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Exploit
Automation
with PMCMA

BEyOND
FuzziNg

S
ay you've been fuzzing a given application, 
possibly yours, for a few days. You are now left with 
a bunch of fuzz files that can trigger bugs inside 
the application. Now what? Send all this data to 

the vendor (or fix them yourself )? They probably won't 
even care. What you need to do now is determine which 
of those bugs are exploitable, with which probability, and 
then write proper PoCs to demonstrate your claims. 

Of course, it is not 1998 anymore and this is by far the 
hardest part : it requires extensive knowledge of assembly 
and reverse engineering, encyclopedic knowledge of 
exploitation techniques & security features bypass. 

End of all hopes? Not quite... In fact, we have automated 
most of the task for you...

Exploitation is hard: overview of software 
security counter measures 
Welcome in 2011: most operating systems now feature 
non executable memory pages either via software 
emulation (PaX and its derivatives) or hardware based 
(Intel NX bit). Most OSes actually enforce X^W meaning 
that you can't execute writable data: the good old days of 
putting shellcode in the stack or heaps are over. 
 
Most, if not all sections are randomized, meaning they are 
mapped at different addresses at runtime. 
 
Heap chunks are also now protected by safe unkinking on 
both GNU/Linux (ptmalloc) and Windows. This killed entire 
classes of vulnerabilities such as simple double free(). 
 
The stack is most of the time protected by compilers 
enhancements (/GS compilation under Visual Studio, stack 
canaries under gcc since version 4.2). In fact, the whole 
toolchains have been enhanced to reorganize binary 
sections so that writable data sections, potentially subject 
to overflows, are not followed by critical sections (such 
as the Global Offset Table under GNU/Linux). Even the 
dynamic linking process has been enhanced to minimize 
attack surface by allowing relocations to be performed at 
load time, and subsequently remapping the GOT as read 
only. Hence preventing its malicious hijacking entirely. 
 
Finally, known function pointers such as destructors 
(stored in the .dtors section when the binary has been 
compiled with gcc) can be removed entirely via custom 
linker scripts (removing the entire .dtors section !). 
 
Under those conditions, triggering a bug is by far the 
easiest part of exploitation. Understanding how to 
actually exploit the binary, in other words, defining an 
exploitation strategy, has become the meat of binary 
hacking. 
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In the rest of this article, we will focus on the x86 GNU/
Linux architecture. PMCMA is also constantly being 
ported to new architectures, please visit http://www.
pmcma.org for more details.  The actual distribution used 
to perform the tests in this article is a x86 Ubuntu version 
10.10, but Pmcma runs on x86_64 cpus too, and Arch 
Linux, Debian, Gentoo and Fedora distrubutions have 
been used successfully with it.
 
Introducing PMCMA
PMCMA stands for Post Memory Corruption Memory 
Analysis. In a nutshell, it is a new type of ptrace() based 
debugger we presented at the latest Blackhat US 
Conference. PMCMA is free software. It is available at 
http://www.pmcma.org/ under the Apache 2.0 license. 

Unlike standards debuggers, build by software maintainers 
to help manually fix software, PMCMA is an offensive one, 
designed with automation and exploitation in mind. 
 
The core novelty of PMCMA is to allow a debugged 
process to be replicated at will in memory by forcing it 
to fork. By creating many replicas of the same process, it 
allows for easy empirical automation and manipulation. 
For instance, it can be used to overwrite sequentially all 
writable sections of memory with a remarkable value 
after a memory corruption bug has occurred inside 
the address space, and artificially continue execution. 
This is the best known way to determine all the 
function pointers actually called within a binary path. 
Without the need of lengthy single stepping. And fully 
automatically. 
 
Determining exploitability with PMCMA
When they are not caught by security checks withing the 
heap allocator or stack cookie integrity checks, most bugs 
eventually trigger an invalid memory access resulting in a 
Segmentation Fault (Signal 11). 

There are three types of invalid memory accesses 
depending no the faulting assembly instruction triggering 
this access (read mode, write mode or execution mode). 

Determining why an application generated an invalid 
memory access at assembly level is the first step towards 
exploitation. 
 
