)) uniformly. Since ρnun ∈ L∞(0, T ;L1(Ω)), we get the following
control: ρnun ∈ L2(0, T ;W 1,1(Ω)). Looking at the mass balance and using the estimates, we can prove that
∂t(ρnun) is bounded in L2(0, T ;W−2,4/3(Ω)) uniformly. Therefore, we get from the Aubin-Lions-Simon Lemma
the compactness of ρnun in L2(0, T ;Lp(Ω)) for all p ∈ [1, 3/2]. We will see below how to get the convergence
on ρnun ⊗ un by showing that √ρ

n
un →

√
ρu in L2((0, T )× Ω).
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Focusing now on the term ρnD(un), since the velocity field alone is not so easily defined, it is better to write
the momentum equation in a more convenient form. Noting that

ρn∂iun = ∂i(ρnun)− 2√ρnun∂i(
√
ρn),

we use it in the term div(ρnD(un)) to write the momentum equation as:

∂t(ρnun)+div(ρnun⊗un)−∆(ρnun)−∇div(ρnun)+2div(∇√ρn⊗
√
ρnun)+2div(√ρnun⊗∇

√
ρn)+∇p(ρn) = 0.

Due to the nonlinearity, we see that the most important issue is to be able to show that √ρ
n
un →

√
ρu in

L2((0, T )×Ω) strongly because of the weak convergence in L2((0, T )×Ω) for the complementary quantity √ρn.
In other words, one finds that √ρn ∈ L2((0, T );H1(Ω)) by using the estimates given by (2.40) and (2.41) with
ϕ(ρn) = log ρn and the mass conservation. The simplest way to prove such a convergence is to be able to prove
the equi-integrability of |un|2∈ L1

ρn((0, T ) × Ω), for instance by proving the existence of extra information on
ρ(1 + |u|2) ln(1 + |u|2) as proposed in [Mellet and Vasseur, 2007]. This can be done by using the bounds given
by (2.40) and (2.41), which allows us to prove that

sup
t∈(0,T )

∫
ρn(1 + |un|2) ln(1 + |un|2) ≤ C < +∞

if it is initially the case for ρ0
n. Such a control is enough to prove the strong convergence of

√
ρ
n
un in L2((0, T )×Ω)

by using the strong convergence of ρnun in L2(0, T ;Lp(Ω)) for all p ∈ [1, 3/2] and the strong convergence of
ρn. Let us show now this convergence of √ρ

n
un in L2((0, T )× Ω).

We know that mn = ρnun and ρn converge almost everywhere. It is readily seen that in {ρ(t, x) 6= 0} we
have √ρ

n
un = mn/

√
ρ
n
converging almost everywhere to √ρu = m/

√
ρ. We also have that

√
ρnun1|un|≤M →

√
ρu1|u|≤M almost everywhere for M > 0.

So we have the convergence almost everywhere in {ρ(t, x) 6= 0}, and in {ρ(t, x) = 0} we have √ρ
n
un1|un|≤M ≤

M
√
ρ
n
→ 0. To complete the proof, for M > 0, we write∫
|√ρnun −

√
ρu|2≤

∫
|√ρnun1|un|≤M −

√
ρu1|u|≤M |2+2

∫
|√ρnun1|un|≥M |

2+2
∫
|√ρu1|u|≥M |2.

It is obvious that √ρ
n
un1|un|≤M is bounded uniformly in L∞(0, T ;L3(Ω)) and the "almost everywhere" conver-

gence provides that ∫
|√ρnun1|un|≤M −

√
ρu1|u|≤M |2→ 0.

Finally we write ∫
|√ρnun|

21|un|≥M ≤
1

ln(1 +M2)

∫
ρnu

2
n ln(1 + |un|2) ≤ C

ln(1 +M2)

and the same for the last term
∫
|√ρu|21|u|≥M for allM > 0. The strong convergence of√ρ

n
un in L2((0, T )×Ω)

is found by taking M → +∞.

Remark 2.5. This extra information is not really needed if one uses a more general approach introduced first
by [Vasseur and Yu, 2016] and then by [Lacroix-Violet and Vasseur, 2018] that may be seen as a renormalized
method for the velocity. Usually, the renormalized technique has been used for the density in the mass equation.
We do not give details on this method because it is beyond the scope of this review but we refer readers to [Bresch
and Jabin, 2018b] and references therein.
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Remark 2.6. Several remarks can be made at this stage for mathematicians interested in theoretical investiga-
tions:

— The genesis of this result stems from the work of [Bresch et al., 2003] on Navier–Stokes-Korteweg equations
(where the shear viscosity was taken as being equal to the density, which implies zero bulk viscosity).

— Such a gain on the gradient of a density function was highlighted in dimension 1 by [Kanel, 1979]. This
gain in regularity in density is at the cost of a loss in regularity on the speed close to vacuum conditions. One
then switches to degenerate hyperbolic-parabolic systems where a nonlinear hypocoercivity structure exists. Note
that the hypocoercivity at the center of studies such as those of [Matsumura and Nishida, 1980] or [Danchin,
2001] corresponds in a way to the linearization of the nonlinear hypocoercivity property that we have highlighted.

— A relationship similar to the one we introduced in [Bresch and Desjardins, 2004] between the shear viscosity
and the bulk viscosity is found when considering the Euler-Korteweg system and rewriting the dispersive term
as a diffusion operator applied to the gradient of a rho-function. This rho-function has a link with the surface
tension coefficient chosen.

After more than ten years of international research, it has been found in [Bresch et al., 2015] that the
compressible Navier–Stokes system with density-dependent viscosities satisfying the relation (2.37) can be re-
formulated as an augmented system (via what they called a κ entropy where κ is a parameter between 0 and
1). This reformulation explains how the additional control on the density is related to a two-phase averaged
structure of the compressible Navier–Stokes system when there is a strong density gradient, which veers towards
questions related to the presence of two velocities [Brenner, 2005,Brenner, 2006]. Interestingly, we find a concept
of effective and drift velocities due to the strong density gradient that are in line with the works of [Einstein and
Fürth, 1956,Nelson, 1967]. In one of the most recent paper written on the subject [Bresch et al., 2022b], the fol-
lowing hypotheses are used to get the existence of global weak solutions of the compressible Navier–Stokes
equations. For the shear and volume viscosities satisfying (2.37), we consider

µ ∈ C0(R+;R+) ∩ C2(R?+;R)

where R+ = [0,+∞) and R?+ = (0,+∞). It is also assumed that there exists two positive numbers α1, α2 such
that

2/3 < α1 < α2 < 4
and that, for any ρ > 0, 0 < ρµ′(ρ)/α2 ≤ µ(ρ) ≤ ρµ′(ρ)/α1

and there exists a constant C > 0 such that

|ρµ′′(ρ)/µ′(ρ)|≤ C < +∞.

Note that the upper bound α2 < 4 may be relaxed as indicated in [Alazard and Bresch, 2020]. The study
of [Bresch et al., 2022b] is based on the following interesting inequality. There exists C > 0 independent of α
and ε > 0 such that

+∞ >
C

ε

∫
Td
ρα|∇2ρα−1|2 dx ≥ 4

(3α− 2)2

∫
Td

∣∣∣∇2ρ(3α−2)/2
∣∣∣2 dx

+
( 1
α
− 1

4 − ε
) 44

(3α− 2)4

∫
Td

∣∣∣∇ρ(3α−2)/4
∣∣∣4dx

The authors assume α < 4 to have two positive quantities in the right-hand side. An idea to cover a larger range
of power is based on the following uniform inequality: for any d ≥ 1 and any positive function θ ∈ H2(Td),∫

Td

∣∣∣∇θ1/2
∣∣∣4 dx ≤ 9

16

∫
Td

(∆θ)2 dx.
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Remark 2.7 (Important applications from the density dependent case introduced in the multi-dimensional space
case by D. Bresch and B. Desjardins). Being able to treat density-dependent viscosities in the compressible
Navier–Stokes equations have had many important physical applications. This could motivate researchers to try
opening the way for other more complicated dependencies.

Key insight 6. When the shear and bulk viscosities are constant, the main difficulty is to ensure the weak stability
in the pressure term p(ρn). The stability for ρnun and ρnun ⊗ un is obtained using that un ∈ L2(0, T ;H1(Ω))
and the bound of ∂tρn given by the mass equation. When the shear and bulk viscosities depend on the density,
the main difficulty lies in the weak stability in the terms ρnun and ρnun ⊗ un because we loose any information
on un close to vacuum namely un 6∈ L2(0, T ;H1(Ω)) a priori. The stability in the pressure term does not cause
convergence issues due to the BD entropy tool which provides bounds on the space derivative of a function of
ρn. The bound on the time derivative of ρn is given by the mass equations and bounds related to the energy and
the BD entropy. For compressible, barotropic Navier–Stokes equations, considering density-dependent viscosities
is in some sense the same as considering a pressure-dependent viscosity if the pressure law is strictly monotonous
with respect to the density.

2.2.3 Porous media equation and pressureless Navier–Stokes equations

We use the case of the pressureless version of the compressible Navier-Stokes equations with density dependent
viscosities to discuss the non-linear weak stability for a simple physical system. This system allows us also to
comment on the associated discrete setting that mimics the continuous stability properties. This system is:

∂tρ+ div(ρu) = 0,
∂t(ρu) + div(ρu⊗ u)− 2div(µ(ρ)D(u))−∇(λ(ρ)divu) = 0,
ρu|t=0= m0, ρ|t=0= ρ0

(2.42)

with
λ(ρ) = 2(µ′(ρ)ρ− µ(ρ)).

Continuous setting. When the pressure state law is not taken into account, equation (2.38) reads

∂t(ρ(u+ 2∇ϕ(ρ))) + div(ρ(u+ 2∇ϕ(ρ))⊗ u)− 2div(µ(ρ)A(u)) = 0

with A(u) = (∇u−∇tu)/2 and ϕ′(ρ) = µ′(ρ)/ρ. Note that if u0 = −2∇ϕ(ρ0) then u = −2∇ϕ(ρ) is solution
of this equation. From the mass equation ∂tρ+ div(ρu) = 0 we deduce that

∂tρ− 2∆µ(ρ) = 0, ρ|t=0= ρ0 (2.43)

with ρ0 ∈ L2(Ω). This is the Stefan problem discussed in [Gallouët, 2018] and studied in [Eymard and Gallouët,
2023] in a bounded domain. We reproduce here parts of the content of [Gallouët, 2018] that illustrate how the
proof of the global existence of weak solutions for such systems (i.e. demonstrating the nonlinear weak stability)
may help to design numerical schemes that mimic at the discrete level these continuous properties of stability.
We consider implicitly periodic boundary conditions. At the continuous level, the approximate equation is:

∂tρn − 2∆(µn)− 1
n

∆ρn = 0, with µn = µ(ρn). (2.44)

This formulation helps one to obtain the global existence of weak solutions at fixed n by using classical results
on parabolic equations. The existence of weak solutions to (2.44) and the appropriate initial conditions can be
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proven using Schauder’s Theorem and the resolution of linear parabolic equations by the Faedo-Galerkin method.
The proof of the existence of weak solution to the Stefan system on µ is based on the compactness in a negative
exponent Sobolev space (L2(0, T ;H−1(Ω)) on {ρn}n∈N) and on the weak convergence of the sequence {µn}n∈N
in L2(0, T ;H1(Ω)) to µ(ρ). The problem being to prove that µ(ρ) = µ(ρ). The following theorem is the result
without external forces obtained by [Eymard and Gallouët, 2023].

Theorem 2.1. Let T > 0 and let µ be a nondecreasing Lipschitz continuous function and ρ0 ∈ L2(Ω) be given.
Let {ρn}n∈N be the solution of (2.44) for all n ∈ N?. Then there exists ρ, solution of (2.43), such that, as
n→ +∞ up to some subsequence, ρn converges to ρ in C([0, T ];H−1(Ω)) and weakly ? in L∞(0, T ;L2(Ω)) and
µn converges weakly to µ(ρ) in L2(0, T ;H1(Ω)).

Hints of the proof. The estimates obtained multiplying equation (2.44) by µn provides the uniform bounds

µn ∈ L2(0, T ;H1(Ω)), 1√
n
ρn ∈ L2(0, T ;H1(Ω))

and the estimate obtained multiplying equation (2.44) by ρn provides the uniform bound

ρn ∈ L∞(0, T ;L2(Ω)).

Using the bound on µn and the equation (2.44), we can deduce that ∂tρn is bounded uniformly in L2(0, T ;H−1(Ω))
and we know that ρn is bounded uniformly in L2(0, T ;L2(Ω)). Thus {ρn}n∈N is compact in L2(0, T ;H−1(Ω)).
Using that µn = µ(ρn) converges weakly in L2(0, T ;H1(Ω)) to µ(ρ) we have∫ T

0

∫
Ω
ρnµn = 〈ρn, µn〉L2(0,T ;H−1(Ω))×L2(0,T ;H1(Ω)) → 〈ρ, µ(ρ)〉L2(0,T ;H−1(Ω))×L2(0,T ;H1(Ω)) =

∫ T

0

∫
Ω
ρµ(ρ).

It remains to prove that µ(ρ) = µ(ρ) which involves what is called the Minty trick, written in Lemma B.5 that we
give in the appendix, assuming for simplicity that |µ(s)|≤ C|s|+C for all s ∈ R as done in Lemma 1 by [Gallouët,
2018].

Discrete setting. Without providing detailed calculations, we here illustrate why theoretical studies on con-
tinuous PDEs may help designing stable numerical schemes. The objective is to adapt the continuous methods
to a discrete setting to prove the convergence of numerical schemes. The set Ω is now a bounded open set of
Rd adapted to a space discretization. The time interval is [0, T ] with T > 0. With n ∈ N, a time step kn
is defined such that T = knNn with some positive integer Nn. The space discretization is chosen to yield a
finite-dimensional space Hn, where Hn is a space of functions constant on each control volume defined by some
mesh. We assume that ρn is a function constant in time on each interval

(
(l− 1)kn, lkn

)
for l = 1, · · · , Nn. For

all t ∈
[
(l − 1)kn, lkn

)
, l = 1, · · · , Nn, one has

ρn(·, t) = ρ(l)
n ∈ Hn.

As we consider constant functions in time on each interval
(
(l − 1)kn, lkn

)
with l = 1, · · · , Nn, we also have to

define discrete derivatives ∂t,n as follows: for l ∈ {2, · · · , Nn},

∂t,nρn(·, t) = ∂
(l)
t,kn

ρn(·, t) = 1
kn

(ρ(l)
n − ρ(l−1)

n ) for t ∈
(
(l − 1)kn, lkn

)
and for l = 1

∂t,nρn(·, t) = ∂t,nρn(·, t) = 0 for t ∈
(
0, kn

)
.
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The discretization of the Stefan problem yields the couple (ρn, µn) satisfying

∂t,knρn −∆nµn = 0, µn = µ(ρn)

where ∆n is a convenient discrete operator from Hn to Hn (see for example section 2.2.1 in [Gallouët, 2018]).
We then assume kn → 0 when n→ +∞ and limn→+∞ hn = 0 where hn is the maximum diameter of the control
volumes of the mesh defining HN . We are now able to study the weak non-linear stability of the discrete setting,
which will yield the convergence properties of the numerical scheme. To do so, we need discrete versions of
compactness Lemmas such as the Aubin-Lions-Simon Lemma. Such discrete Lemmas can be found in [Gallouët,
2018] and references cited therein.

Key insight 7. Studying systems of partial differential equations in a theoretical manner can help understand the
key elements that must be kept at the discrete level to ensure the stability and the convergence of the associated
numerical scheme. The interested reader can consult the works [Gallouët et al., 2018,Gallouët et al., 2017,Perrin
and Saleh, 2022,Herbin et al., 2021,Feireisl et al., 2019] and references therein on this subject.

2.3 Pressure dependent viscosity on granular material

2.3.1 Local dependency

A crucial insight is that the compressible Navier–Stokes equations with pressure dependent viscosities in the
barotropic case are nothing else than the compressible Navier–Stokes equations with density dependent viscosities
in the framework of global well-posedness properties exposed in the previous Section. In the incompressible case,
a similar line of study remains an open (and interesting) problem. This is because we are not able to prove, for
instance, the global existence of weak solutions for the following system in the full generality:

∂tu+ div(u⊗ u)− 2div(ν(p)D(u)) +∇p = f,

divu = 0,
u|t=0= u0

(2.45)

The situation is more complicated than the classical case studied by [Leray, 1934] with ν(p) = ν = cst where the
pressure is only present as a gradient and does not appear in the weak form of the system because its contribution
tested with any divergence-free test function is zero. Usually, when assuming the velocity to be known as a weak
solution for the incompressible Navier–Stokes equations, the pressure is obtained by solving the elliptic equation

−∆p = div(div(u⊗ u)− f).

In the pressure-dependent viscosity case, we cannot solve in u and p separately but we have a coupled system〈∂tu+ div(u⊗ u)− 2div(ν(p)D(u))− f, φ〉D′×D = 0 for all φ such that divφ = 0,

− div((Id− 2ν ′(p)D(u))∇p)− 2div
(
ν(p)div(D(u))

)
= div(div(u⊗ u)− f).

(2.46)

Note that the second-order operator in p,

div((Id− 2ν ′(p)D(u))∇p),

may degenerate when D(u) = Id/(2ν ′(p)) and may change sign, thereby loosing an elliptic behavior. As a result,
the system may be generally ill-posed if no real assumptions are done about the form of the viscosity. This is
something that we will revisit later when addressing granular media: the real difference between incompressible
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and compressible systems with a better behavior for the compressible ones. To keep the ellipticity property, one
needs that

Id− 2ν ′(p)D(u) > 0.

The first result related to incompressible Navier–Stokes equations with pressure-dependent viscosity is due to
[Renardy, 1986] and centers on the local existence of strong solutions. The main idea is to ensure the elliptic
property of the nonlinear problem satisfied by the pressure by pushing the eigenvalues of D(u) to be strictly
bounded from above by 1/(2ν ′(p)). This leads to assume that the nonlinear function ν is at most linear in the
sense

1/( lim
p→+∞

ν ′(p)) > 0.

The only result concerning the global existence for the incompressible system can be found in [Málek et al., 2002].
Their hypothesis is to consider a shear-thinning rheology, which means to assume a viscosity ν(p, |D(u)|2) such
that

ν(p, |D(u)|2) = (1 + γ(p) + |D(u)|2)(r−2)/2 with r ∈ (1, 2)

with for instance
γ(p) = 1√

1 + α2p2 .

With this definition we may have
max

∣∣∣∣2∂ν∂p (p, |D(u)|2)D(u)
∣∣∣∣ < 1

for all the vector field u, so the elliptic behavior is ensured.

2.3.2 Non-local dependency

We present here some models from the literature where the pressure has a non-local dependency. For that, a
new variable γ is introduced as an "activation" factor for the pressure. Let us first mention a 1-d macroscopic
model of suspensions proposed in [Lefebvre-Lepot and Maury, 2012]:

∂tρ+ ∂x(ρu) = 0,
∂t(ρu) + ∂x(ρu2) +∇p = 0,
∂tγ + u∂xγ = −p,
0 ≤ ρ ≤ ρ?, supp γ ⊂ {ρ = ρ?}, γ ≥ 0,

(2.47)

where ρ? is the maximal density and supp g design the support of a function g, that is, the values (t, x) where
g(t, x) 6= 0. We have the following behaviors on such a system:

• when ρ < ρ?: γ = 0, so we have p = 0 (free evolution)

• when ρ = ρ?: ∂xu = 0 (incompressible flow) and γ ≥ 0, so we have the activation of p.

Interestingly, such a system may be obtained formally as the limit ε→ 0 of the following viscous system:{
∂tρε + ∂x(ρεuε) = 0,
∂t(ρεuε) + ∂x(ρεu2

ε)− ∂x(λε(ρε)∂xuε) = 0,

with
λε(ρε) = ε

ρ? − ρε
.
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Let us explain formally how to obtain such a conclusion. From the mass equation given in (2.47), we can write

∂tµε(ρε) + ∂x(uεµε(ρε))− λε(ρε)∂xuε = 0

where µε ≥ 0 is defined such that µε(ρε)−µ′ε(ρε)ρε = −λε(ρε). We first understand that if ρε is asymptotically
far from ρ? then λε(ρε)∂xuε and µε(ρε) tends to zero. If ρε is asymptotically closed to ρ? then ∂xu = 0. We
also conclude that λε(ρε)∂xuε tends to some p and that µε, which is positive, tends to some γ ≥ 0. We finally
obtain the equation

∂tγ + u∂xγ + p = 0

since ∂xu = 0 in the congestion zone.
An important mathematical paper by [Perrin, 2016] addresses what non-local dependency means for granular
media. This work considers the following system:

∂tρ+ div(ρu) = 0,
∂t(ρu) + div(ρu⊗ u) +∇γ −∇p− 2div(cµ(ρ+ γ/cπ)D(u)) + rρ|u|u = 0,
0 ≤ ρ ≤ ρ?,

∂tγ + div(uγ) = − cπ
2cµ

p,

(ρ? − ρ)γ = 0 with γ ≥ 0,

(2.48)

where cµ, cπ are positive constants and r is a coefficient. The last expression encodes the activation effect. It is
possible to justify this system by letting ε tend to zero in the following singular, degenerate system:{

∂tρε + div(ρεuε) = 0,
∂t(ρεuε) + div(ρεuε ⊗ uε) +∇πε(ρε)−∇(λε(ρε)divuε)− div(µε(ρε)D(uε)) + rρε|uε|uε = 0.

(2.49)

where
µε(ρε) = cµ(ρε + µ1

ε(ρε))

with the degenerate behavior
µ1
ε(ρε) = ε

ρε
(1− ρε)β

and the relationships
λε(ρε) = 2(µ′ε(ρε)ρε − µε(ρε)), πε(ρε) = cπµ

1
ε(ρε).

The main insight on non-local dependency is that taking ρ = ρ? in (2.48) means, assuming an incompressible
material everywhere, that we obtain the following system:

divu = 0,
ρ?(∂tu+ div(u⊗ u)) +∇Q− 2div(cµ(ρ? + γ/cπ)D(u)) + rρ?|u|u = 0,

∂tγ + div(uγ) + cπ
2cµ

γ = cπ
2cµ

Q.

(2.50)

where Q = γ − p. This is the incompressible Navier–Stokes equations with viscosity depending on the pressure
Q but in a non-local manner through the activation parameter γ. This system admits global weak solutions à la
Leray. The important insights are:
- The compressible Navier–Stokes equations may be well posed for density dependent viscosities if a relationship
between the shear and the bulk viscosities is assumed.
- The incompressible Navier–Stokes equations may be well posed for a pressure-dependent shear viscosity if this
dependency is non-local and related to an activation parameter.
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All these results have been obtained assuming the relationship λε(ρε) = 2(µ′ε(ρε)ρε − µε(ρε)) (that is linked to
the BD entropy, see (2.37)) for compressible flows, which allows one to write the equation

2(∂tµε(ρε) + div(µε(ρε)uε)) + λε(ρε)divuε = 0. (2.51)

Note that λε(ρε) is more singular than µε(ρε) when ρε is close to ρ?. In the limit ε→ 0, using the extra estimates
mentioned in Section 2.2.2 for the density-dependent viscosities in the Navier–Stokes system, it is possible to
prove the convergence of γε(ρε) = cπµ

1
ε(ρε) to γ, µε(ρε) to cµ(ρ + γ/cπ) and λε(ρε)divuε to λ. The equation

on γ is then deduced from the limit in (2.51).