Let's use CVE-2011-1824 as an example. It is a vulnerability 
in the Opera web browser we responsibly disclosed earlier 
this year1. 
 
In order to determine what happens at binary level when 
triggering the vulnerability, let's execute Opera inside a 
pmcma session. This can be done with a command line 
such as: 

 ./pmcma --fptr --segfault -C `which opera` /
tmp/repro.html 
 
Here is an output of the analysis automatically generated 
by Pmcma: 
 
--°=[ Exploitation analysis performed by 
PMCMA ]°=-- 
      1.0  // http://www.pmcma.org  
(...)

--[ Command line: 
/usr/lib/opera/opera /tmp/repro.html  
 
--[ Pid: 
11112 
 
--[ Stopped at: 
mov dword ptr [ebx+edx], eax 
 
--[ Registers: 
eax=0x00000000 
ebx=0x77838ff8 
ecx=0x0000001d 
edx=0x00000008 
esi=0x5d1d4ff8 
edi=0x00368084 
esp=0xbfeac3ac 
ebp=0xbfeac3b8 
eip=0x080baceb 
 
--[ Walking stack: 
 --> Stack was likely not corrupted (43 
valid frames found) 
 
--[ Instruction analysis: 
 --> write operation 
 --> (2 operands) reg1:edx=0x00000008,reg2:e
ax=0x00000000 
 --> the first operand is dereferenced 
 
--[ Crash analysis: 

 ** The application received a (SIGSEGV) signal (number 
11), while performing an instruction (mov dword ptr 
[ebx+edx], eax) with 2 operands, of which the first one 
 is being dereferenced. 

 ** The pointer dereference is failing because the register 
edx, worthing 0x00000008 at this time,  is pointing to 
unmapped memory. 

 ** The impact of this bug is potentially to modify the 
control flow. 

  ** It is also worth mention that if register eax can only 
worth 0x00000000 exploitation will be harder (but not 
necessarily impossible, due to possible unaligned pointer 
truncations, or by overwriting other data and triggering 
an other memory corruption indirectly). 

The human readable analysis is pretty self explanatory: 
the faulting instruction didn't corrupt the stack, but 
Opera generated a Segmentation Fault when executing a 
« mov » instruction in write mode, potentially allowing an 
attacker to modify the flow of execution.
 
This analysis took only a few seconds and contains as 
much information as you would normally read from an 
advisory !

In order to turn such a PoC into a working exploit, a 
shortcoming exists : since we can overwrite some data 
inside the address space (a few trials and errors quickly 
ensures that we can in fact write anywhere in the address 
space), the idea would be to find a function pointer called 
after this point by the process, and overwrite (or truncate) 
it to execute arbitrary code.
 
To balance this example of a potentially exploitable bug, 
let's have a look at an other analysis, performed on a non 
exploitable bug :

        --°=[ Exploitation analysis 
performed by PMCMA ]°=-- 
                  1.0  // http://www.pmcma.
org  
 
--[ Command line: 
/usr/lib/opera/opera /tmp/repro2.html  
 
--[ Pid: 
8172 
 
--[ Stopped at: 
mov    ebx,DWORD PTR [esi+0x4]
 
--[ Registers: 
eax=0xffffffff
ebx=0x00000031 
ecx=0xbf9f3e78
edx=0x00000000
esi=0x00000031 
edi=0x0a5badd0
esp=0xbf9fa2b0
ebp=0xbf9f42c8
eip=0x0805a7db
 
--[ Walking stack: 
 --> Stack was likely not corrupted (19 
valid frames found) 
 
--[ Instruction analysis: 
 --> not a write operation 
 --> (2 operands) reg1:ebx=0x00000031 
,reg2:esi=0x00000031
 --> the second operand is dereferenced 
 
--[ Crash analysis:

  ** The application received a (SIGSEGV) signal (number 
11), while performing an instruction (mov    ebx,DWORD 

PTR [esi+0x4]) with 2 operands, of which the second one 
is being dereferenced. 

 ** The pointer dereference is failing because the register 
esi, worthing 0x00000031 at this time,  is pointing to 
unmapped memory.  

** The impact of this bug is potentially to perform 
a controled read operation, leading either to direct 
information leakage (of an interresting value, or more 
generally of the mapping of the binary), or indirectly to 
an other memory corruption bug. 
 