One way forward could be to try to generalize such a dependency with an equation related to a tensor matrix
(texture), which is currently investigated using DEM simulations aimed at deducing appropriate forms in the
macroscopic system.

Key insight 8. This part shows that there is no point in trying to complicate a model in hope to obtain a better
one because a non-local dependence on pressure can have much better properties to establish the existence of
global weak solutions. In a certain sense, this non-local dependence encodes a memory effect in time or in space.

2.3.3 Granular material: A challenge in mathematical fluid mechanics

In dense granular systems, where the particle volume fraction ϕ is close to its maximum value, the viscosity has
been proposed to depend on the pressure p and on the inertial number

I = 2ds|D(u)|√
p/ρs

(2.52)

through the µ(I) rheology [Jop et al., 2006] with µ the function given by

µ(I) = µ1 + µ2 − µ1
1 + I0/I

. (2.53)

In the expressions (2.52) and (2.53), ds is the mean diameter of the grain particles, ρs is the grain density and
I0, µ1, µ2 are constants related to the material and the setup used to measure them. This rheology is local
and the constants are based on steady-state measurements. As a result, limitations occur when applied to the
quasi-static regime transitioning towards the rest state (i.e. when I → 0) or from dense to dilute conditions when
ϕ decreases away from maximum packing [Andreotti et al., 2013]. The viscous stress tensor

τ = µ(I)p D(u)
|D(u)| (2.54)

may be written as
τ = 2ηD(u) + µ1p

D(u)
|D(u)|

with
η = (µ(I)− µ1)p

2|D(u)| .

The definitions (2.52) and (2.53) imply that the function η is not singular when |D(u)| vanishes and that the
other part µ1pD(u)/|D(u)| behaves as a plastic material with threshold µ1p. In [Barker et al., 2015], the authors
first prove the ill-posedness for incompressible µ(I) flows (using linearized systems and spectral analysis) and
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then argue that the compressibility will provide better properties. This is exactly what we have seen above for
the incompressible or compressible systems depending on the pressure.

Importantly, a relationship is missing to close the system if the model is compressible. This relationship should
be an evolution equation on the volume fraction ϕ (related to the effective density ϕρ). Some relationships have
been proposed in the literature:

• [Roux and Radjai, 1998]: divu = 2|D(u)|(ϕ− ϕeq(I)) with (2.54).

• [Iverson and George, 2014]: p = p(ϕ) with (2.54).

Note that it is possible to propose a more general constitutive law τ with a more general closure state law:

• [Barker et al., 2017]: divu = 2|D(u)|f(ϕ, p, I) and τ = 2µ(I, ϕ, p) D(u)
|D(u)| with some compatibility condi-

tions between f and µ.

To be able to provide even partial results related to weakly nonlinear stability on such topics would be really
helpful for numerical and physical applications.

2.4 Single-phase viscous model with heat conductivity

There are not many results on global weak solutions for heat-conducting Navier–Stokes equations. Such com-
pressible, Navier–Stokes–Fourier system reads

∂tρ+ div(ρu) = 0,
∂t(ρu) + div(ρu⊗ u)− divS +∇p = 0,
∂t(ρE) + div(ρuE) + div(Pu) = div(Su) + div(κ∇θ)

(2.55)

where E = |u|2/2 + e is the total energy, θ is the temperature, and κ is the heat conductivity. P = P (ρ, θ) and
e = e(ρ, θ) respectively stand for the pressure and the internal energy. We take here the isotropic stress tensor

S = µ(∇u+∇tu) + λdivu Id

where µ and λ are two constants satisfying µ > 0 and λ + 2µ/d > 0 with d the dimension considered. The
pressure and the internal energy are related thermodynamically:

P = ρ2 ∂e

∂ρ
+ θ

∂P

∂θ
.

If (ρ, θ) are smooth and bounded from below away from zero and if the velocity field is smooth, then the
total energy balance can be replaced by the thermal energy balance

cvρ(∂tθ + u · ∇θ)− div(κ(θ)∇θ) = S : ∇u− θ∂P (ρ, θ)
∂θ

divu,

where cv is the specific heat at constant volume, cv = (∂e∂θ )v. The initial conditions are given by

ρ|t=0= ρ0, (ρu)|t=0= m0, (ρE)|t=0= ρ0E0.

Furthermore, defining the entropy s = s(ρ, θ) up to an additive constant by

∂s

∂θ

∣∣∣
ρ

= 1
θ

∂e

∂θ

∣∣∣
ρ
, and ∂s

∂ρ

∣∣∣
θ

= − 1
ρ2
∂P

∂θ

∣∣∣
θ
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we can write the entropy equation

∂t(ρs) + div(ρsu)− div
(
κ(θ)∇θ

θ

)
= 1
θ

(
S : ∇u+ κ(θ)|∇θ|2

θ

)
.

Importantly, the total mass and total energy are formally conserved. That is, no dissipation occurs in the energy
estimates coming, for instance, from the viscous terms in the momentum equations. This is a major issue when
looking for global weak solutions of the compressible Navier–Stokes–Fourier equations. Finding such solutions
entirely depends on the pressure law chosen because this law enables one to get extra bounds, which in turn
allows one to obtain compactness. Finding global weak solutions à la Leray by considering a perfect gas law
(P = c0ρθ) is an open problem.

Let us briefly list the pressure state laws that have been considered in the literature to obtain the global
existence of weak solution. For constant viscosities, there are only three cases:

1) The pressure law as a monotone perturbation of the barotropic case [Feireisl, 2003].

2) Self-similar pressure laws with a large radiative contribution [Feireisl and Novotný, 2009].

3) The thermodynamically unstable truncated virial pressure law [Bresch et al., 2023b].

More precisely, these laws are
Case 1) The pressure state law

P (ρ, θ) = Pc(ρ) + θPθ(ρ)

with 

Pc(0) = 0, P ′c(ρ) ≥ a1ρ
γ−1 − b for ρ > 0,

Pc(ρ) ≤ a2ρ
γ + b for all ρ ≥ 0,

Pθ(0) = 0, P ′θ(ρ) ≥ 0 for all ρ ≥ 0,
Pθ(ρ) ≤ c(1 + ρβ)

(2.56)

with
γ > d/2, β < γ/2 for d = 2, β = γ/3 for d = 3

with constant a1 > 0, a2, b and Pc, Pθ in C([0,+∞)) ∩ C1(0,+∞).

Case 2) The pressure state law

P (ρ, θ) = θγ/(γ−1)Q

(
ρ

θ1/(γ−1)

)
+ a

3θ with a > 0 and γ > 3/2,

Q ∈ C1([0,+∞)), Q(0) = 0, Q′(Z) > 0 for all Z ≥ 0,

lim
Z→+∞

Q(Z)
Zγ

= Q∞ > 0.

The authors impose

0 < S′(Z) = 1
γ − 1

γQ(Z)−Q′(Z)Z
Z

< c < +∞ for all Z > 0

with limZ→+∞ S(Z) = 0 so that thermodynamical stability holds.
Case 3) The pressure state law

P (ρ, θ) = ργ + θ
N∑
n=0

Bn(θ)ρε
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where γ > max(4, 2N, d) and with assumptions on the coefficient Bj that does not a priori imply ∂e/∂ρ > 0.
This law provides the first example of the global existence (on (0, T )) of weak solutions for the compressible
Navier–Stokes–Fourier equations with a pressure state law that is thermodynamically unstable.

Importantly, the pressure behaves as ργ for large density in all the above examples. Taking the barotropic
case, we can write

1
2
d

dt

∫
Ω
ρ|u|2+ d

dt

∫
Ω
φ(ρ) +

∫
Ω
S : ∇u =

∫
Ω

(P (ρ, θ)− φ′(ρ)ρ+ φ(ρ))divu

for some φ(ρ). To get the diffusion control related to the velocity, we need to be able to make a link between
P (ρ, θ) − φ′(ρ)ρ + φ(ρ) and √ρe plus some quantities that will be controlled using the bounds given by the
entropy. Instead of providing details for the Navier–Stokes–Fourier equations, we refer the interested readers to
the recent paper [Bresch et al., 2023b] for further explanations and discussions.

There is also an interesting concept of solutions for density-dependent viscous systems such as the non-
homogenous, incompressible Navier–Stokes equations or the barotropic, compressible Navier–Stokes equations.
These solutions have intermediate regularity, which means that they have regularity on the velocity but only an
integrability constraint on the density. The interested reader may consult [Bresch et al., 2022a] on the anisotropic
compressible Navier–Stokes system. It contains a justification of averaged two-phase systems stemming from two-
phase systems with interfaces that follows an homogenization procedure assuming high-oscillating initial density.

Key insight 9. To conclude Sections 2.1-2.4, there are many possibilities to try enriching the stress tensor so
that it covers realistic physical situations and a lot of work remains to be done from a mathematical standpoint.
We expect that it will not only allow a better understanding of the physical properties involved but also help to
design appropriate numerical schemes. We focused in this Section on global existence à la Leray. For studies
related to strong solution with regularity control, we refer the reader to [Danchin and Tolksdorf, 2022] for
Navier–Stokes compressible with critical regularity, to [Beauchard and Zuazua, 2011] for partially dissipative or
diffusive hyperbolic systems (extending the results of [Kawashima and Shizuta, 1988]), and to the seminal work
of [Matsumura and Nishida, 1980] on compressible Navier–Stokes and solution with strong Sobolev regularity.

2.5 Construction of approximate systems

As summarized in the Introduction (Section 1.1), to study the global existence of weak solutions in the previous
Sections 2.1–2.4, we have used approximated systems of the original problem in order to demonstrate that a
sequence of solutions of this approximated system converges to the solution of the original one. For example
the equation (2.3) approximates the homogeneous incompressible Navier–Stokes system (2.1). These previous
Sections have also presented the first and third step of establishing the global existence of weak solutions, that
is,

• Formal identification of uniform estimates.

• Weak nonlinear stability using the uniform estimates.

For completeness, we now give an overview of different constructions of approximate systems that correspond
to the physical systems discussed before and that keep intact the uniform estimates presented alongside. Al-
though quite technical, this Section may help to design appropriate iterative numerical schemes. It also could
be helpful for physicists interested in understanding how the numerical iterations are done while keeping the
property of nonlinear weak stability. Of course other construction may be done just keeping in mind to conserve
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the estimations uniformly with respect to introduced parameters and analyzing the structure of the equations to
get weak nonlinear stability.

Let us first address the incompressible systems studied in Section 2.1. Since we know that the velocity field
is divergence free, we have important properties at hand that do not exist in compressible systems.
Incompressible Navier–Stokes system (2.1). The approximate system (2.3) is based on the following Galerkin
approximation:

∂tun + Pn(Pnun · ∇Pnun) +∇pn = νPn∆(Pnun)

with
un|t=0= Pnu0

where the projection operator Pn is characterized by

Pn

∑
k∈Zd

ck exp(ik · x)

 =
∑

−n≤k≤n
ck exp(ik · x).

Approximating u =
∑
k∈Zd ck exp(ik · x) by a sum consisting of a finite number of modes yields a velocity field

un that is a solution of a differential equation in finite dimension that satisfies the energy estimate uniformly with
respect to n. To solve this system is not complicated. One can for instance use a fixed point procedure wn 7→ un
where un is solution of the system

∂tun + Pn(Pnwn · ∇Pnun) +∇pn = νPn∆(Pnun).

The important property here is that un satisfies the energy estimates independently with respect to wn.

Non-homogeneous incompressible Navier–Stokes equations (2.4). The study of such system is based on a Galerkin
approximation combined with a fixed point procedure that is based on:

∂tρ+ div(ρw) = 0,
∂t(ρu) + div(ρw ⊗ u)− div(µ(ρ)D(u)) +∇p = 0,
divu = 0.

(2.57)

After proving the existence of a fixed point w 7→ u, one can take the limit with respect to the dimension n.

Barotropic compressible Navier–Stokes equation with constant viscosities (2.9). Since we have no control a
priori on div u that could allow us to prove that the density remains far from vacuum if the initial density does
as well, we add an artificial diffusion ε∆ρ in the mass equation. The sequence of approximate solutions will be
obtained by solving a two-index system{

∂tρ+ div(ρw) = ε∆ρ,
∂t(ρu) + div(ρw ⊗ u)− µ∆u− (λ+ µ)∇divu+∇(p(ρ)) + δ∇ρβ + ε(∇ρ · ∇)u = 0.

(2.58)

after a Galerkin procedure. Recently, another approximate system has been proposed by [Chaudhuri et al., 2023].
It is compatible with the non-local compactness procedure proposed by [Bresch and Jabin, 2018a]. We refer
to the case of compressible Navier–Stokes equations with an heterogeneous pressure law for a new approximate
system [Bresch et al., 2021] which has been helpful to treat the heat conducting Navier–Stokes equations with
the truncated virial pressure law.

Barotropic compressible Navier–Stokes equation (2.11) with density-dependent viscosities. The construction of
approximate system is not straightforward in this case. We need to write an approximate system that preserves
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the estimates used for nonlinear weak stability. As noted by [Rousset, 2017], for µ(ρ) = ρ and λ(ρ) = 0 the
construction of approximate solutions by [Vasseur and Yu, 2016] starts from an idea close to that of [Bresch
and Desjardins, 2006] with drag terms, a cold pressure, and a capillarity quantity but with a different capillarity
coefficient linked to the quantum compressible Euler system. For more general shear and bulk viscosities satisfying
the BD relationship, the idea proposed in [Bresch et al., 2022b] is based on the identification made in [Bresch
et al., 2015] that a two-velocity property is included in such systems. Let us consider the following system:

∂tρ+ div(ρ[w]δ) = 2κdiv([µ′(ρ)]α∇ρ) = 0,
∂t(ρw) + div(ρuδ,α ⊗ w)− 2(1− κ)div(µ(ρ)∇w)− 2κdiv(µ(ρ)A(w))

+ 4(1− κ)κdiv(µ(ρ)∇2ϕ(ρ))−∇((λ(ρ)− 2κ(µ′(ρ)ρ− µ(ρ)))divu) +∇p(ρ)
+ ε∆2sw − εdiv((1 + |∇w|2)∇w) = 0,

∂t(ρ∇φ(ρ)) + div(ρuδ,α ⊗∇φ(ρ))− 2κdiv(µ(ρ)∇2φ(ρ)) + div(µ(ρ)∇tw) +∇((µ′(ρ)ρ− µ(ρ))divu) = 0,
ρ[w]δ = ρuδ,α + 2κ[µ′(ρ)]α∇ρ.

(2.59)
Note that two smoothing parameters α > 0 and δ > 0 (associated with a standard mollification with respect to t
and x) are introduced in all the transport velocities and s ∈ N∗, s > 2. To build such a solution if ε is given, we
need to go through several levels of approximations. For example, building a solution of the nonlinear parabolic
equation for ρ requires some assumptions on the coefficients. When ε, α, δ are fixed, then the construction is
done by using a Faedo-Galerkin approximation combined with a fixed point procedure. Then, we let α tend to
zero before letting n tend to infinity. Next, we let δ tend to zero to prove that v = 2∇φ(ρ). At the end, we
combine the equations satisfied by v and w to get an equation satisfied by u. Finally, we let ε tend to zero.

Compressible Navier–Stokes equations (2.11) with an heterogeneous pressure law. The corresponding system is:{
∂tρε,η + div(ρε,ηuε,η) = 0,
∂t(ρε,ηuε,η) + div(ρε,ηuε,η ⊗ uε,η)− µ∆uε,η +∇(part,η(ρε,η) + Lε ?x p(ρε,η, t, x)) = 0

(2.60)

where
part,η(ρε,η) = η1ρ

γart,1
ε,η + · · ·+ ηmρ

γart,m
ε,η

for some fixed parameters γart = γart,1 > γart,2 > · · · > γart,m with

γart,1 > 2γ, γart,i+1 + 2γart,i+1
d

− 1 > γart,i, γ + 2γ
d
− 1 > γart,m.

The symbol ?x means the convolution operator in space where the mollifying operator Lε is defined as:

Lε(x) = 1
log 2

∫ 2ε

ε
Lε′(x)dε

′

ε′

where Lε is a standard mollifier given by
Lε(x) = 1

εd
L(x
ε

)

with L a non-negative smooth function such that L ∈ C∞0 (Td) and
∫
Td L(x)dx = 1. Note that Lε ?x g means

a convolution between Lε and g in the space variable. The approximate pressure is obtained by regularizing the
pressure law. The a priori energy estimates are tricky because of the spatial and time dependence in p. Obtaining
the existence for such a system is straightforward by using a fixed point argument. Limits are taken one after
the other: first by letting ε → 0 and then η1 → 0, · · ·, ηm → 0. The main difficulty is to handle the limit
ε → 0, which strongly uses the non-local method introduced in [Bresch and Jabin, 2018a]. The limit ε → 0
requires a large integrability on ρ that imposes the presence of some large ργart,1

ε,η . This coefficient is too large to
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Figure 4: Two-phase domain Ω = Ωg ∪ Ωl ∪ ∂Ωg,l and notation. Phase g occupies white zone and phase l
occupies grey zone. For reference, the indicator function Xi and the interface ∂Ωg,l have been marked only for
one subdomain Ωg.

directly take the limit η1 → 0 without another artificial pressure, hence we need a kind of hierarchy γart,i. Such
result has been used in [Bresch et al., 2023b] to prove the global existence of weak solution of the compressible
Navier–Stokes equations with heat-conductivity where the state law is the truncated virial pressure law. This
work is based on a new construction of approximate solutions that uses an iterative scheme and a fixed point
procedure that could be very helpful to design efficient numerical schemes.

Key insight 10. Systems of partial differential equations are not characterized by a single parameter but rather
by several parameters of approximations and regularizations that must converge towards 0 or infinity in a very
precise sequence. Such sequence guarantees the uniformity of the limits in these parameters by demonstrating
the absence of artificial oscillations and concentrations.

2.6 A two-phase immiscible system written as a single-phase system with an indicator func-
tion

In this section we review theoretical results in the literature regarding the existence of weak solutions for a system
with two different phases that are separated by interfaces. The respective phase variables (density, velocity,
viscosity, etc.) are denoted with the subscripts g, l. Each phase occupies a domain Ωg,l, respectively, with
interfaces ∂Ωg,l = Ωg ∩ Ωl. The whole domain is thus Ω = Ωg ∪ Ωl ∪ ∂Ωg,l (see Figure 4). Let us introduce
indicator functions Xi with i = g or i = l that has the value 1 if x ∈ Ωi and 0 otherwise, which implies that
Xl = 1−Xg. These functions satisfy the following transport equation

∂tXi + uI · ∇Xi = 0
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where uI is the interface velocity. The phase g is governed in the domain Ωg by the following conservation
equations: 

∂tρg + div(ρgug) = 0,
∂t(ρgug) + div(ρgug ⊗ ug)− div(µgD(ug))−∇(λgdivug) +∇(pg(ρg)) = ρgf,

ρgug|t=0= m0,g, ρg|t=0= ρ0,g.

(2.61)

In the domain Ωl the phase l follows the conservation equations,
∂tρl + div(ρlul) = 0,
∂t(ρlul) + div(ρlul ⊗ ul)− div(µlD(ul))−∇(λldivul) +∇(pl(ρl)) = ρlf,

ρlul|t=0= m0,l, ρl|t=0= ρ0,l.

(2.62)

Defining
ρ = Xgρg +Xlρl, p(ρ,Xg) = Xgpg(ρ) +Xlpl(ρ)

λ(ρ,Xg) = Xgλg(ρ) +Xlλl(ρ), µ(ρ,Xg) = Xgµg(ρ) +Xlµl(ρ)

and choosing one velocity field ug = ul = uI = u, we can write the following system on (Xg, ρ, u):
∂tXg + u · ∇Xg = 0 with XgXl = 0 and Xl = 1−Xg,

∂tρ+ div(ρu) = 0,
∂t(ρu) + div(ρu⊗ u)− div(µ(ρ,Xg)D(u))−∇(λ(ρ,Xg)divu) +∇(p(ρ,Xg)) = ρf,

ρu|t=0= m0, ρ|t=0= ρ0, Xg|t=0= Xg,0 with Xg,0Xl,0 = 0.

(2.63)

Remark that since XgXl = 0, we can find the equation on each phase from the equation on Xl and the equation
on ρ. Indeed

∂tρ+ div(ρu) = (∂tXg + u · ∇Xg)(ρg − ρl) + (∂t(ρg) + div(ρgu))Xg + (∂t(ρl) + div(ρlu))(1−Xg) = 0.

The condition that XgXl = 0 means that we are able to track the interface.
Global weak solutions à la Leray versus solutions à la Hoff. The global weak solutions framework is not
appropriate for such a system; it cannot ensure that divu ∈ L1(0, T ;L∞(Ω)), which is needed to follow interfaces
with possible discontinuous jump in density across these interfaces. The appropriate framework to handle such
discontinuities is that of Hoff’s solution and we refer the reader to [Bresch et al., 2022a] for a discussion on this
topic. For such systems with an indicator function, the effective flux property is required to have a relationship
between divu and the pressure state law. This is the main reason why the existence of weak solutions à la Hoff
for such system has only been recently proved in the simple, one-dimensional case.
In one dimension, the momentum equation reads

∂t(ρu) + ∂x(ρu2)− ∂x(µ(ρ,Xg)∂xu) + ∂x(p(ρ,Xg)) = ρf.

Applying ∂x on such equation yields

−∂2
x

(
µ(ρ,Xg)∂xu− p(ρ,Xg)

)
= ∂x

(
− ∂t(ρu)− ∂x(ρu2) + ρf

)
.

This provides an elliptic property on µ(ρ,Xg)∂xu−p(ρ,Xg), corresponding to the effective flux property in (2.16)
for F = µ(ρ,Xg)∂xu− p(ρ,Xg) and G = −∂t(ρu)− ∂x(ρu2) + ρf , helping to find compactness on the density.
In the multidimensional case, applying the divergence operator on the momentum equation in (2.63),

∂t(ρu) + div(ρu⊗ u)− div(µ(ρ,Xg)D(u))−∇(λ(ρ,Xg)divu) +∇(p(ρ,Xg)) = ρf,
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yields

−∆
(
(2µ(ρ,Xg) + λ)divu− p(ρ,Xg)

)
= div

(
− ∂t(ρu)− div(ρu⊗ u) + ρf

)
+
[
div,div(µ(ρ,Xg)D(u))

]
where

[
div, div(µ(ρ,Xg)D(u))

]
is the commutator, which involves derivatives of ρ or Xg with respect to x. This

commutator hinders the possibility to define a usable property to find the compacity on the density because we
do not have bounds on the derivative of the density, which explains why only the one-dimensional case has been
considered.

Dissipative solutions with appropriate viscous potential. The recent work of [Feireisl and Novotný, 2022] in-
troduces a new concept of dissipative varifold solution to address weak regularity in two-phase compressible
viscous fluids with interfaces. (Varifolds are used to deal with quantities coming from interface motions when
weak regularity occurs.) This new formulation is variational, combining the energy and momentum balance in a
single inequality. This work shows the existence of dissipative varifold solutions for a large class of general viscous
fluids featuring a nonlinear dependence of their viscous stress on the symmetric velocity gradient. The problem
admits global solutions depending on time as long as the hypothesis on the dissipative potential yields the bound
|divu|≤ d almost everywhere in (0, T )×Ω. It is noteworthy that in this case, the physical viscous law (rheology)
ensures an appropriate bound on divu.

Key insight 11. Few results exist in the presence of interfaces when one wishes to study stability results with weak
regularity. Exceptions include the one-dimensional case and when the rheology relationship ensures appropriate
bounds on divu.

3 From two-phase immiscible system to two-phase averaged system by ho-
mogenization

3.1 Formal approach

This subsection reviews well-known two-phase flow modeling procedures. There is a large amount of work in the
literature dedicated to modeling two-phase flows. The interested reader may consult the popular books of [Gi-
daspow, 1994,Drew and Passman, 1999,Brennen, 2005,Kolev, 2007, Ishii and Hibiki, 2011] but we also refer to
the book of [Dobran, 2001] for an application of multiphase flow theory to volcanology.

The accuracy of two-phase modeling hinges on the effects that small scales have on the large scales. Focusing
on the critical level of mesoscales, mixtures made of two phases may be understood as two single-phase regions
separated by an evolving interface. Such an interface evolution involving multiple locations requires an appropri-
ate averaging to properly represent the macroscopic behavior, i.e. assuming a certain amount of homogeneity at
the mesoscale to enable the description of the flow at the macroscopic level.

An alternative and more popular approach to such an homogeneization is based on the theory of multi-
phase flows [Gidaspow, 1994, Drew and Passman, 1999, Dobran, 2001, Ishii and Hibiki, 2011]. This approach
assumes each phase to be distinct and described by its own set of equations, typically the Euler equations or the
Navier–Stokes equations [Bresch et al., 2018,Bresch and Hillairet, 2015,Bresch and Hillairet, 2019,Bresch et al.,
2022a, Bresch et al., 2023a]. Pioneering works in this direction include those of [Bruce Stewart and Wendroff,
1984, Baer and Nunziato, 1986, Saurel and Abgrall, 1999]. This approach has now been extended into a wide
variety of possible models. Following the observation that different phases interact through the interface until
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Figure 5: Left: Two-phase domain Ω = Ωg ∪Ωl. The phase g occupies the white zone and the phase l occupies
the gray zone. Right: Detail of the nomenclature for the averaging process with a characteristic sphere B(x, r)
for any x ∈ Ω.

reaching uniform conditions [Bdzil et al., 1999] (i.e. they move with approximately the same pressure and veloc-
ity), the resulting set of equations is classified according to the set of independent variables considered.

As explained in [Gidaspow, 1994, Drew and Passman, 1999, Collombet, 2009, Gavrilyuk, 2020], there is no
consensus on what constitutes a suitable, general modeling framework for two-phase flows. In particular, a
uniform description of the vast range of flow regimes seems yet out of reach. The main art in modeling such
flows is to filter unnecessary details of the flow and retain all the properties that really characterize the flow and
confer emerging properties at the macroscale such as different dynamical regimes. It is then sometimes necessary
to design specific constitutive relations for closure. Consider the following conservation equations where i = g, l
marks the two phases: 

∂tρi + div(ρiui) = 0,
∂t(ρiui) + div(ρiui ⊗ ui) +∇pi = divDi + ρifi,

∂t(ρiEi) + div((ρiEi + pi)ui) = div(Di · ui − qi) + ρi(ui · fi)
(3.1)

where ρi, ui, pi are respectively the density, the velocity and the pressure of phase i, Di is the viscous tensor, fi
is any body force acting upon phase i, qi is the heat flux for phase i, and the total energy is Ei = |ui|2+ei with
ei the internal energy for each phase i. We close this system by choosing the form of the viscous term, the body
forces and the energetic constitutive law through the heat flux and heat source terms, and finally the constitutive
law that relates the system of equations to thermodynamics. We also need to add jump conditions across the
interfaces where mass, momentum and energy exchanges between each sub-regions happen. To establish a
macroscopic description of a two-phase flow with an averaging procedure, we introduce the same domains and
characteristic functions to each phase as in the previous section, that is, 1) the global domain Ω = Ωg∪ Ωl∪∂Ωg,l

where Ωi is the domain for phase i and 2) a characteristic function Xi(x) with value 1 if x ∈ Ωi and 0 otherwise
(Figure 4). These characteristic functions are transported by the interfacial velocity field uI :

∂tXi + uI · ∇Xi = 0 (3.2)
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where ∇Xi = −niδi with δi the Dirac distribution of the interface associated to phase i and ni the normal
vectors pointing outwards Ωi. For any point x ∈ Ω, we consider a sphere with center in x and radius r, B(x, r)
(see Figure 5). Then, for i = g, l, ∫

B(x,r)
Xi(y)dy = |B(x, r) ∩ Ωi|.

We introduce the space average for any function φ as

〈φ〉 = lim
r→0

1
|B(x, r)|

∫
B(x,r)

φ(y)dy.

The volume fraction of each phase ϕi for i = g and i = l as a function of x is then given by

ϕi = 〈Xi〉 = lim
r→0

1
|B(x, r)|

∫
B(x,r)

Xi(y)dy = lim
r→0

|B(x, r) ∩ Ωi|
|B(x, r)| for i = g, l.

We can also introduce the phase average and the Favre average of any variable φi as, respectively,

φi = 〈Xiφi〉
ϕi

, φ̃i = 〈Xiρiφi〉
ϕiρi

for i = g, l. (3.3)

We then multiply the conservative equations in (3.1) by Xi and use this averaging operator, which influences
the closure of interfacial source terms. We get the following averaged system:

∂t(ϕiρi) + div(ϕiρiũi) = Γi,
∂t(ϕiρiũi) + div(ϕiρiũi ⊗ ũi) + div(ϕi(p̃iId− D̃i)) = ϕiρ̄if̃i +Mi,

∂t(ϕiρiẼi) + div
(
ϕi((ρiẼi + p̃i)Id− D̃i)ũi + ϕiq̄i

)
= ϕiρ̄i ˜(ui · fi) + Ei

(3.4)

for i = g, l where the quantities Γi, Mi, and Ei are the interfacial source terms defined by
Γi = 〈ρi(ui − uI) · ∇Xi〉,
Mi = 〈ρi(ui − uI)⊗ ui∇Xi〉+ 〈pi∇Xi〉 − 〈Di∇Xi〉,
Ei = 〈ρiEi(ui − uI) · ∇Xi〉+ 〈piui · ∇Xi〉 − 〈(Diui) · ∇Xi〉+ 〈qi · ∇Xi〉

(3.5)

with the interface jump assumptions
Γg + Γl = 0

Mg +Ml = 2σ〈H∇Xg〉

Eg + El = 〈σHuI · ∇(Xg +Xl)〉

where Γi corresponds to the mass transfer to phase i, Mi is the momentum transfer due to mass transfer,
and Ei is the energy transfer due to mass transfer. The quantity H denotes the mean curvature and σ is the
surface tension. Several closures may be introduced for these terms. We will follow [Drew and Passman, 1999]
to calculate the interfacial terms in (3.5). This leads us to define the averaged interfacial velocity of phase i,
denoted by uint,i, as

Γi〈uint,i〉 = 〈(ρi(ui − uI))⊗ ui∇Xi〉

to obtain a simple closure of the momentum transfer due to mass transfer. The interfacial pressure and the heat
flux of phase i = g, l are decomposed into their average and fluctuating parts:

pint,i = 〈pint,i〉+ p′int,i, qint,i = 〈qint,i〉+ q′int,i.
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We neglect the interfacial velocity fluctuations, so we write

uint,i = 〈uint,i〉.

Finally the mean curvature H splits into
H = 〈H〉+H ′.

The final step towards a complete two-phase model is to derive an evolution equation for the volume fraction,
which can be done by averaging equation (3.2). We could either simply approximate it by

∂tϕg + 〈uI〉 · ∇ϕg = 0,

or include the volume fraction as a thermodynamics variable and derive a compatible evolution equation ensuring
the quasi-hyperbolicity of the system (as first proposed by [Baer and Nunziato, 1986] and then by [Saurel and
Abgrall, 1999]) as

∂tϕg + 〈uI〉 · ∇ϕg = ϕg(1− ϕg)
µ

(pg − pl) (3.6)

where µ is not constant.
We propose the following definition of the averaged interfacial scalar variable φint,i,

〈φint,i〉∇ϕi = 〈φi∇Xi〉 − 〈φ′int,i∇Xi〉 (3.7)

Since 〈φint,iuint,i〉 = 〈φint,i〉〈uint,i〉, we have (φint,iuint,i)′ = φint,iuint,i−〈φint,iuint,i〉 = (φint,i−〈φint,i〉)〈uint,i〉 =
φ′int,i〈uint,i〉. Then applying (3.7) for each component of the vector, we write

(3.8)〈φiui · ∇Xi〉 = 〈φint,iuint,i〉 · ∇ϕi + 〈(φint,iuint,i)′ · ∇Xi〉
= 〈φint,i〉〈uint,i〉 · ∇ϕi + 〈φ′int,i∇Xi〉 · 〈uint,i〉

From this last equation and using (3.7), we find

〈φiui · ∇Xi〉 = 〈φi∇Xi〉 · 〈uint,i〉.

Reasoning similarly for the term 〈(Diui) · ∇Xi〉, and since Di is a symmetric matrix,

〈(Diui) · ∇Xi〉 = 〈Di∇Xi〉 · 〈uint,i〉.

Relationships (3.7) and (3.8) are applied respectively to pi, qi and ui for the terms appearing in Mi and Ei. This
leads to the following identification of the interfacial force density Fd,i with

Fd,i = 〈(p′int,iId−Di)∇Xi〉

which is usually modeled as a drag force, the interfacial energy Ed,i with

Ed,i = 〈(p′int,iId−Di)∇Xi〉 · 〈uint,i〉+ 〈q′int,i · ∇Xi〉

and the averaged interfacial energy due to mass transfer 〈Eint,i〉 with

〈Eint,i〉Γi = 〈(ρiEi(ui − uI)) · ∇Xi〉.

We get the following form for the mass and momentum equations
∂t(ϕiρi) + div(ϕiρiũi) = Γi,
∂t(ϕiρiũi) + div(ϕiρiũi ⊗ ũi) + div(ϕi(p̃iId− D̃i)) = ϕiρ̄if̃i + 〈pint,i〉∇ϕi + Γi〈uint,i〉+ Fd,i,

∂t(ϕiρiẼi) + div
(
ϕi((ρiẼi + p̃i)Id− D̃i)ũi + ϕiq̄i

)
= ϕiρ̄i ˜(ui · fi) + 〈pint,i〉〈uint,i〉 · ∇ϕi

+〈qint,i〉 · ∇ϕi + 〈Eint,i〉Γi + Ed,i

(3.9)
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with the jump conditions
Γg + Γl = 0,

Γg(〈uint,g − uint,l〉) + (〈pint,g〉 − 〈pint,l〉)∇ϕg + Fd,g + Fd,l = 2σ
(
〈H〉∇ϕg + 〈H ′∇Xg〉

)
,

Γg(〈Eint,g − Eint,l〉) + (〈pint,g〉〈uint,g〉 − 〈pint,l〉〈uint,l〉) · ∇ϕg + (〈qint,g〉 − 〈qint,l〉) · ∇ϕg + Ed,g + Ed,l

= σ
(
〈H〉(〈uint,g〉 − 〈uint,l〉) · ∇ϕg + 〈H ′∇Xg〉 · (〈uint,g〉 − 〈uint,l〉)

)
.

Remark 3.1. In the companion paper Part I [Narbona-Reina et al., 2024], this averaging is used to establish
the two-phase (gas–liquid) model of volcanic conduit flow. In the momentum equation, the term Fd,i has to be
written explicitly:

Fd,i = 〈(p′int,iId−Di)∇Xi〉 = 〈p′int,i∇Xi〉 − 〈Di∇Xi〉.

In [Narbona-Reina et al., 2024], we neglect the fluctuation of the interfacial pressure p′int,i. We do not know,
however, how to calculate the second term. We have instead the property (3.7) for the scalar variables φi
indicating that 〈φi∇Xi〉 = 〈φint,i〉∇ϕi + 〈φ′int,i∇Xi〉. In (3.8), this property is applied to each component of
the vector φiui to write equivalently 〈φiui ·∇Xi〉 = 〈φint,iuint,i〉 ·∇ϕi+ 〈(φint,iuint,i)′ ·∇Xi〉. The idea to move
forward is to extend this property to a tensor D, considering it as “an array of an array”. We denote by (RD)k
the k-th row of D so that the tensor D is written in vectorial form as

D = ((RD)1, (RD)2, . . . , (RD)d)t, with (RD)k = (Dk,1,Dk,2, . . . ,Dk,d), k = 1 . . . d.

The k-th component of the vector D∇X, denoted by (D∇X)k, is

(D∇X)k = (RD)k · ∇X.

The property (3.8) can be then applied to this product as

〈(RD)k · ∇X〉 = 〈(RD,int)k〉 · ∇ϕ+ 〈(RD,int)′k · ∇X〉

The average 〈D∇X〉 in vectorial form is

〈D∇X〉 = (〈(D∇X)1〉, 〈(D∇X)2〉, . . . , 〈(D∇X)d〉)t

= (〈(RD)1 · ∇X〉, 〈(RD)2 · ∇X〉, . . . , 〈(RD)d · ∇X〉)t

Applying the property to each component and neglecting fluctuations yields the approximation

〈D∇X〉 ' (〈(RD,int)1〉 · ∇ϕ, 〈(RD,int)2〉 · ∇ϕ, . . . , 〈(RD,int)d〉 · ∇ϕ)t = 〈Dint〉∇ϕ

This approximation allows us to write the momentum equation in (3.9) in terms of the total stress tensor as:

∂t(ϕiρiũi) + div(ϕiρiũi ⊗ ũi) + div(ϕi(p̃iId− D̃i)) = ϕiρ̄if̃i +
(
〈pint,iId−Dint,i〉

)
∇ϕi + Γi〈uint,i〉

This formulation of the momentum equation is used in [Narbona-Reina et al., 2024] to establish the gas–liquid
system.

We now have to choose interfacial quantity closures 〈uint,g〉, 〈uint,l〉, 〈pint,g〉, 〈pint,l〉, 〈qint,g〉 and 〈qint,l〉 and
to define the averaged interfacial force density and the averaged interfacial energy. This choice depends on the
physical characteristics of the application considered.
Here we assume a vanishing heat flux at the interface, 〈qint,g〉 = 〈qint,l〉 = 0. Usually the interface is assumed to
have no intrinsic mass and it seems reasonable to assume

〈uint,g〉 = 〈uint,l〉 = 〈uI〉
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as done by [Saurel and Abgrall, 1999]. Many closures are possible for the interfacial pressures. When no surface
tension occurs

〈pint,g〉 = 〈pint,l〉 = 〈pI〉

where many closures for 〈pI〉 can be found in the literature. Our choice will be guided by the requirement to
ensure energy dissipation. When involving the concept of surface tension, this yields

〈pint,g〉 − 〈pint,l〉 = 2σ〈H〉.

If we want to take into account surface tension and packing in a dispersed flow where the dispersed phase is the
phase l

〈pint,g〉 − 〈pint,l〉 = 2σ〈H〉 − pc(ϕl).

The contact pressure pc is null for ϕl under a certain ϕc called the random close packing and then increases
drastically when ϕl approaches the critical packing fraction ϕc.

Remark 3.2. The approach considered in Part I [Narbona-Reina et al., 2024] to model gas–liquid flows in volcanic
conduits involves the viscous tensor in the choice of the interfacial pressure to ensure the balance force at the
gas/liquid interface by using the approximation mentioned in Remark 3.1:

〈pint,gId−Dint,g〉 − 〈pint,lId−Dint,l〉 = 2σ〈H〉 (3.10)

The interfacial velocity is considered identical for both phases: 〈uint,g〉 = 〈uint,l〉 = 〈uI〉.

Hereafter, we drop the averaging symbols ·̃, ·̄ and 〈〉 to increase readability so that two-phase immiscible
systems and two-phase averaged systems share the same variables.

3.2 Mathematical derivation using homogenization techniques (averaging process)

This section focuses on how averaged two-phase models may be obtained rigorously with no closure assumptions.
Note that this mathematical development may only be justified in the viscous case because it requires that the
velocity is the same for the two phases. Another limitation is the need to assume only one spatial dimension be-
cause, as explained previously, of the lack of the possibility of commutation to obtain information of the effective
flux.

A series of recent mathematical results justify the construction of two-phase averaged systems thanks to an
homogenization process starting from the compressible Navier–Stokes equations with rapidly oscillating distribu-
tions of density. The homogenized effective model is derived as the frequency of the oscillations tends to ∞.
A kinetic equation is obtained to track the evolution of oscillations coupled with the velocity field. The effect
of oscillations in density has been studied in the pioneer papers of [Serre, 1991], [Weinan, 1992], [Amosov and
Zlotnik, 1998]. Results on global weak solutions can be found in [Plotnikov and Sokolowski, 2012], [Bresch and
Hillairet, 2015]. Some authors have started to consider solutions à la Hoff to perform the homogenization (i.e.
the averaging process), which allow one to better characterize the defect measures associated to the kinetic
equation. This enables interfaces tracking and shows that if the Young measure family is initially restricted to
a finite convex combination of Dirac measures, this is also the case as a function of time. Such results allows
one to characterize the kinetic equations and to obtain a two-phase system if the number of Dirac masses is
restricted to two (e.g., [Bresch and Huang, 2011], [Bresch and Hillairet, 2015], [Bresch and Hillairet, 2019], and
recently [Bresch et al., 2022a]). The effects of temperature were considered in [Hillairet, 2019] and those of sur-
face tension were taken into account in [Hillairet et al., 2023a] and [Hillairet et al., 2023b]. The convergence of
numerical schemes introduced to approximate averaged two-phase system was considered in [Bresch et al., 2023a].
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ε εε ...

Figure 6: Sketch of the cell division for the one dimensional case. Cell [0, 1] is assumed periodic. Phase g is in
white and phase l is in gray.

After this brief overview, we now describe the starting system of equations, the process and the result
mathematically justified in [Bresch et al., 2022a]. All these calculations are done in one dimension in space
and with a unique velocity u for the two phases. The application we consider is a bubbly flow where Ωg is the
union of a large number of small gas bubbles suspended in a liquid occupying the domain Ωl (Figure 5). The
homogenization procedure uses the concepts and tools described in Section B.3. As in [Bresch et al., 2022a],
we consider two compressible fluids separated by interfaces in a domain Ω such that any infinitesimal volume
contains both phases. This situation is described in general in Appendix B.3 (Figure 8) and it is illustrated in the
1D case by Figure 6. The domain Ωg(t) represents the volume occupied at time t by fluid g (white in Figure 6)
and Ωl(t) the volume occupied at time t by fluid l (gray in Figure 6). We assume that initially Ωg(0)∩Ωl(0) = ∅
and Ωg(0) ∪ Ωl(0) = Ω. As before, Xg(t, x) is the characteristic function of Ωg(t) transported by the unique
velocity u:

∂tXg + u ∂xXg = 0, and Xl(t, x) = 1−Xg(t, x).
The densities of the two phases are ρg and ρl and they are initially defined in Ωg(0) and Ωl(0), respectively. We
extend ρg and ρl by 0 in Ω and, slightly abusing the notation, we still call them ρi with i = g or i = l depending
on the phase. Because of the separation hypothesis and the definition of Xi, the bulk density is

ρ = Xgρg + (1−Xg)ρl.

We assume that both fluids have positive constant viscosities µi for i = g, l, respectively and define the viscosity
field of the two-phase system as

µ(Xg) = Xgµg + (1−Xg)µl.
We further assume that both fluids are barotropic fluids with pressure laws pg(ρ) and pl(ρ), and define the
pressure field as

p(ρ,Xg) = Xgpg(ρ) + (1−Xg)pl(ρ).
The general system for two immiscible phases is (2.61)-(2.62), which we now write for the single-velocity, one-
dimensional case with i = g, l:

∂tρi + ∂x(ρiu) = 0,
∂t(ρiu) + ∂x(ρiu2)− ∂x(µi∂xu) + ∂x(pi(ρi)) = ρif,

ρiu|t=0= ρi,0u0, ρi|t=0= ρi,0.

(3.11)

The velocity is assumed regular in the whole domain Ω. As detailed in Appendix B.3, the homogenization
procedure is to consider a sequence of solutions generated by a sequence of initial data that are widely oscillating
in space and to analyze its limiting behavior. A typical example of such initial data is:

Xε
g,0 = Xg,0(x/ε), Xε

l,0 = 1−Xε
g,0, ρε0 = Xε

g,0 ρg,0(x) + (1−Xε
g,0)ρl,0(x)

where Xg,0 : Ω 7→ {0, 1} is a fixed profile and ρg,0, ρl,0 are bounded initial data far from vacuum (i.e. a density
far from 0) and where the initial velocity uε0 = u0(x) ∈ H1(Ω). We now show how to obtain the averaged
two-phase system with a relaxation quantity in the equation related to the volume fraction for two cases. The
first case is without temperature as proposed by [Bresch et al., 2022a], and the second case is with temperature
as proposed by [Hillairet, 2019].
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3.2.1 Two-phase system without temperature

As indicated in Section 2.6, a one-dimensional, two phase immiscible system with interfaces but without the
source term f may be defined as:

∂tXg + u ∂xXg = 0 with XgXl = 0 where Xl = 1−Xg,

∂tρ+ ∂x(ρu) = 0,
∂t(ρu) + ∂x(ρu2)− ∂x(µ(Xg)∂xu) + ∂xp(ρ,Xg) = 0

(3.12)

with (as above)

ρ = ρgXg + ρl(1−Xg), µ(Xg) = Xgµg + (1−Xg)µl, p(ρ,Xg) = Xgpg(ρ) + (1−Xg)pl(ρ).

The initial conditions are

Xi|t=0= Xi,0 with Xg,0Xl,0 = 0 and Xl,0 = 1−Xg,0.

and
u|t=0= u0, ρ|t=0= ρg,0Xg,0 + ρl,0(1−Xg,0).

We assume that the stress tensor −p(ρ,Xg) + µ(Xg)∂xu has no discontinuity across the interfaces.