Here, the impact of the bug is much lower since it is 
essentially a null pointer dereference in read mode : 
even if he controlled esi entirely, all an attacker could do 
is assign a value to register eax. In most cases, this is not 
interesting, unless eax plays a special role in the assembly 
instructions executed right after this one.

A first possible usage of Pmcma is therefore to determine 
quickly if a given Segmentation Faulr is of any interest 
security wise. This is indeed useful for software maintainers 
as well as computer hackers in general.

Function pointers overwrite
Finding function pointers inside the address space 
of a process is a complex operation. We could try to 
disassemble the application including all its libraries and 
look for explicit instructions such as :

 call eax

This would certainly give us a list of some function 
pointers inside the address space. But, we don't want to 
overwrite just about any function pointer: it has to be one 
actually called during the execution of Opera given the 
PoC we give it as an input.

A second idea would be to single step execution until we 
find a suitable function pointer. In this case, given the size 
of the application, it is clearly unpractical!

This is where Pmcma really becomes handy : it is capable 
of listing all the function pointers executed after a given 
point in time, in all of the binary (including its shared 
library). In this case, the full analysis of Opera with Pmcma 
takes a few hours.

Listing function pointers
CVE-2010-4344 is a heap overflow in Exim2. This bug is 
interesting for many reasons, in particular because it has 
been found exploited in the wild in 2010 while it had in 
fact been reported in 2008.
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repeatability:3/100 
 
 --> total : 14 validated function pointers 
            (and found 0 additional control 
flow errors) 

In this case, Pmcma has found 14 potential function 
pointers with this analysis. Overwriting one of them 
(actually, any present in the heap) would allow us to 
modify the flow of execution.

The astute reader will have noticed the repeatability 
metric provided along with every result: it quantifies the 
probability to find the associated pointer at this address 
in memory between different runs (because of ASLR). 
Those in the data sections of the binary itself (which 
wasn't compiled as a Position Independent Executable in 
this case) are always mapped at the same address (100% 
repeatability). Those in the heap of Exim or in the data 
sections of shared libraries have a much lower probability 
of being mapped at the same address between runs 
(below 3% repeatability).

Targeting function pointers with higher probabilities of 
being mapped at a given address will lead to much better 
exploits, requiring less, if any, bruteforcing in general. In our 
case, because we are studying an overflow instead of an 
atomic write, we don't care about their address in memory, 
just their offset from the beginning of the buffer : any 
function pointer in the heap from the list above would do... 
unfortunatly, if we look further at the output of Pmcma, we 
can verify that those two pointers at address 0xb755cXX are 
in fact part of the data section of the libc, not in the heap :

--[ Listing writable sections: 
 <*> Section at 0x080e5000-0x080e9000 (RW) /
usr/sbin/exim4 
 <*> Section at 0x080e9000-0x080eb000 (RW)  
 <*> Section at 0x09051000-0x09074000 (RW) 
[heap] 
 <*> Section at 0xb73e7000-0xb73e9000 (RW)  
 <*> Section at 0xb7400000-0xb7401000 (RW) /
lib/libpthread-2.12.1.so 
 <*> Section at 0xb7401000-0xb7403000 (RW)  
 <*> Section at 0xb755c000-0xb755d000 (RW) /
lib/libc-2.12.1.so 
 <*> Section at 0xb755d000-0xb7560000 (RW)  
 <*> Section at 0xb76c1000-0xb76c2000 (RW) /
usr/lib/libdb-4.8.so 
 <*> Section at 0xb76e7000-0xb76e8000 (RW) /
lib/libm-2.12.1.so 
 <*> Section at 0xb76f2000-0xb76f3000 (RW) /
lib/libcrypt-2.12.1.so 
 <*> Section at 0xb76f3000-0xb771b000 (RW)  
 <*> Section at 0xb772f000-0xb7730000 (RW) /
lib/libnsl-2.12.1.so 
 <*> Section at 0xb7730000-0xb7732000 (RW)  
 <*> Section at 0xb7743000-0xb7744000 (RW) /
lib/libresolv-2.12.1.so 
 <*> Section at 0xb7744000-0xb7746000 (RW)  
 <*> Section at 0xb774b000-0xb774d000 (RW)  

 <*> Section at 0xb7758000-0xb7759000 (RW) /
lib/libnss_files-2.12.1.so 
 <*> Section at 0xb7763000-0xb7764000 (RW) /
lib/libnss_nis-2.12.1.so 
 <*> Section at 0xb776b000-0xb776c000 (RW) /
lib/libnss_compat-2.12.1.so 
 <*> Section at 0xb776c000-0xb776f000 (RW)  
 <*> Section at 0xb778d000-0xb778e000 (RW) /
lib/ld-2.12.1.so 
 <*> Section at 0xbfc27000-0xbfca9000 (RW) 
[stack] 

Advanced usage of Pmcma
Now that the reader is hopefully familiar with the basic 
strategy followed by Pmcma, let's look at more advanced 
exploitation strategies.

Since we didn't find a proper function pointer in the 
heap, it may be a good idea to look for a pointer in the 
heap pointing not directly to a function pointer, but to a 
structure elsewhere in memory (for instance in the data 
section of Exim itself ). If we could overwrite this pointer 
to structure to point to a fake structure in a location we 
control, we could have a function pointer under our 
control dereferenced.

Pmcma also automates this search as part of its analysis :

--[ Searching pointers to datastructures 
with function pointers 
 
     0xbfc679f8 --> 0xbfc67a38  // 
repeatability:100/100 
     0xbfc67a38 --> 0xbfc67c38  // 
repeatability:100/100 
 
 --> total : 2 function pointers identified 
inside structures 

Pmcma identified two such interesting pointers during 
its analysis. Unfortunately, given the mapping presented 
earlier, they are located in the stack, and we won't be able 
to overwrite them using our heap overflow...

Now, plan B is the violent strategy of attempting to 
overwrite any writable 4byte address located in data 
sections, hence relaxing the heuristics explained earlier, 
and see if we can somehow achieve control flow hijacking:

--[ Overwriting any writable address in any 
section (hardcore/costly mode): 
 
 <*> Dereferenced function ptr at 0xbfc67964 
(full control flow hijack) 
     0xbfc67964 --> 0xb746ad5f  // 
repeatability:100/100 
 
 <*> Dereferenced function ptr at 0xbfc67990 
(full control flow hijack) 
     0xbfc67990 --> 0xb746b076  // 

In a nutshell, Exim before version 4.70 was keeping a buffer 
in the heap to store data to be sent to its main log file. But 
it failed at ensuring the buffer wasn't full when adding 
more data to this buffer, resulting in a heap overflow.

HD More and Jduck wrote a very reliable exploit for this 
vulnerability by overwriting the configuration file stored 
in the heap of Exim itself when overwriting this buffer. 
This is a very elegant solution as it allows them to inject 
arbitrary shell commands to be executed instead of using 
shellcodes.

If nonetheless we wanted to use shellcodes instead, 
we would first need to determine the address of a 
function pointer stored in the heap (after the address 
of overflowed buffer) and overwrite it with any chosen 
address. If the heap itself is executable, a possible option 
is to return to the buffer itself (which contains user 
controlled data, hance possibly a shellcode), provided 
the address of this buffer can be guessed. Since we can 
send large amount of data (Jduck used 50Mb of padding 
in the Metasploit exploit for instance), we could still use 
it as nop sled padding, and bruteforce a bit the address 
of the heap.

Remember that by definition, a function pointer is stored 
in a writable section and points to an executable section. 
It should even point to the beginning of a valid assembly 
instruction, and very likely to a function prologue. This 
heuristic is very time saving when listing potential 
function pointers by parsing a writable section, hence 
Pmcma normally uses it for its analysis, relaxing it only if it 
fails to find any suitable function pointer (see next section 
for an exemple).

Let's look at a snipped of the analysis provided by Pmcma 
when the debugger is used to attach to the pid of the 
running Exim :
 
        --°=[ Exploitation analysis 
performed by PMCMA ]°=-- 
                  1.0  // http://www.pmcma.
org  
 
--[ Command line: 
/usr/sbin/exim4 -bd -q30m  
 
--[ Pid: 
5958 
 ...