We first show the final, averaged two-phase system to facilitate the understanding of the reasoning steps
involved. We then explain three way to conduct the homogenization procedure to obtain this final averaged
system from the immiscible two-phase system described above. Defining ϕi as the volume fraction of phase i,
this final homogenized system is:

∂tϕg + u ∂xϕg = ϕgϕl
ϕgµl + ϕlµg

(σg − σl)

∂tρi + ∂x(ρiu) = 0
∂t(ρu) + ∂x(ρu2)− ∂x(µeff∂xu) + ∂xpeff = 0
ρ = ϕgρg + ϕlρl,

(3.13)

with
σi = −pi(ρi) + µi∂xu for i = g, l. (3.14)

and
µeff = µgµl

ϕgµl + ϕlµg
, peff = ϕgµlpg(ρg) + ϕlµgpl(ρl)

ϕgµl + ϕlµg

Remark 3.3. Averaged, compressible two-phases systems are frequently derived formally (e.g., the Baer Nunziato
systems). Interestingly, the first equation of (3.13),

∂tϕg + u ∂xϕg = ϕgϕl
ϕgµl + ϕlµg

(σg − σl)

with σg and σl given by (3.14), is similar to equation (3.6) that we derived formally in Section 3.1. In other words,
it can be viewed as a viscous generalization of equation (3.6). Also, one can recover the averaged two-phase
system (3.11) because ρg = Xgρ and ρl = Xlρ almost everywhere in Ω.
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We now explain three different approaches to derive the averaged two-phase system (3.13). The first one is
related to the process of the limit and the measure concept, the second one uses a discrete approximation as
in [Bresch et al., 2023a], and the third one uses WKB techniques as in [Bresch et al., 2022a].

Key insight 12. It is not mandatory to understand all the mathematical aspects of the different homogenization
approaches to obtain an averaged two-phase system from a two-phase model with interface. The following 3-
step procedure is sufficient. A) Bring the study back to a system of partial differential equations in one spatial
dimension that is valid over the entire space thanks to a quantity that allows you to know in which part of the
domain you are located. B) Create a small parameter that gives the scale of the mixture and place yourself
in a periodic configuration by simplifying the geometry considered. C) Carry out the asymptotic analysis when
this small parameter tends towards 0. To do this, you can choose between an approach involving a family of
measurements that encode the mixture, a discrete approach closer to what would be encoded numerically to solve
the system, or an approach with multi-scale development that require an intuition of the scales involved. In all
cases, the calculations are carried out in an idealized situation and the results will be used to better understand
the phenomena involved, creating a mutually beneficial interaction between mathematicians and physicists.

Approach 1. Process of the limit and the measure concept. This approach starts from a transport
equation and the mass and momentum equations for the sequences {Xε

g}ε>0, {ρε}ε>0, {uε}ε>0, respectively:

∂tX
ε
g + uε∂xX

ε
g = 0

∂tρ
ε + ∂x(ρεuε) = 0

∂t(ρεuε) + ∂x(ρε(uε)2)− ∂xσε = 0

where
σε = −p(ρε, Xε

g) + µ(Xε
g)∂xuε, (3.15)

where
p(ρε, Xε

g) = pg(ρε)Xε
g + pl(ρε)(1−Xε

g), µ(Xε
g) = µgX

ε
g + µl(1−Xε

g). (3.16)

with the initial data

Xε
g |t=0= Xg,0(x/ε), uε|t=0= u0, ρε|t=0= ρg,0X

ε
g,0 + ρl,0(1−Xε

g,0)

where ρi,0 and u0 depend on x and not on x/ε. Recall that σε is regular with no discontinuity across the interfaces
due to the boundary condition. Letting ε tend to zero, as explained in Section 2.2 where we treated the stability
of compressible Navier–Stokes, we can perform this limit in the density and velocity equations to obtain

∂tρ+ ∂x(ρu) = 0

and
∂t(ρu) + ∂x(ρu2)− ∂xσ = 0,

where σ is the strong limit of σε. Applying the method explained in the Appendix B.3 that is related to elliptic
systems, we use the expression (3.15) to write

∂xu
ε =

σε + p(ρε, Xε
g)

µ(Xε
g) . (3.17)
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We calculate the limit in this expression using the concept of measures as in proposition B.2. To find the
appropriate measure, we use the renormalization method by writing an equation on bρε, Xε

g) for all functions b
such that b ∈ Cc(Rξ × Rη). To do so, we use that

∂tX
ε
g + uε∂xX

ε
g = 0 (3.18)

and
∂tρ

ε + uε∂xρ
ε + ρε∂xu

ε = 0. (3.19)
We define ∂kb as the derivative of b with respect to its argument k. We then multiply equation (3.18) by
∂2b(ρε, Xε

g) and equation (3.19) by ∂1b(ρε, Xε
g). Adding the two yields

∂tb(ρε, Xε
g) + ∂x(uεb(ρε, Xε

g)) +
(
ρε∂1b(ρε, Xε

g)− b(x, ρε, Xε
g)
)
∂xu

ε = 0

for any b ∈ Cc(Rξ × Rη). Now we use relation (3.17) to write

∂tb(ρε, Xε
g) + ∂x(uεb(ρε, Xε

g)) +
(
ρε∂1b(ρε, Xε

g)− b(ρε, Xε
g)
)σε + p(ρε, Xε

g)
µ(Xε

g) = 0. (3.20)

We now introduce a sequence of measures νεt,x on Rξ × Rη as

〈νεt,x, b〉 := b(ρε(t, x), Xε
g(t, x)) for all b ∈ Cc(Rξ × Rη).

The information on νεt,x (from (3.20)) provides its strong convergence to νt,x in Cw([0,+∞) : M+(Rξ × Rη))
with the relation

〈νt,x, β〉 = b(ρε, Xε
g)

where b(ρε, Xε
g) is the weak limit of b(ρε, Xε

g) in L∞((0, T )× T) weak-star. If we couple this convergence with
the strong convergence on uε → u in L2(0, T ; C(T1)), we can calculate the limit in (3.20) and prove that the
limit of the measure νεt,x is the limit quantity νt,x that satisfies the following kinetic equation

∂tνt,x + ∂x(uνt,x)− ∂ξ
(
ξ
σ + p(ξ, η)

µ(η) νt,x

)
− σ + p(ξ, η)

µ(η) νt,x = 0. (3.21)

Using the following property of the limit of νt,x,

ν0,x = ϕg,0(x)δ(ρg,0(x),1) + ϕl,0(x)δ(ρl,0(x),0)

we deduce that
νt,x = ϕg(t, x)δ(ρg(t,x),1) + ϕl(t, x)δ(ρl(t,x),0). (3.22)

This means that we obtained the propagation in time of the decomposition of the defect measure into a convex
combination of two Dirac masses. A complete demonstration of (3.22) that is based on a uniform bound of ∂xu
in L1(0, T ;L∞(Ω)) can be found in [Bresch et al., 2022a]/ This is the key point in the mathematical proof but
we can assume this property to deduce the two-phase system.

Let us adopt this expression (3.22) for the limit quantity νx(t). Proposition B.2 implies that, for any function
b ∈ Cc(Rξ × Rη),

〈νt,x, b〉 = ϕg b(ρg, 1) + ϕl b(ρl, 0).

If we consider the function b such that b(ξ, η) = 1 in a neighborhood of (ρg, 1) and b(x, ξ, η) = 0 in a neighborhood
of (ρl, 0), we can recover the volume fraction ϕg equation from (3.21):

〈∂tϕg + ∂x(ϕgu), φ〉D′(Ω)×D(Ω) = 〈σ + pg
µg

ϕg, φ〉D′(Ω)×D(Ω)
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It can also be written as

∂tϕg + u∂xϕg =
(
σ + pg
µg

− ∂xu
)
ϕg in the sense of distributions. (3.23)

What remains now is to characterize σ. Taking the limit of (3.17) and using the strong convergence on σε yields

∂xu = σ〈νx(t), 1
µ(η)〉+ 〈νx(t), p(ξ, η)

µ(η) 〉.

We use (3.22) and that u, σ have no discontinuities to write

∂xu =
(
ϕg
µg

+ ϕl
µl

)
σ +

(
ϕg
pg
µg

+ ϕl
pl
µl

)

which implies the following expression for σ:

σ = ∂xu
ϕg
µg

+ ϕl
µl

−
ϕg
pg
µg

+ ϕl
pl
µl

ϕg
µg

+ ϕl
µl

.

We can define this limit as σ = −peff + µeff ∂xu with the following coefficients deduced from the previous
relationship:

µeff =
(
ϕg
µg

+ ϕl
µl

)−1

= µgµl
ϕgµl + ϕlµg

, peff =
ϕg
pg
µg

+ ϕl
pl
µl

ϕg
µg

+ ϕl
µl

= ϕgµlpg + ϕlµgpl
ϕgµl + ϕlµg

.

We can finally use this formulation to write explicitly the right-hand side of (3.23). Noting that

σ + pg − µg∂xu = (µeff − µg)∂xu− (peff − pg)

and
µeff − µg = ϕlµg(µl − µg)

ϕgµl + ϕlµg
, peff − pg = ϕlµg(pg − pl)

ϕgµl + ϕlµg

allows us to obtain the equation on ϕg as presented in (3.13):

∂tϕg + u∂xϕg = ϕgϕl
ϕlµg + ϕgµl

(
− (pg − pl) + (µl − µg)∂xu

)
.

To obtain the equation on ϕgρg, one needs to choose b for 〈νx(t), b〉 with b(x, ξ, η) = ξ in a neighborhood
of (ρg, 1) and 0 in a neighborhood of (ρl, 0) and use again equation (3.21) to obtain, after integration by part
with respect to ξ:

∂t(ϕgρg) + ∂x(ϕgρgu) = 0.

Considering b for 〈νx(t), b〉 with b(x, ξ, η) = ξ in a neighborhood of (ρl, 0) and 0 in a neighborhood of (ρg, 1)
yields the equivalent equation for phase l. Summing them yields the equation on ρ = ϕgρg + ϕlρl:

∂tρ+ ∂x(ρu) = 0.
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Figure 7: Sketch for the discrete approach. Phase g is white and phase l is gray.

Approach 2. Discrete approach following [Bresch et al., 2023a]. This approach provides a formal discrete
procedure to derive the relationship between the volume fraction ϕg and the expressions of the effective viscosity
µeff and effective pressure peff in (3.13)-(3.14).

In a situation where the fluids are separated (say, at a small scale ε), consider a point x(t) ∈ T at an interface
between fluid g on its right and fluid l on its left, for any time t (see Figure 7). We define xg(t) as the center of
the zone of pure fluid g on the right of x(t) and xl(t) as the center of the zone of pure fluid l on the left of x(t).
We define the small scales

εg(t) = xg(t)− x(t), εl(t) = x(t)− xl(t)

The variable ϕg(t) is the local volume fraction of fluid g at the point x(t):

ϕg(t) = εg(t)
εg(t) + εl(t)

,

and ϕl = 1 − ϕg. Using the Lagrangian derivative respect to the velocity u (i.e. Dtφ = ∂tφ + u∂xφ for any
function φ), we have

Dtεg(t) = u(t, xg(t))− u(t, x(t)), Dtεl(t) = u(t, x(t))− u(t, xl(t))

and therefore
Dt(εg + εl)(t) = u(t, xg(t))− u(t, xl(t)).

This allows us to write

(3.24)
Dtϕg(t) = (εg + εl)Dtεg − εgDt(εg + εl)

(εg + εl)2

= εl(u(t, xg(t))− u(t, x(t)))− εg(u(t, x(t))− u(t, xl(t)))
(εg + εl)2

The regularity of the solution is expected to be the following: at any time t, the pressure and the space derivative of
the velocity should be continuous in space in each pure region (namely, in (xl−εl, xl+εl) and in (xg−εg, xg+εg)),
but not at the point x(t). At this point, what it is expected is that the constraint p− µ∂xu is continuous (this
continuity in space stems from the law of reciprocal forces of Newton). It is convenient to define the approximate
space derivatives of the velocity dl(t) ≈ (∂xu)l and dg(t) ≈ (∂xu)g as

dl(t) = u(t, x(t))− u(t, xl(t))
εl(t)

, dg(t) = u(t, xg(t))− u(t, x(t))
εg(t)

.

As u is intended to converge strongly but ∂xu only weakly, dg(t) and dl(t) are not approximations of ∂xu(t, x(t)).
On the other hand, εl

εl + εg
dl+

εg
εl + εg

dg is intended to converge toward ∂xu. The formal computation to obtain

August 24, 2024 56



the equation on ϕg in (3.13) is straightforward when the two viscosity coefficients are equal. We thus first assume
this is the case before obtaining the general law for ϕg.

• Case where µg = µl = µ
The continuity of the effective flux combined with the regularity on pure zones is expressed as

pl(t)− µ dl(t) = pg(t)− µ dg(t) + r(εl + εg),

where pi(t) (for i = g, l) is a shorthand for pi(ρ(t, xi(t))) and r is a function measuring the error of the
derivative approximation such that r(x)→ 0 as x→ 0+. This can be rewritten

pg(t)− pl(t) = µ
εl(u(t, xg(t))− u(t, x(t)))− εg(u(t, x(t))− u(t, xl(t)))

εgεl
+ r(εl + εg),

and, thanks to (3.24) and letting εi → 0 for i = g, l,

pg(t)− pl(t) ≈ µ
(εg + εl)2

εgεl
Dtϕg = µ

ϕgϕl
Dtϕg,

which is exactly what is stated in (3.13).

• Case where µg 6= µl
Using dl(t) and dg(t), we can rewrite (3.24) as

Dtϕg(t) = εlεg
(εl + εg)2 (dg(t)− dl(t)).

We would like to express the limit, as εl + εg tends to 0, of the right-hand side term as a function of the
limit quantities. In other words, the limit of the right-hand side should be expressed as a function of the
limit unknowns ϕg, ϕl, pg, pl, ∂xu... We already know that εlεg

(εl + εg)2 converges to ϕgϕl. Only the term
dg − dl remains to be processed. As µgdg − µldl is intended to converge to pg − pl, it is quite natural to
try writing

dg − dl = a(µgdg − µldl) + (1− aµg)dg − (1− aµl)dl
with a ∈ R such that there exists b ∈ R satisfying

1− aµg = bϕg and 1− aµl = −bϕl.

In such a case one would have

lim
εl+εg→0

(dg − dl) = a(pg − pl) + b∂xu.

The linear system in a and b has a unique solution, a = 1
ϕlµg + ϕgµl

and b = µl − µg
ϕlµg + ϕgµl

, which finally
gives

Dtϕg = ϕgϕl
ϕlµg + ϕgµl

(pg − pl − (µg − µl)∂xu),

which is exactly the equation on ϕg.
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We do not discuss here the derivation of the homogenized equation on ρ = ϕgρg +ϕlρl and u. We instead focus
on how to recover the effective viscosity µeff and pressure peff . To that end, we use that the Cauchy stresses
defined by σl = −pl+µldl and σg = −pg+µgdg converge strongly to a same function σ because of the continuity
of the stress tensor. To obtain this stress tensor σ, we write

εl
εl + εg

dl + εg
εl + εg

dg = εl
εl + εg

pl + σl
µl

+ εg
εl + εg

pg + σg
µg

As the left hand-side converges to ∂xu, the strong convergence of the Cauchy stress yields that

∂xu =
(
ϕl
pl
µl

+ ϕg
pg
µg

)
−
(
ϕl
µl

+ ϕg
µg

)
σ.

and therefore the Cauchy stress limit is

σ = −ϕlµgpl + ϕgµlpg
ϕlµg + ϕgµl

+ µlµg
ϕlµg + ϕgµl

∂xu.

Assuming as before the form σ = −peff +µeff∂xu, the identification of the coefficients in the above formula yields
the coefficient µeff and peff of (3.14).

Approach 3. WKB technique as in [Bresch et al., 2022a] (see also [Bresch and Hillairet, 2015]). The
two-scale asymptotic technique is an intuitive averaging tool to perform an homogenization. Its key idea is to
assume that the unknowns depend on different scales of time and of space. We focus on its formal application
to the two-phase, compressible setting by using some compactness properties of the effective flux and using the
re-normalization approach for the transport equation. We follow the formal calculation performed in [Bresch
et al., 2022a]. It starts by assuming two additional scale dependencies at long time, τ = t

ε , and distance, y = x
ε .

The asymptotic system is written by assuming formally the following ansatz

Xε
g(t, x) = Xg,0

(
t,
t

ε
, x,

x

ε

)
+ εXg,1

(
t,
t

ε
, x,

x

ε

)
+O(ε2)

uε(t, x) = u0

(
t,
t

ε
, x,

x

ε

)
+ εu1

(
t,
t

ε
, x,

x

ε

)
+O(ε2)

ρε(t, x) = Xg

(
t,
t

ε
, x,

x

ε

)
ρεg(t, x) +

(
1−Xg

(
t,
t

ε
, x,

x

ε

))
ρεl (t, x)

µε(t, x) = Xε
g(t, x)µg + (1−Xε

g(t, x))µl

pε(t, x) = Xg

(
t,
t

ε
, x,

x

ε

)
pg(ρ) +

(
1−Xg

(
t,
t

ε
, x,

x

ε

))
pl(ρ)

assuming, for i = g, l, that

ρεi (t, x) = ρ0
i (t, x) +O(ε), Xg(t, τ, x, y) ∈ {0, 1} periodic in variables τ, y.

In essence, the reasoning consists in plugging these ansatz into the two-phase system (3.12) and identify the
equations related to different powers of ε. Starting with the mass equation for Xg, ∂tXg +uε∂xXg = 0 is written
as:

∂tXg,0 + 1
ε
∂τXg,0 + ∂τXg,1 + u0∂xXg,0 + 1

ε
u0∂yXg,0 + u0∂yXg,1 + u1∂yXg,0 = O(ε)

Then, we get at order ε−1,
∂τXg,0 + u0∂yXg,0 = 0 (3.25)
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and at order 1
∂tXg,0 + ∂τXg,1 + u0∂xXg,0 + u1∂yXg,0 + u0∂yXg,1 = 0. (3.26)

Equation (3.25) yields the behavior of Xg on a cell; this equation is compatible with the assumption that Xg

is an indicator function on the fast variables τ and y. Averaging the second equation (3.26) with respect to the
fast variables y yields:

∂tϕg,0 + ∂τXg,1 + u0∂xXg,0 + u0∂yXg,1 = −u1∂yXg,0 (3.27)

where we denote for now the average with respect to y on a cell with a bar. We deduce next that

ϕg = Xg = Xg,0 + εXg,1 +O(ε2) = ϕg,0 + εϕg,1 +O(ε2).

The main objective is now to characterize all the averaging quantities u0∂xXg,0, u1∂yXg,0 and u0∂yXg,1 to
deduce the equation on ϕg,0. We start by searching what is the behavior of the velocity u by plugging the ansatz
in the momentum equation. We obtain at order ε−2 that

∂y
(
(Xg,0µg + (1−Xg,0)µl)∂yu0

)
= 0.

Multiplying this equation by u0, integrating the result with respect to (t, τ, x, y), and using that

Xg,0µg + (1−Xg,0)µl ≥ min(µg, µl) > 0

we obtain that
∂yu0 = 0,

which means that u0 does not depend on y. Using that lack of dependency and the periodical boundary conditions,
the averaged terms on the left-hand side of (3.27) can be written as

u0∂xXg,0 + u0∂yXg,1 = u0∂xXg,0 = u0∂xϕg,0.

Then (3.27) becomes
∂tϕg,0 + ∂τϕg,1 + u0∂xϕg,0 = −u1∂yXg,0 (3.28)

Coming back to the equation (3.25) and averaging it with respect to y, we deduce that ϕg,0 does not depend on
τ because u0 does not depend on y. Focusing on the main part of the momentum equation, using the ansatz
yields at order ε−1:

ρ0(∂τu0 + u0∂yu0) + ∂yp0 = ∂y(µ0∂yu1) + ∂x(µ0∂yu0) + ∂y(µ0∂xu0),

where we used the shorthand p0 = Xg,0pg(ρg,0)+(1−Xg,0)pl(ρl,0) and µ0 = Xg,0µg +(1−Xg,0)µl. Multiplying
this equation by ∂τu0 and integrating with respect to (t, τ, x, y) yields that

∂τu0 = 0.

So u0 is independent of the fast variables τ and y. Thus this equation simplifies to

∂y(µ0∂yu1)− ∂yp0 = −∂y(µ0∂xu0).

Considering that ∂yφ = 0 implies φ− φ = 0 for any variable φ, we obtain for φ = µ0∂yu1 − p0 + µ0∂xu0 that

µ0∂yu1 − µ0∂yu1 − (p0 − p0) = −(µ0 − µ0)∂xu0.

August 24, 2024 59



By writing µ0 = µl + (µg − µl)Xg,0 and µ0∂yu1 = (µg − µl)Xg,0∂yu1, we can obtain

µ0∂yu1 = (p0 − p0)− (µ0 − µ0)∂xu0 + (µg − µl)Xg,0∂yu1,

which may be rewritten as

Xg,0∂yu1 = Xg,0
µ0

(
(p0 − p0)− (µ0 − µ0)∂xu0 + (µg − µl)Xg,0∂yu1

)
.

Therefore, averaging with respect to y and using that some quantities do not depend on y yields

Xg,0∂yu1 = ϕg,0(1− ϕg,0)
µl

(
(pg(ρg,0)− pl(ρl,0))− (µg − µl)∂xu0

)
+ ϕg,0

(
1− µg

µl

)
Xg,0∂yu1.

This relationship allows us to find that

Xg,0∂yu1 = −ϕg,0(1− ϕg,0)
µ0

(σg,0 − σl,0) with σi,0 = −pi(ρi,0) + µi∂xu0.

Using that
u1∂yXg,0 = −Xg,0∂yu1,

we obtain the formula of −u1∂yXg,0 that can be plugged into (3.28). Averaging equation (3.25) in y and using
that u0 does not depend on y yields

∂τϕg,0 = 0.

This result allows us to conclude also that −Xg,0∂yu1 does not depend on τ because ϕg,0 does not depend on τ .
Finally, differentiating (3.28) with respect to τ proves that ∂2

τϕg,1 = 0 and therefore that ∂τϕg,1 = 0 if it holds
initially. This yields the equation on ϕg in (3.13).

3.2.2 Two-phase system with temperature

The system equivalent to (3.11) with varying temperature θ is the heat-conducting, viscous compressible Navier–
Stokes system with i = g, l: 

∂tρi + ∂x(ρiu) = 0,
∂t(ρiu) + ∂x(ρiu2) = ∂xσi,

∂t(ρiei) + ∂x(ρieiu) = ∂xQi + σi∂xu

(3.29)

where
σi = µi∂xu− pi, Qi = κi∂xθ

where µi and κi (heat conductivity) are constant. The constitutive equations for the pressure pi and the internal
energy ei are

pi = cp,iρiθ, ei = cv,iθ,

where the thermal capacities cv,i and cp,i are also constant. The initial conditions are

ρi|t=0= ρi,0, u|t=0= u0, θ|t=0= θ0.

The homogenization (or averaging) of this system has been carried out in [Hillairet, 2019] by introducing the
same indicator function Xg as before such that

∂tXg + u ∂xXg = 0, with XgXl = 0 where Xl = 1−Xg.
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As in the case without temperature, this quantity indicates if we are in the zone g or in the zone l. As a result, the
thermal capacities cv,i, cp,i and the heat conductivity κi may be different for each phase. All these parameters are
assumed to be constant and strictly positive. We may rewrite the last equation of (3.29) in terms of temperature,
by using that qi = cv,iρi:

∂t(qiθ) + ∂x(qiθu) = ∂xQi + σi∂xu.

Using the Xg variable, the full system now reads
∂tρ+ ∂x(ρu) = 0,
∂tq + ∂x(qu) = 0,
∂t(ρu) + ∂x(ρu2) = ∂xσ,

∂t(qθ) + ∂x(qθu() = ∂xQ+ σ∂xu,

(3.30)

where
ρ = Xgρg + (1−Xg)ρl, σ = µ∂xu− p, Q = κ∂xθ

with the constitutive equations

µ = µgXg+µl(1−Xg), q = (cv,gXg+cv,l(1−Xg))ρ, κ = κgXg+κl(1−Xg), p = (cp,gXg+cp,l(1−Xg))ρθ.

To extend the validity of this system over the whole domain, [Hillairet, 2019] uses the continuity of the normal
stress and the thermal fluxes at the interfaces. Then, assuming that the initial data for Xg oscillates in space as

Xε
g |t=0= Xg,0(x/ε)

and using homogenization techniques aimed at obtaining the limit when ε → 0, [Hillairet, 2019] derives the
following homogenized system:

∂tϕg + u∂xϕg = ϕgϕl
ϕgµl + ϕlµg

(
(cp,gρg − cp,lρl)θ + (µl − µg)∂xu

)
∂t(ϕgρg) + ∂x(ϕgρgu) = 0
∂tρ+ ∂x(ρu) = 0,
∂t(ρu) + ∂x(ρu2) = ∂xσ

∂t(qθ) + ∂x(qθu) = ∂xQ+ σ∂xu,

(3.31)

with the constitutive equations

ρ = ϕgρg + ϕlρl,

q = ϕgcv,gρ+ + ϕlcv,lρl,

σ = µlµg
ϕlµg + ϕgµl

∂xu−
θ

ϕgµl + ϕlµg
(ϕgcp,gµlρg + ϕlcp,lµgρl)

Q = κgκl
ϕgκl + ϕlκg

∂xθ

(3.32)

The work of [Hillairet, 2019] rigorously develops the derivation of this two-phase system with one velocity for
viscous compressible fluids with temperature, thus generalizing what was done in the barotropic case in [Bresch
and Huang, 2011, Bresch and Hillairet, 2015, Bresch et al., 2022a, Bresch et al., 2023a]. The key point of this
analysis is to derive a family of estimates for the system considered (here the compressible Navier–Stokes equations
with temperature) that is compatible with discontinuous densities and smooth velocities. This analysis also yields
the family of solutions on which the homogenization process can be performed, highlighting which terms oscillate
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and which ones do not when obtaining the homogenized system. In the final step, [Hillairet, 2019] obtained the
multiphase system by plugging an explicit form on the measure families into the homogenized system. It is not
clear, however, if such an ansatz is preserved even at short time scales. In the case of isentropic systems, [Bresch
and Hillairet, 2015] and [Bresch and Hillairet, 2019] proposed to address this issue with a weak-strong uniqueness
argument. We note that when calculating the limit, the velocity field of the fluid has the additional property
∂xu ∈ L1(0, T ;L∞(Ω)). This property opens the possibility to construct solutions as convex combinations of
Dirac measures – with smooth weights ϕj and centers ρj – and then to show that any solution is necessarily
equal to these solutions at a short time scale.

How does such derivation works, formally speaking? Let us try to justify formally the derivation performed
in [Hillairet, 2019]. Note first that we have temperature conduction and diffusion of the velocity field. In other
words, there is no step discontinuity for σε = µ(Xε

g)∂xuε − p(ρε, Xε
g , θ

ε) with p(ρε, Xε
g , θ

ε) = cp(Xε
g)ρεθε and

no discontinuity on the temperature flux Qε = κ(Xε
g)∂xθε, which ensures compactness in space. We define the

two respective limits by σ and Q. As in the case without temperature, we use this strong convergence in space
to rewrite the equations on σε and Qε as:

∂xu
ε = 1

µ(Xε
g)σ

ε +
p(ρε, Xε

g , θ
ε)

µ(Xε
g)

and
∂xθ

ε = 1
κ(Xε

g)Q
ε.

This allows us to take the limit in products on both right-hand sides by using the time derivative control of Xε
g

and the bound on the space derivative of Qε and σε to obtain that

∂xu = 〈 1
µ(Xg)

〉σ + 〈p(ρ,Xg, θ)
µ(Xg)

〉

and
∂xθ = 〈 1

κ(Xg)
〉Q

where 〈g〉 = 〈νx, g〉 is the weak limit of any function gε. We assume, as in the case without temperature, that
the measures associated to the weak limits are characterized by a convex combination of two Dirac masses (see
equation (3.22)):

νx(t) = ϕg(t, x)δ(ρg(t,x),1) + ϕl(t, x)δ(ρl(t,x),0).

This provides the following equations of σ and Q:

σ = 1
〈 1
µ(Xg)〉

∂xu−
1

〈 1
µ(Xg)〉

〈p(ρ,Xg, θ)
µ(Xg)

〉 = 1
ϕg
µg

+ ϕl
µl

∂xu−
1

ϕg
µg

+ ϕl
µl

(
cp,gϕgρg
µg

+ cp,lϕlρl
µl

)
θ

and
Q = 1

〈 1
κ(Xg)〉

∂xθ = 1
ϕg
κg

+ ϕl
κl

∂xθ

We now calculate the limit in the momentum equation and in the temperature equation by using a similar
convergence as described in Approach 1 in Section 3.2.1, which yields

∂t(ρu) + ∂x(ρu2) = ∂xσ

and
∂t(qθ) + ∂x(qθu) = ∂xQ+ σ∂xu
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where ρ and q are the weak limits of ρε and qε (i.e. ρ = ϕgρg + ϕlρl and q = ϕgcp,gρg + ϕlcp,lρl). For the
equation on ϕg, we obtain a relationship that is similar to that of the barotropic case:

∂tϕg + u∂xϕg = ϕgϕl
(ϕlµg + ϕgµl)

(
(pg(ρg, θ)− pl(ρl, θ)) + (µl − µg)∂xu

)
and therefore we obtain the final equation on ϕg by recalling that pg(ρg, θ) = cp,gρgθ and pl(ρl, θ) = cp,lρlθ.

Key insight 13. This Section focused on the case with thermal conductivity (i.e. no oscillations on the temper-
ature), which greatly simplifies the calculations and the limit model that is obtained if the thermal conductivity
is negligible. Such a study is possible with more quantities that oscillate than this case. This is the subject of a
forthcoming paper: the relaxed system is much richer physically and mathematically.

Some insights into the multidimensional case. The derivation of a two-phase system in more than one spatial
dimension using the homogenization procedure is an open problem when two different pressure laws and different
viscosities are required. With identical constant viscosities, the homogenization with fast-oscillating initial density
(averaging procedure) has been investigated in [Hillairet, 2007] and [Plotnikov and Sokolowski, 2012] starting
with global weak solutions that justify a kinetic equation on the defect measures. More specifically, one can
justify the following coupled macroscopic-kinetic system:

∂tρ+ div(ρu) = 0,
∂t(ρu) + div(ρu⊗ u)− µ∆u− (λ+ µ)∇divu+∇〈νx, p(ξ)〉 = 0,

∂tνx + div(uνx)− 1
λ+ 2µ

(
∂ξ(ξνx)G− ∂ξ(ξp(ξ)νx)

)
= 0

(3.33)

where G = (2µ + λ)divu − 〈νx, p(ξ)〉. To characterize the limit and show that it may be written as a two-
phase system, we need more information on the unknowns. Specifically, more information on divu is important
because having appropriate bounds on divu allows one to follow the interfaces and therefore opens the possibility
to characterize the macroscopic limit. This is can be done by using the Hoff’s solutions framework as first
mentioned in [Bresch and Huang, 2011] and then fully developed in [Bresch and Hillairet, 2015]. Such solution
framework starts with

Theorem 3.1. Assume Ω = T3. Given a positive ρ0 ∈ L∞(Ω) and u0 ∈ H1(T3), there exists T0 > 0 and a
finite energy, weak solution (ρ, u) to the compressible Navier–Stokes equations that satisfy the initial conditions
such that

• ρ ∈ L∞((0, T0)× T3) and ∇u ∈ L∞((0, T );L2(T3))

• √ρ∂tu ∈ L2((0, T0)× T3) and Pu ∈ L2((0, T0);H2(T3))

• G := (λ+ 2µ)divu− p(ρ) ∈ L2(0, T0;H1(T3))

where T0 depends only on ‖ρ0‖L∞(T3) and ‖u0‖H1(T3).

Then the following result is proven:

Theorem 3.2. Let initial data (ρ0
n, u

0
n) ∈ L∞(T3)×H1(T3) satisfy

• ‖ρ0
n‖L∞(T3)+‖u0

n‖H1(T3)≤ C

• 0 < 1/C ≤ ρ0
n(x)
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• The Young measures ν0
n associated with ρ0

n converge weakly to

ν0 = ϕ0
gδρ0

g(x) + (1− ϕ0
g)δρ0

l
(x) on Ω.

Then, given p(z) = azγ with γ > 1,

• There exists T > 0 which does not depend on n and a solution (ρn, un) of the compressible Navier–Stokes
equation in the sense given above.

• Up to the extraction of a subsequence

νn ⇀ ν = ϕgδρg + (1− ϕg)δρl , un ⇀ u, pn ⇀ p

• (ϕg, ρg, u, p) is solution of the homogenized two-phase system.

Remark 3.4. Interestingly, this result holds for the same pressure state law p(z) = azγ for the two phases
because of the absence of the function Xg in the mathematical analysis. This result has been extended recently
in [Bresch et al., 2022a] in one spatial dimension. The multidimensional case is an open problem if the phases
do not have the same viscosities.

4 Different two-phase averaged viscous systems (Nonlinear weak stability)
This Section reviews different formulations of two-phase averaged systems with viscous effects. We discuss well-
posedness with a focus on weakly nonlinear stability in the Leray sense, listing the important quantities and
properties that allow one to conclude such stability.

4.1 Averaged two-phase systems with one velocity field

Averaged two-phase flows with heterogeneous pressure. Assume that, instead of the indicator function Xi

introduced in the previous Section, which solves an advection equation for ϕg, we consider an advected function
c satisfying the equation

∂tc+ u · ∇c = 0 with the constraint 0 ≤ c ≤ 1

that is coupled with the mass and momentum equations
∂tρ+ div(ρu) = 0,
∂t(ρu) + div(ρu⊗ u)− div(µ(ρ, c)D(u)) +∇p(ρ, c) = 0,
ρu|t=0= m0, ρ|t=0= ρ0, c|t=0= c0.

(4.1)

Physically, c may be for instance the entropy S for the compressible Navier–Stokes equations with a pressure
p(ρ, S) = ρS and µ(ρ, S) = µ = cst, λ(ρ, S) = λ = cst, such as mentioned in [Bresch et al., 2002]. It could
also be the chemical potential µp, as considered by [Michoski and Vasseur, 2008] with a pressure

p(ρ, µp) = C1ρ
γ1(µp) − C2ρ

γ2(µp) + C3ρ
γ3(µp)

and an appropriate viscous term µ(ρ, µp) in one dimension. In all these cases the pressure depends on two
quantities, one that satisfies a transport equation (ρ) and the other that satisfies an advection equation (c). The
proof of the global existence of weak solutions depends on whether the spatial dimension is one or higher. In
one dimension, [Michoski and Vasseur, 2008] have proved global existence of strong solutions for a pressure state
law that increases as a function of density with a viscosity µ(ρ, µp) that depends on µp and ρ and satisfies the
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following constraint: µ(ρ, µp) = ρ∂ρp(ρ, µp)ψ′(p(ρ, µp)), where ψ(p) is a function of pressure restricted by the
form of its derivative in p. The proof is based on the standard energy estimates and on a generalization of the
BD entropy (see (2.39)) related to the velocity u + ρ−1ψ′(p). We refer the readers interested in learning more
about this proof to [Michoski and Vasseur, 2008].

Averaged two-phase flows with algebraic closure. This system with only one velocity field is:

∂t(ϕgρg) + div(ϕgρgu) = 0,
∂t(ϕlρl) + div(ϕlρlu) = 0,
∂t((ϕgρg + ϕlρl)u) + div((ϕgρg + ϕlρl)u⊗ u)− div((ϕgµg(ρg) + ϕlµl(ρl))D(u))

−∇((ϕgλg + ϕlλl)divu) +∇(pg(ρg)) = (ϕgρg + ϕlρl)f,
pg(ρg) = pl(ρl).

(4.2)

This system can be written in a more appropriate way for our purpose by defining ρ = ϕgρg and Z = ϕlρl and
solving the algebraic constraint

ρ

ρg
+ Z

ρl
= 1, pg(ρg) = pl(ρl), (4.3)

to write pg(ρg) = p(ρ, Z). The rewritten system becomes
∂tρ+ div(ρu) = 0,
∂tZ + div(Zu) = 0,
∂t((ρ+ Z)u) + div((ρ+ Z)u⊗ u)− div((αgµg(ρg) + αlµl(ρl))D(u))

−∇((αgλg + αlλl)divu) +∇(P (ρ, Z)) = (ρ+ Z)f,

(4.4)

Different authors have studied such a system when assuming µg = µl = cst and λg = λl = cst. We refer the
readers interested in learning more about the global existence of weak solutions (and therefore nonlinear weak
stability) to [Novotný and Pokorný, 2020] and references therein, such as those of [Maltese et al., 2016,Vasseur
et al., 2019].

Averaged two-phase flows with PDE closure. Recently, [Novotný, 2020] has studied a single velocity system that
mimics an averaged mixture with no relaxation term in the equation related to the fraction:

∂tϕg + u · ∇ϕg = 0, ϕl = 1− ϕg with 0 ≤ ϕg ≤ 1
∂t(ϕgρg) + div(ϕgρgu) = 0,
∂t(ϕlρl) + div(ϕlρlu) = 0,
∂t((ϕgρg + ϕlρl)u) + div((ϕgρg + ϕlρl)u⊗ u)− div((ϕgµg(ρg) + ϕlµl(ρl))D(u))

−∇((ϕgλg(ρg) + ϕlλl(ρl))divu) +∇(ϕgpg(ρg) + ϕlpl(ρl)) = (ϕgρg + ϕlρl)f,

(4.5)

where ϕi is the volume fraction of each phase i = g, l, respectively. The author has succeeded to establish the
global existence of weak solutions when the viscosities are assumed constant. To do so, the system is written as
before in terms of ρ = ϕgρg, Z = ϕlρl and choosing the same viscosities for all phases, µg = µl = µ = cst and
λg = λl = λ = cst:

∂tϕg + u · ∇ϕg = 0 with 0 ≤ ϕg ≤ 1,
∂tρ+ div(ρu) = 0,
∂tZ + div(Zu) = 0,
∂t((ρ+ Z)u) + div((ρ+ Z)u⊗ u)− µ∆u− (λ+ µ)∇divu+∇p(f(ϕg)ρ, g(ϕg)Z) = (ρ+ Z)f,
ρu|t=0= m0, ρ|t=0= ρ0, Z|t=0= Z0, ϕg|t=0= ϕg,0.

(4.6)
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with a specific pressure p, and f and g depending on pg and pl. For instance, as presented in [Novotný, 2020],
if pg(ρg) = ρ

γg
g and pl(ρl) = ργll then

p = ϕgρ
γg + ϕlρ

γl
l = ϕ1−γg

g ργg + ϕ1−γl
l Zγl =

(
ϕ

1−γg
γg

g ρ

)γg
+
(
ϕ

1−γl
γl

g Z

)γl
.

This new system is solved by adapting the usual proof by P.–L. Lions and E. Feireisl as in Section 2.2. This
implies to propose an extension of renormalized solutions of the transport equation to more continuity equations
with renormalizing functions of several variables. The property of the effective flux and the assumptions related
to the pressure state law are essential elements in this proof of nonlinear stability.

Key insight 14. Two-phase flow models may be proposed with a pure advective equation on the volume fraction
and two transport equations on the two fractional densities. When the viscosities are assumed to be constant, it
is possible to rewrite the system in a way suitable to adapting the proof by P.–L. Lions and E. Feireisl (Section
2.2) that was designed for single phase systems. The renormalization with more than one quantities and the
effective flux properties play a crucial role when performing this adaptation.

4.2 Averaged two-phase systems with two velocity fields

We focus here on two-phase systems representing mixtures. Drift-flux systems, which we consider as simplifications
of mixture systems, are discussed in Section 5.2. This Section is thus complementary to the handbook of [Bresch
et al., 2018]. We review results coming from this handbook and add comments on what has been done since
2012.

4.2.1 Two-phase system with pressure algebraic closure

We consider the system

∂t(ϕgρg) + div(ϕgρgug) = 0,
∂t(ϕgρgug) + div(ϕgρgug ⊗ ug)− 2div(ϕgµ(ρg)D(ug))−∇(ϕgλ(ρg)divug)

+∇(ϕgpg(ρg)) = ϕgρgf + pint,g∇ϕg + Fint,g

∂t(ϕlρl) + div(ϕlρlul) = 0,
∂t(ϕlρlul) + div(ϕlρlul ⊗ ul)− 2div(ϕlµ(ρl)D(ul))−∇(ϕlλ(ρl)divul)

+∇(ϕlpl(ρl)) = ϕlρlf + pint,l∇ϕl + Fint,l

ϕg + ϕl = 1,
pg(ρg) = pl(ρl) = p

(ϕgρg)|t=0= Rg,0, (ϕgρgug)|t=0= mg,0,

(ϕlρl)|t=0= Rl,0, (ϕlρlul)|t=0= ml,0,

(4.7)

where pint,g, pint,l, Fint,g and Fint,l respectively encode the pressure and drag term at the interface, which must
be defined.
One-dimensional case. As indicated in [Bresch et al., 2012], in the one-dimensional case, there is a global
existence of weak solution in the case µg(ρg) = agρg, µl(ρl) = alρl and λg(ρg) = λl(ρl) = 0 for ag, al positive
constants and nonlinear pressure laws specified below. Assuming d = 1, we have the following result
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Theorem 4.1. Assume Fint,g = Fint,l = 0, pint,g = pg and pint,l = pl where p = pg = ρ
γg
g = ργll = pl and f = 0.

Let γg > 1 and γl > 1 and the initial data (Rg,0,mg,0) and (Rl,0,ml,0) satisfy initial data assumptions related
to the energy and to the BD entropy and assume |mg,0|2+α0/R1+α0

g,0 and |ml,0|2+α0/R1+α0
l,0 in L1(Ω) for some

constant α0. Then for any T > 0, there exists a global weak solution (ϕg, ϕl, ρl, ρg, ul, ug) to the two-phase
system.

The proof relies on an original approximate system with the viscosities µ(ρg) = ρg and µ(ρl) = ρl. Rg = ϕgρg
and Rl = ϕlρl are respectively replaced by Rg + εRβg , Rl + εRβl with β depending on γg and γl in [1/4, 1/2).
An extra pressure term is added for each phase, respectively ε1/2(R1/2

g + RΛ
g ) and ε1/2(R1/2

l + RΛ
l ) with Λ =

2 max(γg, γl). This perturbation allows one to construct a global strong solution with Ri far from the vacuum
and satisfying uniformly the energy, the BD entropy and an extra estimate on Rg|ug|2+δ0 and Rl = |ul|2+δ0 .
The proof also needs a Lemma that allows one to deduce useful information on ρg, ρl when some information is
known on Rg and Rl. When these elements are in place, the line of reasoning follows that used for single-phase
systems.

We provide for the reader’s convenience the energy estimate associated to the system and the BD entropy as
described in [Bresch et al., 2012]. The framework of Theorem 4.1 above allows us to rewrite the system in terms
of Rg = ϕgρg and Rl = ϕlρl:

∂tRg + ∂x(Rgug) = 0,

∂t(Rgug) + div(Rgu2
g)− ag∂x(Rg∂xug) = − γg

γg − 1Rg∂x(ργg−1
g )

∂tRl + ∂x(Rlul) = 0,

∂t(Rlul) + div(Rlu2
l )− al∂x(Rl∂xul) = − γl

γl − 1Rl∂x(ργl−1
l )

(4.8)

coupled with an algebraic system on ρg, ρl that is obtained using the relationships ϕg = Rg/ρg, ϕl = Rl/ρl,
ϕg + ϕl = 1, and pg = ρ

γg
g = ργll = pl. This algebraic system reads{

Rgρl +Rlρg = ρgρl,

ργgg = ργll .
(4.9)

Energy estimates. To obtain the energy inequality for each phase, we start by multiplying the corresponding
momentum equation by ug, ul, which yields:

1
2
d

dt

∫
Ω
Rg|ug|2+ag

∫
Ω
Rg|∂xug|2+ γg

γg − 1

∫
Ω
Rgug∂x(ργg−1

g ) = 0

and
1
2
d

dt

∫
Ω
Rl|ul|2+al

∫
Ω
Rl|∂xul|2+ γl

γl − 1

∫
Ω
Rlul∂x(ργl−1

l ) = 0.

Integrating by parts and using the equations on Rg and Rl, we can write
γg

γg − 1

∫
Ω
Rgug∂x(ργg−1

g ) = γg
γg − 1

∫
Ω
ργg−1
g ∂tRg

= d

dt

∫
Ω
Rgeg(ρg) +

∫
Ω
p∂t

(
Rg
ρg

)
γl

γl − 1

∫
Ω
Rlul∂x(ργl−1

l ) = γl
γl − 1

∫
Ω
ργl−1
l ∂tRl

= d

dt

∫
Ω
Rlel(ρl) +

∫
Ω
p∂t

(
Rl
ρl

)
(4.10)
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with eg =
∫ ρg

0 (pg(τ)/τ2)dτ and el =
∫ ρl

0 (pl(τ)/τ2)dτ . Therefore adding the g and l contributions together
yields: ∑

i=g,l

(1
2
d

dt

∫
Ω
Ri|ui|2+ d

dt

∫
Ω
Riei(ρi)

)
+ ai

∫
Ω
Ri|∂xui|2= −

∑
i

∫
Ω
p∂tϕi = 0 (4.11)

Then the quantity
sup

t∈(0,T )

(1
2

∫
Ω
Ri|ui|2+

∫
Ω
Riei(ρi)

)
+ ai

∫ T

0

∫
Ω
Ri|∂xui|2

is bounded for each phase i = g, l, and in consequence we find for each phase the bound∣∣∣∫ T

0

∫
Ω
p∂tϕi

∣∣∣,
which controls the energy exchange. Note that this result is no longer valid when distinct pressures are considered.

BD entropy. For the BD entropy, the new unknowns are ai logRi for i = g, l. As in the single-phase case (see
Section 2.2.2 for a proof of the relationship (2.39)), the equation satisfied by wi = ui + ai∂x logRi for i = g, l is

∂t(Riwi) + ∂x(Riuiwi) + Ri
ρi
∂xp = 0.

Multiplying this equation by wi = ui + ai∂x logRi and using the mass equation yields
d

dt

∫
Ω
Ri
|wi|2

2 +
∫

Ω

Ri
ρi
wi∂xp = 0.

Observing that ∫
Ω

Ri
ρi
wi∂xp = d

dt

∫
Ω
Riei(ρi) +

∫
Ω
p∂tϕi + ai

∫
Ω

1
ρi
∂xp ∂xRi

for i = g, l, we can write the above equality as
d

dt

∫
Ω
Ri
|wi|2

2 + d

dt

∫
Ω
Riei(ρi) +

∫
Ω
p∂tϕi + ai

∫
Ω

1
ρi
∂xp ∂xRi = 0.

We use the following equality∫
Ω

1
ρi
∂xp ∂xRi =

∫
Ω
∂xp ∂x

(
Ri
ρi

)
+
∫

Ω
Rip

′
i(ρi)

|∂xρi|2

|ρi|2

to multiply the i = g instance by al and the i = l instance by ag. Integrating them in time and adding them
yields the following BD entropy inequality:

sup
t∈[0,T ]

(
al

(∫
Ω
Rg
|wg|2

2 +
∫

Ω
Rgeg(ρg)

)
+ ag

(∫
Ω
Rl
|wl|2

2 +
∫

Ω
Rlel(ρl)

))
(t)

+agal

(∫ T

0

∫
Ω
Rgp

′
g(ρg)

|∂xρg|2

|ρg|2
+
∫ T

0

∫
Ω
Rlp
′
l(ρl)
|∂xρl|2

|ρl|2

)
≤ C < +∞

(4.12)

if the initial energy is bounded and if the initial data satisfy(
al

(∫
Ω
Rg
|wg|2

2 +
∫

Ω
Rgeg(ρg)

)
+ ag

(∫
Ω
Rl
|wl|2

2 +
∫

Ω
Rlel(ρl)

))
(0) ≤ C.

The proof is concluded by using the energy estimate to deduce that the right-hand side is bounded. Similar
relationships may be obtained in the multi-dimensional case.
Multi-dimensional case. The global existence of weak solution has been shown in a similar way by [Bresch
et al., 2010] when capillarity quantities are included into the equation system. It would be useful to obtain similar
results without capillarity by the recent studies done on single-phase system with density-dependent viscosities.

August 24, 2024 68



4.2.2 Two-phase system with pressure PDE closure

The two-phase system with a PDE closure for the pressures reads

ϕg + ϕl = 1,

∂tϕg + uI · ∇ϕg = ϕgϕl
ϕgµl + ϕlµg

(pg(ρg)− pl(ρl)),

∂t(ϕgρg) + div(ϕgρgug) = 0,
∂t(ϕgρgug) + div(ϕgρgug ⊗ ug)

− 2div(ϕgµg(ρg)D(ug))−∇(ϕgλg(ρg)divug) + ϕg∇pg(ρg) = ϕgρgf

∂t(ϕlρl) + div(ϕlρlul) = 0,
∂t(ϕlρlul) + div(ϕlρlul ⊗ ul)

− 2div(ϕlµl(ρl)D(ul))−∇(ϕlλl(ρl)divul) + ϕl∇pl(ρl) = ϕlρlf

(ϕg)t=0 = ϕg,0, (ϕgρg)|t=0= Rg,0, (ϕgρgug)|t=0= mg,0,

(ϕlρl)|t=0= Rl,0, (ϕlρlul)|t=0= ml,0,

(4.13)

where uI is the interface velocity, which needs to be specified according to the physical situation considered.
There are no real results on the global existence of weak solutions for this system. The main difficulties stems
from the non-conservative quantities ϕg∇pg(ρg) and ϕl∇pl(ρl), from the relaxation quantity, and from the shear
and bulk viscosities that do not have a priori relationships. We surmise that this limits severely the approach
used to treat density-dependent viscosities. To our knowledge, the well-posedness of the two-phase system with
a PDE closure for the pressures is an open problem without preliminary results.

5 Simplified two-phase averaged systems (Singular limits)

Key insight 15. The averaged multiphase models can be rewritten in different forms depending on the physical
system considered. This reformulation can be as a system with algebraic relationships by using relaxation limits,
as a drift-flux system coupling a reference velocity to a relative, drift velocity, or as dimensionless system. This
last reformation allows one to simplify the model formally while keeping as much of the physics of the analyzed
system as possible. This section aims at justifying these approximations mathematically and explaining the
stability procedure that yields the different asymptotic formula obtained when specific small parameters vanish.

5.1 Relaxation limit

The relaxation limit allows one to go from the single-velocity, two-phase system with PDE closure (see (3.13)-
(3.14)) to the single-velocity, two-phase system with algebraic constraint (see equation (4.7) for ug = ul = u)
when the viscosities tend to zero. This limit has been studied by [Burtea et al., 2023]. We focus on the single-
velocity case with constant viscosities µ and λ. We consider the following 2D system with PDE closure equivalent
to (3.13) with µg = µl = 2µ+ λ:

ϕg + ϕl = 1,

∂tϕg + u · ∇ϕg = ϕgϕl
2µ+ λ

(pg(ρg)− pl(ρl)),

∂t(ϕiρi) + div(ϕiρiu) = 0,
∂t(ρu) + div(ρu⊗ u)− µ∆u− (λ+ µ)∇divu+∇p+ βρu = 0
p = ϕgpg(ρg) + ϕlpl(ρl), ρ = ϕgρg + ϕlρl

(5.1)
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for i = g, l with
pi(s) = Ais

γi for all s ≥ 0, and γg > γl,

where Ag and Al are two constants and β > 0 is a fixed parameter.

The relaxation parameter is the viscosity 2µ + λ. The last term in the momentum equation represents
a drag term with constant coefficient β, which is essential to obtain the sought convergence. An interesting
mathematical open problem would be to allow such parameter β to vanish. The limit of this system (5.1) is the
system with algebraic constraint (4.7) with ug = ul = u, pint,i = pg = pl, Fint,i = βρu and f = 0:

ϕg + ϕl = 1,
∂t(ϕiρi) + div(ϕiρiu) = 0,
∂t(ϕiρiu) + div(ϕiρiu⊗ u) +∇p+ βρu = 0
p = pg(ρg) = pl(ρl), ρ = ϕgρg + ϕlρl.

(5.2)

This is an important result that indicates that a system with algebraic constraint has to be inviscid and, con-
versely, that the two-phase compressible system with PDE closure has a parameter depending on the viscosities
even if it is usually neglected because it is considered small.

The main result in [Burtea et al., 2023] provides a rate of convergence from the system with relaxation to the
system with identical pressures assuming an initial rate of convergence of some quantities related to the initial
data at the order

√
2µ+ λ. This result is obtained with techniques linked to partially dissipative, first-order,

quasilinear systems with the following general form:

∂tw +
d∑
j=1

∂jFj(w)− ε
d∑

i,j=1
∂j(Bij(w)∂jw) = Q(w)

ε

where
Q(w) =

(
0

q(w)

)
,

B is a partially degenerate matrix, Fj are smooth functions from Rd → Rd, q(w) ∈ Rd2 with d2 + d1 = d where
0 in Q(w) is 0 ∈ Rd1 , w ∈ Rd, and ε > 0 is a given parameter. [Burtea et al., 2023] indicate how to recast
the system (5.1) in this form with ε = λ + 2µ. Partially dissipative means that the system may have second
derivatives on some unknowns and no second-order derivatives on others; this is for instance the case of the
compressible Navier-Stokes system and the system (5.1).

These types of quasilinear models govern the dynamics of physical system out of thermodynamic equilibrium.
The constant ε may be seen as a relaxation time that is in practice small. A first approach has been proposed to
obtain results on the global-in-time existence with initial data around a constant equilibrium. This approach is
restricted to systems verifying the Shizuta Kawashima (SK) condition, which is an explicit linear stability criterion
ensuring that all the components of w decay as t→ +∞.

[Burtea et al., 2023] contains an overview of an extension of these results to more general quasilinear systems
done by [Yong, 2004]. This extension involves a series of advanced techniques that illustrates the complexity of
obtaining relaxation limits for such systems. The study of [Yong, 2004] proposes a second condition that consists
of the existence of an entropy that provides a symmetrization compatible with the dissipation Q.

Inspired by the work of [Beauchard and Zuazua, 2011], [Crin-Barat and R.Danchin, 2022,Danchin, 2001] con-
sider non-conservative partially dissipative hyperbolic systems that are Friedrichs-symmetrizable and construct a
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Lyapunov functional implying that, close to equilibrium, the low frequencies of the solutions of the nonlinear
system behave, qualitatively, like a heat equation. They also highlight a damped mode that has better decay
properties in low frequencies than in high frequencies and deduce from it a crucial regularity enhancement to
close the a priori estimates.

The method in [Crin-Barat and R.Danchin, 2022] is flexible enough to be adapted to the two-phase system
for well-posedness purposes but issues arise when we want to have uniform estimates to justify the limit from
the system with relaxation to the system with algebraic constraint. The first obvious reason is that the starting
PDEs with relaxation are not all conservation laws because the equations for the volume fractions cannot be
written in conservative form. The second reason is that the entropy naturally associated with this system is not
positive definite since it is linear with respect to the volume fractions. Another issue concerns the results on the
global existence of solutions because the associated quasilinear system does not satisfy the SK condition as it
admits the eigenvalue 0. This situation, however, is not too degenerate because the eigen-space associated to the
eigenvalue 0 is of dimension 1 and because, roughly speaking, the non-degenerate part (i.e. the part associated
to non-zero eigenvalues) fulfills the SK condition. This allows [Burtea et al., 2023] to isolate the undamped mode
and rewrite the remaining system as a partially dissipative quasilinear system satisfying the SK condition. The
undamped mode is then seen as a parameter and always appears in nonlinear terms as a prefactor of a function of
the damped variable. Note, finally, that the unknowns chosen by [Burtea et al., 2023] are related to the drift-flux
system presented in the next section.

5.2 The drift-flux system with no temperature equations

In a drift-flux systems, the velocities of the phases are recast as a reference velocity and a relative (drift) velocity.
We focus on how to derive a drift-flux system from a two-phase system with two compressible phases by using the
work of [Ambroso et al., 2008]. We also highlight aspects of this derivation that have similarities with the drift
flux model we propose in Part I, Section 4 [Narbona-Reina et al., 2024] so as to comment on the assumptions
that may or may not be done when modeling volcanic conduit flows.

We first consider the following system for unknowns u = (ϕg, ϕgρg, ϕlρl, ϕgρgug, ϕlρlul),

ϕg + ϕl = 1,
∂t(ϕgρg) + div(ϕgρgug) = Γ(u),
∂t(ϕgρgug) + div(ϕgρgug ⊗ ug) +∇(ϕgpg) = pI(u)∇ϕg

+ ϕgρgfg(u) + Λ(u)|ul − ug|(ul − ug),
∂t(ϕlρl) + div(ϕlρlul) = −Γ(u),
∂t(ϕlρlul) + div(ϕlρlul ⊗ ul) +∇(ϕlpl) = pI(u)∇ϕl

+ ϕlρlfl(u) + Λ(u)|ug − ul|(ug − ul),
∂tϕg + uI(u) · ∇ϕg = Θ(u)(pg − pl)

(5.3)

where ϕi, ρi and ui are the void fraction, the density and the velocity of the phase i (for i = g, l), respectively.
External forces are denoted by fi, Λ and Θ are positive relaxation functions, and the source term Γ corresponds
to the mass transfer from phase g to phase l. The two functions uI and pI are the so-called interfacial velocity
and interfacial pressure, which are convex combinations of ug and ul, and pg and pl, respectively:

uI(u) = βu(u)ul + (1− βu(u))ug

pI(u) = βp(u)pl + (1− βp(u))pg
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with βu, βp ∈ [0, 1]. The study of [Ambroso et al., 2008], assuming

Λ(u) = λ(u)
ε2 , Θ(u) = θ(u)

ε2 , Γ(u) = εγ(u), (5.4)

and defining the following drift variables

ρ = ϕgρg + ϕlρl, ρY = ϕρg, u = Y ug + (1− Y )ul,
w = ug − ul, p = ϕgpg + ϕlpl, q = pg − pl,

(5.5)

proves the following proposition:

Proposition 5.1 (Proposition 3.1 in the numbering of [Ambroso et al., 2008]). Let us denote v = (ρ, ρY, ρu)T
where ρ > 0 and ρY/ϕg ∈ [0, 1], and assume that Γ, λ, and fi for i = g, l only depend on v. Consider the
system 

∂tρ+ div(ρu) = 0,
∂t(ρY ) + div(ρuY + ρY (1− Y )w) = Γ(v),
∂t(ρu) + div(ρu⊗ u+ pId + ρY (1− Y )w ⊗ w) = ρY fg(v) + ρ(1− Y )fl(v),

(5.6)

where
|w|w = ρY (1− Y )

Λ(v)

(
fg(v)− fl(v) +

(
1

ρl(v) −
1

ρg(v)

)
∇p
)

and with the pressure law p = P(v) given by the solution (p, ϕg) of the 2× 2 nonlinear system

p = Pl(ρ(1− Y )/(1− ϕg)),

Pl(ρ(1− Y )/(1− ϕg)) = Pg(ρY/ϕg).

This system (5.6) is closed and its solutions correspond to equilibrium solutions of the two-phase pressure model
(5.3) up to the first order in ε.

We detail the derivation of this proposition in the two following sections. The first is dedicated to writing the
system with the drift variables (ρ, Y, u, w, p, q) and the second makes the ansatz to derive the drift-flux system
assuming an appropriate relaxation effect that drives the closure of the two velocity fields.

5.2.1 Writing the two-phase system with drift variables

Many algebraic steps are involved when writing the mixture system from (5.3) using the new variables (5.5).
To simplify the explanation of this conversion, we remove the dependencies of functions Γ,Λ, fg, fl on v (see
Proposition 5.1) in the primitive system (5.3). The conversion, which we use extensively in Part I [Narbona-Reina
et al., 2024], starts by adding the equations for phase g and l while keeping the mass and momentum conservation
for the phase g. This yields an alternate, equivalent set of 4 equations. Using that the primitive variables can be
written in terms of the drift ones as

ug = u+ (1− Y )w, ul = u− Y w, pg = p+ (1− ϕg)q, pl = p− ϕgq,

obtaining the three first equations is straightforward. The mass equations read

∂tρ+ div(ρu) = 0 (5.7)

∂t(ρY ) + div(ρY u+ ρY (1− Y )w) = Γ. (5.8)
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The momentum equation for the mean velocity u reads

∂t(ρu) + div(ρu⊗ u+ ρY (1− Y )w ⊗ w + pId) = ρY fg + ρ(1− Y )fl. (5.9)

The momentum equation for the phase g reads

(5.10)
∂t(ρY u+ ρY (1− Y )w) + div(ρY u⊗ u) + div(ρY (1− Y )2w ⊗ w)

+ div(ρY (1− Y )u⊗ w) + div(ρY (1− Y )w ⊗ u)
+∇(ϕg(p+ (1− ϕg)q))− (p+ (1− βp − ϕg)q)∇ϕg = ρY fg − Λ|w|w

since pI = p+ (1− βp − ϕg)q. This fourth equation is not the final converted equation; working on it will help
us to find the equation satisfied by w. To do so, we use the three relationships (5.7), (5.8) and (5.9) to simplify
(5.10). Let us split equation (5.10) in the following form

∂t(ρY u) + ρY (1− Y )∂tw + ∂t(ρY (1− Y ))w + div(ρY u⊗ u) + ρY (1− Y )div((1− Y )w ⊗ w)
+ (1− Y )(w · ∇(ρY (1− Y )))w + ρY (1− Y )u · ∇w + div(ρY (1− Y )u)w
+ ρY (1− Y )w · ∇u+ div(ρY (1− Y )w)u
+ ϕg∇p+∇(ϕg(1− ϕg)q)− (1− βp − ϕg)q∇ϕg = ρY fg(v)− Λ(v)|w|w.

(5.11)

Let us now rewrite (5.11) by regrouping similar terms as follows

I1 + I2 + I3 + (1− Y )w · ∇(ρY (1− Y ))w
+ ϕg∇p+∇(ϕg(1− ϕg)q)− (1− βp − ϕg)q∇ϕg = ρY fg − Λ|w|w.

(5.12)

with

I1 = ρY (1− Y )
(
∂tw + div((1− Y )w ⊗ w) + u · ∇w + w · ∇u

)
I2 = ∂t(ρY u) + div(ρY u⊗ u) + div(ρY (1− Y )w)u

I3 =
(
∂t(ρY (1− Y )) + div(ρY (1− Y )u)

)
w.

(5.13)

The expressions I1, I2 and I3 can be simplified significantly.

New expression for I3. Using (5.7) and (5.8), we can write

ρ(∂tY + u · ∇Y ) + div(ρY (1− Y )w) = Γ.

Multiplying this relation by (1− 2Y ) and using the mass equation (5.7) yields

∂t(ρY (1− Y )) + div(ρY (1− Y )u) = −(1− 2Y )
(
div(ρY (1− Y )w)− Γ

)
.

and therefore
I3 = −(1− 2Y )

(
div(ρY (1− Y )w)w − Γw

)
. (5.14)

New expression for I2. This expression can be simplified by using (5.8), (5.9), and the mass equation (5.7). We
write

(5.15)∂t(ρY u) + div(ρY u⊗ u) = (∂t(ρY ) + div(ρY u))u+ ρY (∂tu+ u · ∇u)
=
(
−div(ρY (1− Y )w) + Γ

)
u+ ρY (∂tu+ u · ∇u)
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The momentum equation (5.9) may be written

ρ(∂tu+ u · ∇u) = −div(ρY (1− Y )w ⊗ w)−∇p+ ρY fg + ρ(1− Y )fl.

Therefore
I2 = uΓ + Y

(
− div(ρY (1− Y )w ⊗ w)−∇p+ ρY fg + ρ(1− Y )fl

)
. (5.16)

Using expressions (5.14) and (5.16), we can rewrite (5.12) as:

(5.17)I1 + I4 − (Y − ϕg)∇p+∇(ϕg(1− ϕg)q)− (1− βp − ϕg)q∇ϕg
+ (u+ (1− 2Y )w)Γ + Λ|w|w + ρY (1− Y )(fg − fl) = 0

where

I4 = −Y div(ρY (1− Y )w ⊗ w)− (1− 2Y )div(ρY (1− Y )w)w + (1− Y )w∇(ρY (1− Y ))w.

Let us now simplify the expression of I4. Splitting all the quantities, we find that

I4 = −ρY (1− Y )
(
Y w · ∇w + (1− Y )w divw

)
.

Substituting I1 and the simplified I4 into (5.17) allows us to write the equation on w:

∂tw + div((1− Y )w ⊗ w) + u · ∇w + w · ∇u− Y w · ∇w − (1− Y )w divw

+ 1
ρY (1− Y )

(
−(Y − ϕg)∇p+ ϕg(1− ϕg)∇q − (1− βp − ϕg)q∇ϕg + q∇(ϕg(1− ϕg))

)
= − 1

ρY (1− Y )
(
(u+ (1− 2Y )w)Γ + Λ|w|w

)
+ fg − fl.

(5.18)

Finally, to obtain the equation on q = pg − pl (the last equation in (5.3)), [Ambroso et al., 2008] use the two
mass equations and the density equation (the equivalent deduction for the one dimensional case can be found
in p. 149-150 of [Galié, 2009]). Gathering the equations, the drift-flux system for unknowns (ρ, Y, u, w, p, q)
corresponding to (5.3) is thus:



∂tρ+ div(ρu) = 0,
∂t(ρY ) + div(ρY u+ ρY (1− Y )w) = Γ,
∂t(ρu) + div(ρu⊗ u+ ρY (1− Y )w ⊗ w + pId) = ρY fg + ρ(1− Y )fl,
∂tw + div((1− Y )w ⊗ w) + u · ∇w + w · ∇u− Y w · ∇w − (1− Y )w divw

+ 1
ρY (1− Y )

(
−(Y − ϕg)∇p+ ϕg(1− ϕg)∇q − (1− βp − ϕg)q∇ϕg + q∇(ϕg(1− ϕg))

)
= − 1

ρY (1− Y )
(
(u+ (1− 2Y )w)Γ + Λ|w|w

)
+ fg − fl

∂tq + w · ∇p+
(
ρgP ′g(ρg)− ρlP ′l(ρl)

)
(divu− w · ∇Y ) +

(
(1− Y )ρgP ′g(ρg) + Y ρlP ′l(ρl)

)
divw

+ (ϕlug − ϕgul) · ∇q +
(
βuρgP ′g(ρg)

ϕg
− (1− βu)ρlP ′l(ρl)

ϕl
− q

)
w · ∇ϕg = −

(
ρgP ′g(ρg)

ϕg
+ ρlP ′l(ρl)

ϕl

)
Θq

(5.19)
As we show in the next section, to find the relaxed form of the system (5.6), it is enough to replace the q

equation above by the following volumic fraction equation:

∂tϕg + (u+ (βu − Y )w) · ∇ϕg = Θq (5.20)
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Remark 5.1 (Checking the drift system in [Ambroso et al., 2008]). The equation for w appearing in [Ambroso
et al., 2008] is the following

∂tw + div
((1

2 − Y
)
w ⊗ w

)
+ u · ∇w + w · ∇u+

(
1
ρg
− 1
ρl

)
∇p

+
(
βp
ρY
− 1− βp
ρ(1− Y ) + 1

ρl
− 1
ρg

)
q∇ϕg + ρ

ρgρl
∇q = fg − fl −

Λ
ρY (1− Y ) |w|w

and the equation we have obtained here is (5.18). The coefficient of ∇p and ∇q coincide with the ones in (5.18)
because

ρY (1− Y ) = ρlρgϕg(1− ϕg)
ρ

, Y − ϕg = ϕg(1− ϕg)(ρg − ρl)
ρ

,

and then
Y − ϕg

ρY (1− Y ) = ρg − ρl
ρgρl

= 1
ρl
− 1
ρg

and ϕg(1− ϕg)
ρY (1− Y ) = ρ

ρgρl
.

Similarly, the terms in front of q∇ϕg are also equivalent because the one in [Ambroso et al., 2008] is(
βp
ρY
− 1− βp
ρ(1− Y ) + 1

ρl
− 1
ρg

)
q∇ϕg =

(
βp − Y

ρY (1− Y ) + Y − ϕg
ρY (1− Y )

)
q∇ϕg = βp − ϕg

ρY (1− Y ) q∇ϕg

while our version of the term in (5.18) reads

1
ρY (1− Y )(−(1− βp − ϕg)q∇ϕg + q∇(ϕg(1− ϕg))) = βp − ϕg

ρY (1− Y ) q∇ϕg.

A first discrepancy is that the term corresponding to Γ is missing from the [Ambroso et al., 2008] equation on
w. In other words, [Ambroso et al., 2008] consider mass exchange but the corresponding contribution is missing
in the momentum equations. Another discrepancy lies in the velocity terms, which are in [Ambroso et al., 2008]:

div
((1

2 − Y
)
w ⊗ w

)
+ u · ∇w + w · ∇u,

while our version of these terms in (5.18) is:

div((1− Y )w ⊗ w)− Y w · ∇w − (1− Y )w divw + u · ∇w + w · ∇u.

Note that in one dimension
I4 = −1

2ρY (1− Y )∂x(w2)

and therefore
I1 + I4 = ρY (1− Y )

(
∂tw + ∂x

((1
2 − Y

)
w2
)

+ u∂xw + w∂xu

)
which are exactly the quantities that can be found in the PhD thesis of [Galié, 2009]. The drift system for the one
dimensional case is presented on p. 148 of this work. The multi-dimensional version is then proposed on p. 285,
and was then included in [Ambroso et al., 2008]. The calculations above prove that this multi-dimensional version
of the w equation is incorrect. It thus seems that the inexact w equation of [Ambroso et al., 2008] stems from
an inappropriate extrapolation of the result in the one-dimension; the expression of I4 is not so straightforward
in the multidimensional setting.
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Remark 5.2. In Section 4 of the Part I companion paper, [Narbona-Reina et al., 2024], we discuss drift-flux
formulations for volcanic conduit flow. To do so, the quantities corresponding to the system (5.3) are:

Γ = RH2O, Λ|w|= Kdϕ(1− ϕ), Θ = 3ϕ(1− ϕ)
4ηl

, fg = fl = g, βu = 1, βp = 0.

The phase g represents the gas and the phase l is the liquid. There are some differences with the model studied
in [Ambroso et al., 2008] that we would like to point out. First, the system of [Ambroso et al., 2008] does
not take viscosity into account and therefore the viscous tensor (denoted D in [Narbona-Reina et al., 2024])
does not appear in the calculations presented above. This term is added in the development of [Narbona-Reina
et al., 2024]. Another difference is that the system of [Ambroso et al., 2008] does not consider the momentum
exchange due to Γ. The development of [Narbona-Reina et al., 2024] has thus different coefficients in their
drift-flux system, which are related to terms involved into the equation satisfied by ug − ul (see Remark 5.1).

5.2.2 Simplification and drift flux system

Using the ansatz assumption related to Λ,Θ,Γ in (5.4), the system (5.19) with the q equation replaced by (5.20)
is: 

∂tρ+ div(ρu) = 0,
∂t(ρY ) + div(ρuY + ρY (1− Y )w) = εγ,

∂t(ρu) + div(ρu⊗ u+ ρY (1− Y )w ⊗ w + pId) = ρY fg + ρ(1− Y )fl
∂tw + div((1− Y )w ⊗ w) + u · ∇w + w · ∇u− Y w · ∇w − (1− Y )w divw

+ 1
ρY (1− Y )

(
−(Y − ϕg)∇p+ ϕg(1− ϕg)∇q − (βp − ϕg)q∇ϕg + q∇(ϕg(1− ϕg))

)
= − 1

ρY (1− Y )
(
(u+ (1− 2Y )w)εγ + λ

ε2 |w|w
)

+ fg − fl

∂tϕg + (u+ (βu − Y )w) · ∇ϕg = θ

ε2 q

(5.21)

These asymptotic hypotheses are taken with the goal of finding solutions near equilibrium defined by

w = 0, q = 0,

that is, when velocities and pressures are the same for the two phases. We consider the ansatz

w = w0 + εw1 +O(ε2), q = q0 + εq1 +O(ε2).

Multiplying the two last equations in (5.21) by ε2 yields w0 = q0 = O(ε2). Writing again these equations to get
w1 and q1 at first order in ε yields

|w1|w1 = ρY (1− Y )
λ

(
fg − fl + Y − ϕg

ρY (1− Y )∇p
)

+O(ε), q1 = O(ε).

Recalling that Y−ϕg
ρY (1−Y ) = 1

ρl
− 1

ρg
, we find the result of Proposition 5.1.

5.3 Other generalized drift-flux systems considered in the literature

Over the years, many drift-flux systems have been used to represent two-phase mixtures composed of liquid and
gas (e.g., [Ishii and Hibiki, 2011]). This Section reviews several liquid–gas, drift-flux systems without temperature.

August 24, 2024 76



A simplified model to discuss numerical schemes. There is a wide variety of two-phase flows. The studies
of [Gastaldo et al., 2010,Gastaldo et al., 2011] focus on dispersed flows, which are characterized by one phase
present in the form of inclusions (dispersed phase, here the gaseous phase) and the other phase being continuous
(here the liquid phase). As seen in Section2.6, at the microscopic scale, two-phase flows can be seen as a set of
single-phase regions separated by interfaces through which there are transfers of mass, momentum and energy.
To develop a macroscopic model (Section 3), we write the balance equations valid inside each pure phase region,
and then, by taking the average, we extend these equations to the entire domain and we model the transfers
at the interfaces. The studies of [Gastaldo et al., 2010,Gastaldo et al., 2011] show how to solve numerically a
drift-flux system by taking advantage of the parabolic behavior with respect to p. These studies consider the
following system, which models a two-phase flow composed of an incompressible liquid (denoted with subscript
l) and a compressible gas phase (denoted with subscript g). This system is written in terms of ρ, Y, u, where, as
before,

ρ = ϕlρl + ϕgρg, ρu = ϕlρlul + ϕgρgug, ρY = ϕgρg, ϕl + ϕg = 1.

It reads 
∂tρ+ div(ρu) = 0,
∂t(ρY ) + div(ρuY + ρY (1− Y )w) = div(dg∇Y ),
∂t(ρu) + div(ρu⊗ u) +∇p− div(τ(u)) = f

(5.22)

The term div(dg∇Y ) accounts for the dispersive effect of the gas phase by using a positive coefficient dg. The
stress tensor reads

τ(u) = µ(∇u+∇tu)− 2
3 µ divu Id

and the pressure law is
p = a2ρg.

The liquid density ρl is assumed constant and ρg = ρg(p). Finally, f represents the forcing term such as that
caused by the gravity force. The relative velocity w is given by

w = 1
λ

(1− ϕg)ϕg
ρg(p)− ρl

ρ
∇p.

To get such an expression for w, the studies start with a two-phase system with a linear drag term. The w
equation is obtained by multiplying the momentum equation of the gas by ϕlρl and the momentum equation of
the liquid by ϕgρg and suppressing the terms with ρg in front of ρl because the gas density is assumed small
compared to that of the liquid.

A gas-liquid drift-flux model with zero order slip law. The study of [Evje and Wen, 2013] considers a 1D
compressible gas-liquid model that is highly relevant for wellbore operations linked to rock drilling. The drift-flux
model is composed of two continuity equations coupled with a mixture momentum equation. The model allows
unequal gas and liquid velocities, the differential velocity of which is dictated by a so-called slip law, which is
used to model flow scenarios involving counter currents. The model is written in Lagrangian coordinates. The
difference in fluid velocities gives rise to new terms in the mixture momentum equation that are challenging to
deal with. The study starts with the following system

ϕg + ϕl = 1,
∂t(ϕgρg) + ∂x(ϕgρgug) = 0,
∂t(ϕlρl) + ∂x(ϕlρlul) = 0,
∂t(ϕlρlul + ϕgρgug) + ∂x(ϕlρlu2

l + ϕgρgu
2
g) + ∂xp = ∂x(ε∂xuM )

(5.23)
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where ε is a viscosity depending on the different phase fractions with uM = ϕgug + ϕlul and the pressure p
depends on the gas density ρg following

p = Cργg with γ > 1 and C > 0.

As indicated in [Evje and Wen, 2013], since the momentum balance is only specified for the mixture, we need an
additional hydrodynamic closure law that connects the two phase velocities. This law should be able to take into
account different flow regimes. A commonly used relationship is the Zuber-Findlay slip (see [Evje and Flatten,
2007]):

ug = c0uM + c1

where c0 and c1 are flow-dependent coefficients (see more details below). These two coefficients are referred to
as the distribution parameter and the drift velocity, respectively. The following drift variables are introduced:

m = ϕlρl, n = ϕgρg

ρ = m+ n− k?

c = (m− k?)/ρ

u = ug

where k? = ρl(1− 1/c0) represents a minimal mass of liquid that must be present in order to make the slip law
well-defined. The viscosity ε is chosen as follows

ε(n,m) = (m− k?)β+1

(n+m− k?)(ρl −m)β+1 with β > 0.

The system (5.23) can be rewritten in Lagrangian coordinates in terms of (c, ρ, u), which yields:
Dtc = 0,
Dtρ+ ρ2∂xu = 0,
Dtu+ ∂x(p(c, ρ)− u2g(cρ)− uh(cρ) + j(cρ)) = ∂x(E(c, ρ)∂xu)

(5.24)

where Dtφ = ∂tφ+ u∂xφ for any function φ. The different functions appearing in the momentum equation are:

p(c, ρ) =
((1− c)ρ
a? − cρ

)γ
, a? = ρl/c0,

g(cρ) = k?
cρ

k? + cρ
, h(cρ) = 2ρl

(
c1
c0

)
cρ

k? + cρ
, j(cρ) = ρ2

l

(
c1
c0

)2 1
k? + cρ

,

and
E(c, ρ) = (cρ)β+1

(a? − cρ)β+1

where β > 0.

More general slip laws. In some physical applications, a slip law on relative velocity is given as:

ug − ul = Φ(p, ϕg, ug)

where Φ is a prescribed function (see [Evje and Flatten, 2007]). The Zuber-Findlay slip relationship presented
before is a special case where

Φ(p, ϕg, ug) = (c0 − 1)ug + c1
c0ϕl

.
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The coefficient c0 is defined as a shape factor taking into account nonuniform velocity and concentration profiles.
The coefficient c1 is defined as the terminal velocity of a single gas bubble rising through the liquid. This
particular drift-flux model has been extensively studied in [Théron, 1989] and [Benzoni-Gavage, 1991], where
the eigenvalues have been characterized following the work of [Boure, 1997]. Provided that the liquid phase is
incompressible, [Gavrilyuk and Fabre, 1996] have demonstrated that with a suitable variable transformation, the
drift-flux model with Zuber-Findlay slip is mathematically similar to the Euler equations describing gas dynamics.
There are also generalized drift-flux models where Φ may also contain differential operators [Boure, 1997]. This
is the case for our volcanic conduit flow model (Section 4 of Part I [Narbona-Reina et al., 2024]), where the drift
velocity is given by a Darcy law in a simplified version of the drift-flux model. This kind of drift-flux model are
quite useful because one can incorporate many physical processes into the slip law. This is especially the case
when the slip law also includes derivatives.

A Crash course on functional analysis
This section aims at introducing some essential mathematical concepts related to functional analysis that we use
in this paper. We do not provide proofs but we rely heavily on the content given in the book of [Cioranescu and
Donato, 1999], where readers interested by an introduction to functional analysis will find the related proofs. The
notion of duality is at the heart of modern methods of analysis, and it plays a fundamental role in this course
because it is at the origin of the notion of distributions named D′(Ω). One of the most important objectives of this
crash course is to use this new point of view to study functional spaces. The space of distributions is, in a proper
sense, the “smallest space” containing continuous functions, and where the derivation is defined everywhere. The
theory of distributions, developed by Schwartz at the end of the 1940s, is the culmination of a process spanning
more than half a century and including, among others, the symbolic calculation of the engineer Heaviside (1893),
the formalism introduced by the physicist Dirac (1926), the “finite parts” of divergent integrals of Hadamard
(1932), and the generalized derivatives of Sobolev (1936). The initial idea consists in shifting the point of view to
describe the functions; rather than considering a function f of a real variable as the collection of its values f(x)
where x ∈ Ω, we describe f by the collection of its weighted averages

∫
Ω fϕ(x)dx where ϕ ∈ D(Ω) = C∞c (Ω).

We write this average as 〈f, ϕ〉D′(Ω)×D(Ω). The integration formula by parts
∫

Ω f
′ϕ(x) dx =

∫
Ω fϕ

′(x) dx then
allows us to define the object f ′. The crash course also defines the Lebesgue and Sobolev spaces as well as the
weak and strong convergences and the distributions with values in a Banach space, which is important when one
considers PDEs with time and space variables.

A.1 Mathematical concepts related to PDEs

Weak and weak? convergences in Banach spaces

Let us first define the notion of dual space. From now on, E and F denote two Banach spaces. E being a Banach
space, the set of the linear and continuous maps from E to R is called the dual space of E and is denoted E′. If
x′ ∈ E′, the image of x′(x) of x ∈ E is denoted 〈x′, x〉E′×E . The bracket 〈·, ·〉E′×E is called the duality pairing
between E′ and E. Assuming that E is a (real) Banach space equipped with the norm ‖·‖E , we can define the
weak limit as follows

Definition A.1. A sequence {xn} in E is said to converge weakly to x iff

for all x′ ∈ E′, 〈x′, xn〉E′×E → 〈x′, x〉E′×E .

This weak convergence is denoted
xn ⇀ x weakly in E′.

Here are two important properties:
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• Note that the strong convergence implies weak convergence.

• If dimE = N < +∞, the strong and weak convergences are equivalent.

Let us now write a particular case of the Banach-Steinhaus theorem.

Proposition A.1. Let {xn} be a sequence weakly convergent to x in E. Then

• {xn} is a bounded sequence in E, which means that there exists a constant C independent of n such that

for all n ∈ N, ‖xn‖E≤ C.

• The norm on E is lower semi-continuous with respect to the weak convergence, which means

‖x‖E≤ lim inf
n→+∞

‖xn‖E .

Recall the following definition of uniformly convex Banach space:

Definition A.2. We say that the Banach space E is uniformly convex if for ε > 0, there exists δ > 0 such that(
x, y ∈ E, ‖x‖E≤ 1, ‖y‖E≤ 1, ‖x− y‖E> ε

)
=⇒

(∥∥∥∥x+ y

2

∥∥∥∥
E
< 1− δ

)
.

Proposition A.2. Let {xn} be a sequence in a uniformly convex Banach space E. One has the equivalence
between the two properties (a) and (b) where

(a) xn → x strongly in E
and

(b) xn ⇀ x weakly in E and ‖xn‖E→ ‖x‖E .

The following theorem is useful:.

Theorem A.1. Assume that E is a reflexive Banach space and let {xn} be a bounded sequence in E. Then

• There exists a subsequence of {xnk} of {xn} and x ∈ E such that, as k → +∞

xnk ⇀ x weakly in E.

• If each weakly convergence subsequence of {xn} has the same limit x, then the whole sequence {xn}
weakly converges to x that means

xn ⇀ x weakly in E.

The next result is frequently used in this work. It enables us to take the limit in products of weak-strong
convergence sequences.

Proposition A.3. Let {xn} ⊂ E and {yn} ⊂ E′ such that

xn ⇀ x weakly in E

and
yn → y strongly in E′.

Then
lim

n→+∞
〈yn, xn〉E′×E = 〈y, x〉E′×E .
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We have seen previously that to check weak convergence for a sequence of E, one needs to know what is
the space E′ and it may happen that E′ is too complicated to handle. Therefore another notion is needed. It is
called weak? convergence and it is defined as:

Definition A.3. Assume that F is a Banach space and the set E = F ′. A sequence {xn} in E is said to converge
weakly? to x iff

〈xn, x′〉F ′×F → 〈x, x′〉F ′×F for all x′ ∈ F.
This weak? convergence is denoted

xn ⇀ x weakly ? in E.

Then we have the following properties:

Proposition A.4. Let F be a Banach space and E = F ′. Then any weakly convergent sequence in E is also
weakly? convergent.

Proposition A.5. Let {xn} be a sequence weakly? convergent to x in E = F ′, where F is a Banach space.
Then

• {xn} is a bounded sequence in E, which means that there exists a constant C independent of n such that

for all n ∈ N, ‖xn‖E≤ C.

• The norm is lower semi-continuous with respect to the weak? convergence, which means

‖x‖E≤ lim inf
n→+∞

‖xn‖E .

Concerning the convergence properties for bounded sequence in E = F ′, we need a separability property of
the space in the following sense:

Definition A.4. We say that the Banach space F is separable if there exists a set, at most countable, which is
dense in F .

Then the following result holds:

Theorem A.2. Let F be a separable Banach space and let E = F ′. If {xn} is a bounded sequence in E, then

• i) There exists a subsequence {xnk} of {xn} and x ∈ E such that, as k → +∞

xnk ⇀ x weakly ? in E.

• ii) If each weakly? convergent subsequence of {xn} has the same limit x, then the whole sequence {xn}
weakly? converges to x which means

xn ⇀ x weakly ? in E.

We also get the following weak?-strong convergence property:

Proposition A.6. Let {xn} be a sequence in E = F ′ where F is a Banach space and {yn} a sequence in E′
such that

yn → y strongly in F
and

xn ⇀ x weakly ? in E.
Then

lim
n→+∞

〈xn, yn〉F ′×F = 〈x, y〉F ′×F .
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A.2 Lp spaces and convergence in these spaces

We first give the definition of a space usually named D(O) that will be used later on.

Definition A.5. For any function φ : O 7→ R, the support of φ denoted supp φ is defined as the following closed
set of O:

suppφ = {x ∈ O : φ(x) 6= 0} ∩ O.
We denote by D(O) the set of infinitely differentiable functions, the support of which is a compact set of RN
contained in O. We denote by C0

c (O) the set of continuous functions, the support of which is a compact set of
RN contained in O.

All our calculations are henceforth related to Lebesgue Lp spaces defined as:

Definition A.6. Let p ∈ R with 1 ≤ p < +∞. Define

Lp(O) = {f with f : O 7→ R, f measurable and such that
∫
O
|f(x)|p dx < +∞}

and

L∞(O) = {f with f : O 7→ R, f measurable and such that there exists C ∈ R with |f |≤ C a.e. on O}.

The next two propositions give the main properties of Lp spaces that are frequently used to prove convergence
in these spaces.

Proposition A.7. Let p ∈ R with 1 ≤ p ≤ +∞. The set Lp(O) is a Banach space for the norm

‖f‖Lp(O)=
(∫
O
|f(x)|p dx

)1/p
if p <∞

and
‖f‖L∞(O)= inf{C, |f |≤ C a.e. on O}.

Proposition A.8. The space Lp(O) is separable for 1 ≤ p < +∞ and is uniformly convex for 1 < p < +∞.

An important inequality is the Hölder inequality:

Proposition A.9. Let 1 ≤ p ≤ +∞ and p′ be its conjugate which means

• 1
p′ = 1− 1

p if 1 < p < +∞

• p′ = 1 if p = +∞

• p′ = +∞ if p = 1.

Then ∫
O
|f(x)g(x)| dx ≤ ‖f‖Lp(O)‖g‖Lp′ (O).

Note that if p = 2, this inequality is known as the Cauchy-Schwarz inequality.

The following theorem is important:

Theorem A.3. Let 1 ≤ p < +∞ and p′ be its conjugate. Let f ∈ [Lp(O)]′. Then there exists a unique
g ∈ Lp′(O) such that

〈f, ϕ〉[Lp(O)]′×Lp(O) =
∫
O
g(x)ϕ(x) dx for all ϕ ∈ Lp(O).

Moreover
‖g‖Lp′ (O)= ‖f‖[Lp(O)]′ .
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Many sets useful in fluid dynamics are dense in Lp spaces. This is the case of the set given by the following
theorem:

Theorem A.4.
D(O) is dense in Lp(O) for 1 ≤ p < +∞.

The next result on sets is related to the step functions that are defined as:

Definition A.7. Let A be a measurable set of RN . The characteristic function of A is the function χA defined
by

χA(x) = 1 if x ∈ A, χA(x) = 0 elsewhere.

Definition A.8. A function f : RN 7→ R is called a step function if

f(x) =
m∑
k=1

αkχIk

with m ∈ N, αk ∈ RN and where Ik is an interval in RN for any k ∈ {1, . . . ,m}.

If Ω ⊂ RN is a bounded open set of RN , we denote by S(Ω) the set of step functions as defined above.
Obviously we have S(Ω) ⊂ Lp(Ω) for 1 ≤ p < +∞. Another more precise property is:

Theorem A.5. If 1 ≤ p < +∞ then S(Ω) is dense in Lp(Ω).

In this Lebesgue space, we have the following weak and strong convergences propositions that use the
definitions of weak and strong convergences:

Proposition A.10. Let {un} be a sequence in Lp(Ω) with 1 < p <∞. Then there exists u in Lp(Ω) such that

un ⇀ u weakly in Lp(Ω)

which means that ∫
Ω
unφdx→

∫
Ω
uφdx for all φ ∈ Lp′(Ω) with 1/p+ 1/p′ = 1.

For 1 < p < +∞, Lp(Ω) = (Lp′(Ω))′, and the weak convergence is equivalent to the weak? convergence.

The next proposition is important because it helps to characterize the weak convergence in the Lp(Ω) spaces.

Proposition A.11. Let 1 < p < +∞ and {un} be a sequence in Lp(Ω). Then, the following equivalence holds
true

un ⇀ u weakly in Lp(Ω)

and
‖un‖Lp(Ω)≤ C (independently of n)

∫
I
un dx→

∫
I
u dx for any interval I ⊂ Ω.

The weak convergence in L1(Ω) namely

un ⇀ u weakly in L1(Ω)

means that ∫
Ω
unφdx→

∫
Ω
uφdx for all φ ∈ L∞(Ω).

Remark that because L1(Ω) is not reflexive, the weak compactness theorem does not apply. This makes the
study of bounded sequences in L1(Ω) much more difficult.
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A.3 Distribution, Sobolev embedding

Let us first discuss convergences of sequences defined in this space D(O) and the definition of the set of
distributions on O. More precisely,

Definition A.9. Let {φn} be a sequence in D(O). We say that φn converges to an element φ ∈ D(O), iff

i) There exists a compact set K ⊂ O such that, for any n ∈ N, supp φn ⊂ K,

ii) For any α ∈ NN , ∂αφn converges uniformly to ∂αφ ∈ K.

This is enough to define a distribution on O. More precisely, we have the following definition

Definition A.10. A map T : D(O) 7→ R is called a distribution on O, iff

i) The map T is linear, which means

∀λ1, λ2 ∈ R and ∀φ1, φ2 ∈ D(O), T (λ1φ1 + λ2φ2) = λ1T (φ1) + λ2T (φ2)

ii) The map T is sequentially continuous, which means

(φn → φ in D(O)) =⇒ (T (φn)→ T (φ)).

We denote by D′(O) the set of distributions on O.

We are now ready to give a notion of convergence for sequences in D′(O). This is a weak-? convergence but
not in a Banach space.

Definition A.11. A sequence {Tn} in D′(O) is said to converge (in the sense of distribution) to an element
T ∈ D′(O) iff

〈Tn, φ〉D′(O)×D(O) → 〈T, φ〉D′(O)×D(O) for all φ ∈ D(O).

We also define the derivative of a distribution as follows:

Definition A.12. Let T ∈ D′(O). For any i = 1, · · · , N the derivative ∂T/∂xi of T with respect to xi is defined
by

〈 ∂T
∂xi

, φ〉 = −〈T, ∂φ
∂xi
〉 for all φ ∈ D(O).

We are now ready to define the Sobolev space W 1,p as follows:

Definition A.13. Let 1 ≤ p ≤ +∞. The Sobolev space W 1,p(O) is defined by

W 1,p(O) = {u : u ∈ Lp(O) and ∂u/∂xi ∈ Lp(O) for all i = 1, · · · , N}

where the derivatives are taken in the sense of distribution.

We next provide Sobolev embeddings that are listed in the following theorem.

Theorem A.6. Suppose Ω is an open set in RN such that ∂Ω is Lipschitz continuous. Then

i) If 1 ≤ p < N then W 1,p(Ω) ⊂ Lq(Ω) with

– Compact embedding for q ∈ [1, p?) where

1
p?

= 1
p
− 1
N
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– Continuous injection for q = p?.

ii) If p = N , W 1,N (Ω) ⊂ Lq(Ω) with compact embedding if q ∈ [1,+∞].

iii) If p > N , W 1,p(Ω) ⊂ C0(Ω) with compact embedding.

An other important space is the dual space of H1
0 (Ω) where

H1
0 (Ω) = W 1,2

0 (Ω)

with, for any 1 ≤ p < +∞, W 1,p
0 (Ω) is defined as the closure of D(Ω) with respect to the norm of W 1,p(Ω).

The definition of the dual space is:

Definition A.14. We denote by H−1(Ω) the Banach space defined by

H−1(Ω) = (H1
0 (Ω))′

equipped with the norm

‖F‖H−1(Ω)= sup
H1

0 (Ω)\{0}

∣∣∣〈F, u〉H−1(Ω)×H1
0 (Ω)

∣∣∣
‖u‖H1

0 (Ω)
.

The following proposition gives an important characterization of H−1(Ω).

Proposition A.12. Let F be in H−1(Ω), where Ω is an open set in RN . Then there exist N + 1 functions f0,f1,
· · ·, fN in L2(Ω) such that

F = f0 +
N∑
i=1

∂fi
∂xi

(A.1)

in the sense of distributions. Moreover

‖F‖2H−1(Ω)= inf
N∑
i=0
‖fi‖2L2(Ω)

where the infimum is taken over all the vectors (f0, f1, · · · , fN ) ∈ (L2(Ω))N+1 such that (A.1) holds. Conversely
if (f0, f1, · · · , fN ) is a vector in (L2(Ω))N+1 then (A.1) defines an element F of H−1(Ω) that satisifies

‖F‖2H−1(Ω)≤
N∑
i=1
‖fi‖2L2(Ω)

We have also the following embedding:

Proposition A.13.
L2(Ω) ⊂ H−1(Ω) with compact embedding.

A.4 Distribution with values in a Banach space

This part is important when we consider PDEs with time and space variables. The notion of distribution can be
generalized to vector-valued functions as follows:

Definition A.15. Let X be a Banach space and Ω ⊂ RN . A map T : D(Ω) 7→ X is called a distribution on Ω
with values in X iff

August 24, 2024 85



• i) The map T is linear, which means
∀λ1, λ2 ∈ R and ∀φ1, φ2 ∈ D(Ω) T (λ1φ1 + λ2φ2) = λ1T (φ1) + λ2T (φ2).

• The map T is sequentially continuous, which means
(φn → φ in D(Ω)) =⇒ (T (φn)→ T (φ) in X).

We denote by D′(Ω;X) the set of distributions on Ω with values in X.
Similarly, one can also define the Lp-spaces for vector-valued functions.

Definition A.16. Let X be a Banach space, Ω ⊂ RN and p such that 1 ≤ p ≤ ∞. We denote by Lp(Ω;X) the
set of measurable functions u : x ∈ Ω→ u(x) ∈ X such that ‖u(x)‖X∈ Lp(Ω).

In the vector-valued case, we choose that a measurable function is an almost everywhere limit of step functions.
Concerning the Lp function, we have the following proposition:
Proposition A.14. The following quantity

‖u‖Lp(Ω;X)=
(∫

Ω
‖u‖pX dx

)1/p

defines a norm on Lp(Ω;X) that is a Banach space. If X is reflexive and 1 < p < +∞, the space Lp(Ω;X) is
reflexive too. Moreover, if X is separable and 1 ≤ p <∞, then Lp(Ω;X) is separable.

We can also define the derivative in time for time-space dependent quantities as:
Proposition A.15. Let u be in Lp(a, b;X). The derivative ∂u/∂t is the distribution in D′(a, b;X) defined by

∂u

∂t
(φ) = −

∫ b

a
u
∂φ

∂t
dt for all φ ∈ D(a, b).

B Crash course on compactness and homogenization
This section introduces some essential mathematical concepts related to compactness (non-linear stability) and
to homogenization (characterization of weak limits – averaging procedure).

B.1 Compactness tools for nonlinear weak stability

B.1.1 Weak compactness in L1(Ω)

Let us first give the definition of equi-integrable functions.
Definition B.1. Let Ω be a bounded set in RN and {un} a sequence in L1(Ω). The functions un are equi-
integrable if for any η > 0, there exists δ > 0 such that

For all n ∈ N
∫
E
|un(x)| dx < η for any E ⊂ Ω with |E|< δ.

Then we have the following important theorem due to Dunford-Pettis.
Theorem B.1. Let {un} be a sequence in L1(Ω). Then we have the equivalence of

{un} is weakly compact in L1(Ω)

and
{un} is bounded in L1(Ω) with the functions un equi-integrable

recalling that {un}n∈N weakly converges to u in L1(Ω) means∫
Ω
unϕ→

∫
Ω
uϕ for all ϕ ∈ L∞(Ω).

August 24, 2024 86



B.1.2 Space-time controls

An important compactness theorem that is widely used in this work that states:
Theorem B.2. (Aubin-Lions-Simon) Let X0, X and X1 three Banach spaces with X0 ⊂ X ⊂ X1. Suppose
that X0 is compactly embedded in X and X is continuously embedded in X1. For 1 ≤ p, q ≤ +∞, let

W = {u ∈ Lp(0, T ;X0) : ∂tu ∈ Lq(0, T ;X1)}.

Then we have

i) If p < +∞ then the embedding of W into Lp(0, T ;X) is compact.

ii) If p = +∞ and q > 1 then the embedding of W into C([0, T ];X) is compact.

Another useful result is:
Theorem B.3. Let us define the Banach spaces

W = {v : v ∈ L2(a, b;H1
0 (Ω)) and ∂tv ∈ L2(a, b;H−1(Ω))},

and
W1 = {v : v ∈ L2(a, b;L2(Ω)) and ∂tv ∈ L2(a, b;H−1(Ω))}

equipped with the norm of the graph. Then the following properties hold

i) The embeddings
W ⊂ L2(a, b;L2(Ω)) and W1 ⊂ L2(a, b;H−1(Ω))

are compact.

ii) One has the continuous embeddings
W ⊂ C([a, b];L2(Ω))

W1 ⊂ C([a, b];H−1(Ω)).

iii) For any u, v ∈W , one has
d

dt

∫
Ω
u(x, t)v(x, t) dx = 〈∂tu′(·, t), v〉H−1(Ω)×H1

0 (Ω) + 〈∂tv(·, t), u(·, t)〉H−1(Ω)×H1
0 (Ω).

B.1.3 Commutation between weak limit and strictly convex function

The following lemma is used for the compressible Navier-Stokes equations to take the limit in the pressure
quantity.
Lemma B.1. Let G be a bounded domain in RN , I an interval in R, 1 < p < +∞ and f : I → R a strictly
convex function. Let ρn be a sequence of functions in Lp(G) with values in I. If ρn → ρ weakly in Lp(G) and
f(ρn)→ f(ρ) weakly in L1(G) then

ρn → ρ strongly in L1(G).

Another useful lemma is:
Lemma B.2. Let G be a bounded domain in RN and {ρn}n∈N a sequence of functions such that

ρn → ρ weakly in L1(G).

Let Φ : R→ (−∞,+∞] be a convex lower semi-continuous function. Then Φ(ρ) : G→ R is integrable and∫
G

Φ(ρ) dy ≤ lim inf
n→+∞

∫
G

Φ(ρn) dy.
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B.2 A non-local tool

The following non-local compactness tool is useful.

Lemma B.3. Let {ρn} be a sequence uniformly bounded in some Lp((0, T )× Πd) with 1 < p < +∞. Assume
that Kh be a sequence of positive, bounded functions such that

i) For all η > 0, suph
∫

Πd Kh(x)1{x:|x|≥η} dx < +∞,

ii) ‖Kh‖L1(Πd)→∞ as h→ +∞.

If ∂tρn ∈ Lq(0, T ;W−1,q(Πd)) (with q ≥ 1) uniformly in n and

Rh = lim sup
n

(
1

‖Kh‖L1

∫ T

0

∫
Πd
Kh(x− y)|ρn(t, x)− ρn(t, y)|p dx dy, dt

)
→ 0 as h→ 0 (B.1)

then ρn is compact in Lp((0, T )×Πd). Conversely if ρn is compact in Lp((0, T )×Πd) then the above quantity
converges to 0 with h.

Let us show how this property is obtained for a special particular kernel defined as

Kh(x) = Kh

‖Kh‖L1
where Kh = 1/(h+ |x|)d.

Defining the following semi-norm

‖f‖p,θ= sup
h≤1/2

|log h|−θ
∫

Ω2

|f(x)− f(y)|p

(h+ |x− y|)d dxdy

we use that for all s > 0, 0 < θ < 1 and p ∈ [1,+∞) we have

W s,p ⊂Wlog,θ ⊂ Lp compact

where
Wlog,θ = {f such that f ∈ Lp(Ω) with ‖f‖p,θ< +∞}.

To prove the right-hand compactness, it suffices to remark that ‖Kh‖L1= |log h|

‖fn−Kh∗fn‖pLp≤
1

‖Kh‖pL1

∫
Ω

(∫
Ω
Kh(x−y)|fn(x)−fn(y)|dx

)p
dy ≤ 1

‖Kh‖L1

∫
Ω
Kh(x−y)|fn(x)−fn(y)|p dxdy

which converges to zero as h→ 0 uniformly in n by assumption. On the other hand, for a fixed h, the sequence
Kh ∗ fn in n is compact. This completes the proof.

B.2.1 A property coming from monotony

The following result is related to non-decreasing functions.

Lemma B.4. Let G be a domain of RN , I an interval of R, and let P : I → R be a non-decreasing function
(defined on I). Let ρn be a sequence of functions from L1(G) with values in I such that

• ρn → ρ weakly in L1(G),

• P (ρn)→ P (ρ) weakly in L1(G),
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• P (ρn)ρ→ P (ρ)ρ weakly in L1(G),

• P (ρn)ρn → P (ρ)ρ weakly in L1(G),

• P (ρ)(ρn − ρ)→ 0 weakly in L1(G).

Then
P (ρ)ρ ≥ P (ρ)ρ a.e. in G.

Remark B.1. Note that the proof of the previous Lemma is not complicated when taking the limit in the following
inequality

(P (ρn)− P (ρ))(ρn − ρ) ≥ 0

which is satisfied using that P is a non-decreasing function.

B.2.2 Minty trick for nonlinear functions depending on a sequence

In this part, we recall a Lemma from [Gallouët, 2018] that allows one to characterize the weak limit of nonlinear
function (see this paper for the proof).

Lemma B.5. Let Q be a bounded open set of RN , N ≥ 1, and let µ be a continuous nondecreasing function
from R to R. We assume that there exists C ∈ R+ such that

|µ(s)|≤ C|s|+C for all s ∈ R.

Let {ρn}n∈N and {µn}n∈N be sequences such that ρn → ρ weakly in L2(Q) and µn → µ̄ weakly in L2(Q). We
assume that µn = µ(ρn) a.e. for all n and that

lim
n→+∞

∫
Q
ρn(y)µn(y)dy =

∫
Q
ρ(y)µ(y)dy.

Then µ̄ = µ(ρ) a.e. �

B.3 Some useful calculations to better understand the averaging of two-phase systems

B.3.1 Homogenization (averaging procedure) for elliptic equation in one dimension

We use here a well-known one-dimensional system with oscillating coefficient to obtain an homogenized system.
This helps to understand how we get µeff and peff in Section 3.2. Let us consider the following ODE on (0, 1)−

d

dx

(
aε

d

dx
uε
)

= f

uε|x=0= uε|x=1= 0
(B.2)

where f ∈ L2(0, 1) is prescribed and with aε given by

aε = a
(x
ε

)
with a a positive function in L∞(0, `1) such that{

a is `1 − periodic
0 < m ≤ a(x) ≤M < +∞

(B.3)

where m and M are constant. The objective is to show the following result

August 24, 2024 89



Theorem B.4. Let uε ∈ H1
0 (0, 1) be the solution of the problem (B.2). Then

uε ⇀ u0 weakly in H1
0 (0, 1)

where u0 is the unique solution in H1
0 (0, 1) of the problem
− d

dx

(
1

M(0,`1)( 1
a)

d

dx
u0
)

= f ∈ (0, 1)

u0|x=0= u0|x=1= 0.
(B.4)

where
M(0,`1)

(1
a

)
= 1
`1

∫ `1

0

1
a
dx.

Proof of Theorem B.4. We first multiply formally the equation in (B.2) by uε and integrate by parts to get∫ 1

0
aε
∣∣∣∣ ddxuε

∣∣∣∣2 =
∫ 1

0
fuε.

Then we use the Cauchy-Schwarz inequality,∫ b

a
gh ≤ ‖g‖L2(a,b)‖h‖L2(a,b),

and the Poincaré inequality ∫ b

a
|g|2≤ (b− a)

∫ b

a
|∂xg|2 for all g ∈ H1

0 (a, b),

to write ∫ 1

0
aε
∣∣∣∣ ddxuε

∣∣∣∣2 ≤ ‖f‖L2(0,1)‖∂xuε‖L2(0,1).

Next, using the lower bound m on aε and the fact that cd ≤ c2/2 + d2/2, we can write∫ 1

0
aε
∣∣∣∣ ddxuε

∣∣∣∣2 ≤ 1
m2 ‖f‖

2
L2(0,1).

This implies that
√
aε

d

dx
uε ∈ L2(0, 1)

and therefore
τ ε = aε

duε

dx
∈ L2(0, 1)

because aε is bounded by M in L∞(0, 1). Thus τ ε ∈ L2(0, 1) but we also remark that

d

dx
τ ε ∈ L2(0, 1)

uniformly because this quantity is equal to f , which is in L2(0, 1). This indicates that τ ε will have no oscillation
and will strongly converge to τ0 in L2(0, 1) for instance. To take advantage of this information, we observe that
we can write

∂xu
ε = 1

aε
τ ε (B.5)
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which is a better formulation to take the limit than this one:

τ ε = aε
duε

dx
.

Indeed, this second expression has a trivial convergence on its left-hand side because it is linear. Its right-hand
side has a L∞ weak? convergence information on aε with a L2-weak convergence of duε/dx that is a priori not
useful to take the limit in this quadratic form. On the contrary, the first expression (B.5) is better suited because
its left-hand side is linear and then a weak convergence is enough. To treat its right-hand side, we take advantage
of the strong convergence τ ε in any Lp space (1 ≤ p <∞) combined with the Lp weak convergence of 1/aε for
all p < +∞. More precisely, we use the following lemma:

Lemma B.6. Let f be `1 − periodic in Lp(0, `1) where 1 ≤ p ≤ +∞. Let us consider f ε defined by

f ε = f

(
x

ε

)
a.e. on R.

Then, if p < +∞, as ε→ 0

fε ⇀M(0,`1) = 1
`1

∫ `1

0
f(y) dy weakly in Lp(ω)

for any bounded open subset ω of R.

This lemma indicates that it is possible to take the limit in (B.5) to get

∂xu = τM(0,`1)

(1
a

)
. (B.6)

Now let us observe that
−∂xτ ε = f

and therefore at the limit ε→ 0, we get
− ∂xτ = f (B.7)

which gives (B.4) when using the expression (B.6). The boundary condition is obtained because we have that
uε ∈ H1

0 (0, 1) uniformly in ε and therefore we get the continuity on the boundary.

B.3.2 Explicit multi-dimension averaging calculations

An application we have in mind is a bubbly flow where Ωg is the union of a large number of small gas bubbles
suspended into a liquid occupying the domain Ωl. To describe the homogenization procedure for this particular
case, we introduce a parameter ε > 0 (small) and denote (T εk )k∈Kε a covering of [0, 1]d with cubes of width ε
(see Figure 8). Each cell T εk contains a cube Dε

k of volume ϕgεd, say Dε
k is the cube with center xεk and width

ϕ
1/d
g ε where xεk ∈ T εk and ϕg ∈ [0, 1] represents the volume fraction of phase g. Using the previous notation of

the indicator function Xi, we introduce the bulk density

ρ(x) = ρg(x)Xg(x) + ρl(x)Xl(x).

Since we assume ε� 1, we want to compute a description of the mixture by finding a limit for a density sequence
{(ρε, Xε

g)}ε>0 when ε→ 0, for ρε being

ρε(x) = ρg(x)Xε
g(x) + ρl(x)Xε

l (x) where Xε
g = Xg

(
x

ε

)
and Xε

l (x) = (1−Xε
g)(x).
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1

Tk

ε

Figure 8: Left: Sketch of the two-phase domain [0, 1]d covered by cubes T εk of volume εd. Phase g is white and
phase l is gray. Right: Detail of the elementary cell T εk that includes the cube Dε

k of volume ϕgεd.

Proposition B.1. The limit is

(ρε, Xε
g) ⇀ (ϕgρg + ϕlρl, ϕg) in (Lp(Ω))2 weak for all p ∈ [1,+∞).

Moreover, we have
ρε → ρ in Lp(Ω) for all p ∈ [1,+∞) if and only if ρg = ρl.

If ρg 6= ρl, the lack of strong convergence is due to the strong oscillations of ρε. These oscillations are related
to the multiphase nature of the flow under consideration (see example shown in Section 1.2.1). Introducing the
Young measures – which enables us to describe the density oscillations – we expect to be able to represent the
different phases in the flow. Before a brief description of these Young measures, several remarks are needed. First,
we emphasize that we need a tool able to split the information on the partial densities ρg and ρl and volume
fractions ϕg and ϕl = 1−ϕg. Although these quantities are known in the above construction, in an applied case,
one may only have access to bulk quantities such as ρ.

Proposition B.2. For all β ∈ Cb(R+ × R) and φ ∈ C∞c (Ω), we have the following limit

lim
ε→0

∫
Ω
β(ρε, Xε

g)φ(x) =
∫

Ω

(
ϕg(x)β(ρg(x), 1) + ϕl(x)β(ρl(x), 0)

)
φ(x) dx.

Introducing the measures
(x 7→ νx) = ϕg(x)δ(ρg(x),1) + ϕl(x)δ(ρl(x),0),

where we denote δξ0 the Dirac measure centered in ξ0, the limit quantity may be written

〈νx, β〉 = ϕg(x)β(ρg(x), 1) + ϕl(x)β(ρl(x), 0).

Proof. For clarity, we assume that ρg, ρl and ϕl, ϕg are constant. When they are not, the following calculations
can be reproduced under some restrictions of the continuous functions defined on Ω. Given β ∈ Cb(R+×R) and
φ ∈ C∞c (Ω), ∫

Ω
β(ρε, Xε

g)φ(x) dx = β(ρg, 1)
∑
k∈Kε

∫
T ε
k

φ(x)Xg dx+ β(ρl, 0)
∑
k∈Kε

∫
T ε
k

φ(x)Xl dx.
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Let us calculate the quantity ∫
Ω
φ(x)Xg

taking into account the domain decomposition described above. The quantity involving Xε
l is calculated using

Xε
l = 1−Xε

g . We assume then that for any function φ ∈ C∞c ,
φ(x) = φ(xεk) +O(ε) in T εk .∫

Ω
φ(x)Xg dx =

∑
k∈Kε

∫
T ε
k

φ(x)Xg dx =
∑
k∈Kε

∫
Dε
k

φ(x)dx =
∑
k∈Kε

∫
Dε
k

φ(xεk) dx+O(ε) =
∑
k∈Kε

|Dε
k|φ(xεk) +O(ε)

=
∑
k∈Kε

ϕgε
dφ(xεk) +O(ε) = ϕg

∑
k∈Kε

εdφ(xεk) +O(ε) = ϕg
∑
k∈Kε

∫
T ε
k

φ(xεk) dx+O(ε)

= ϕg
∑
k∈Kε

∫
T ε
k

φ(x) dx+O(ε) = ϕg

∫
Ω
φ(x) dx+O(ε)

and similarly ∫
Ω
φ(x)Xl = ϕl

∫
Ω
φ(x)dx+O(ε).

Then the limit ε→ 0 yields

lim
ε→0

∫
Ω
β(ρε(x), Xε

g(x))φ(x) dx =
(
ϕgβ(ρg, 1) + ϕlβ(ρl, 0)

) ∫
Ω
φ(x) dx.

If ρg and ρl depend on x then slightly more complicated calculations yield that

lim
ε→0

∫
Ω
β(ρε(x), Xε

g(x))φ(x) dx =
∫

Ω

(
ϕgβ(ρg(x), 1) + ϕlβ(ρl(x), 0)

)
φ(x) dx.

So if we define the measures (x 7→ νx) = ϕg(x)δ(ρg(x),1) + ϕl(x)δ(ρl(x),0) then
〈νx, β〉 = ϕgβ(ρg, 1) + ϕlβ(ρl, 0) in D′(Ω).

A mathematical tool to describe oscillations. The lack of strong compactness of the density sequence
{(ρε, Xε

g)}ε>0 is due to the oscillations of the indicator functions Xε
g and Xε

l , the convergence of which is
calculated more easily in the space of measures (see the example in the introduction: Figure 3). As seen in the
explicit calculations above, to describe oscillations one proposes that a couple (ρ,X) ∈ L1(Ω) × L∞(Ω) with
ρ ≥ 0 is identified with a measure νx on Ω× R+ × R as follows

〈νx, b〉 = b(ρ(x), X(x)) for all b ∈ Cb(R+ × R).

Thus we can write

〈νx, φ⊗ b〉 =
∫

Ω
b(ρ(x), X(x))φ(x) dx for all b ∈ Cb(R+ × R) and φ ∈ D(Ω).

This identification yields that νx is positive and that its mass is |Ω|. The above identification can be interpreted
as seeing the mapping x 7→ (x, ρ(x), X(x)) as a random variable on Ω and constructing the associated law νx.
One advantage of this identification is that we may apply directly the results on random variables, which implies
the following lemma.
Lemma B.7. Let {ρε}ε>0 be a bounded sequence in L1(Ω) and Xε

g be a bounded sequence in L∞(Ω). Let
{νε}ε>0 be the associated sequence of measures defined by 〈νε, φ⊗b〉 =

∫
Ω b(ρε(x))φ(x) dx for all b ∈ Cb(R+×R)

and φ ∈ D(Ω). Then, up to the extraction of a subsequence, we have that {νε}ε>0 converges to a positive measure
ν in the sense

lim
ε→0
〈νε, φ⊗ b〉 = 〈ν, φ⊗ b〉 for all b ∈ Cb(R+) and φ ∈ D(Ω).
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