 
--[ Loop detection: 
<*> crash in a loop : no 
 
--[ Validating function pointers (strict 
mode): 
  <*> Dereferenced function ptr at 

0x080e5000 (full control flow hijack) 
     0x080e5000 --> 0xb7463260  // 
repeatability:100/100 
 
 <*> Dereferenced function ptr at 0x080e5048 
(full control flow hijack) 
     0x080e5048 --> 0xb74e7300  // 
repeatability:100/100 
 
 <*> Dereferenced function ptr at 0x080e504c 
(full control flow hijack) 
     0x080e504c --> 0xb742d820  // 
repeatability:100/100 
 
 <*> Dereferenced function ptr at 0x080e5064 
(full control flow hijack) 
     0x080e5064 --> 0xb748d130  // 
repeatability:100/100 
 
 <*> Dereferenced function ptr at 0x080e5108 
(full control flow hijack) 
     0x080e5108 --> 0xb745fba0  // 
repeatability:100/100 
 
 <*> Dereferenced function ptr at 0x080e5138 
(full control flow hijack) 
     0x080e5138 --> 0xb745f6d0  // 
repeatability:100/100 
 
 <*> Dereferenced function ptr at 0x080e51a8 
(full control flow hijack) 
     0x080e51a8 --> 0xb74e6ba0  // 
repeatability:100/100 
 
 <*> Dereferenced function ptr at 0x080e51ec 
(full control flow hijack) 
     0x080e51ec --> 0xb74632b0  // 
repeatability:100/100 
 
 <*> Dereferenced function ptr at 0x080e5220 
(full control flow hijack) 
     0x080e5220 --> 0xb74c19e0  // 
repeatability:100/100 
 
 <*> Dereferenced function ptr at 0x080e5228 
(full control flow hijack) 
     0x080e5228 --> 0xb74c3480  // 
repeatability:100/100 
 
 <*> Dereferenced function ptr at 0x080e5240 
(full control flow hijack) 
     0x080e5240 --> 0xb74e6f70  // 
repeatability:100/100 
 
 <*> Dereferenced function ptr at 0x080e5b88 
(full control flow hijack) 
     0x080e5b88 --> 0x08097dd4  // 
repeatability:100/100 
 
 <*> Dereferenced function ptr at 0xb755c00c 
(full control flow hijack) 
     0xb755c00c --> 0xb7473ed0  // 
repeatability:3/100 
 
 <*> Dereferenced function ptr at 0xb755c018 
(full control flow hijack) 
     0xb755c018 --> 0xb7473df0  // 



Conclusion
Based on those simple examples, we hope to have 
convinced the reader of the virtues of exploit 
automation. Pmcma is capable of achieving in little 
time tasks that would take the best reverse engineers 

multiple days to do. Pmcma is a free and open source 
framework and always a work in progress. Feel free 
to hack it to perform analysis we couldn't have even 
thought of, and if you like the result, please send us 
patches! •
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>> rEFErENCEs
1.  http://www.toucan-system.com/advisories/tssa-2011-02.txt Opera, SELECT SIZE Arbitrary null write. 

2.  http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-4344 Heap-based buffer overflow in Exim before 4.70

3.  https://dev.metasploit.com/redmine/projects/framework/repository/revisions/11274/entry/modules/exploits/unix/smtp/exim4_string_format.
rb : Exim <= 4.69 Exploit.
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Est. 1999

repeatability:100/100 

( ...)

 <*> Dereferenced function ptr at 0xb73e76d0 
(full control flow hijack) 
     0x090616d0 --> 0xb776f414  // 
repeatability:3/100 
 
 <*> Dereferenced function ptr at 0xb755c00c 
(full control flow hijack) 
     0xb755c00c --> 0xb7473ed0  // 
repeatability:3/100 
 
(...) 

 <*> Dereferenced function ptr at 0xbfc67c3c 
(full control flow hijack) 
     0xbfc67c3c --> 0x080519ad  // 
repeatability:100/100 
 
 --> total : 45 validated function pointers 
            (and found 0 additional control 
flow errors)

If we look carefully, the address at 0x090616d0 is in fact 
inside the heap: by overwriting it, we can achieve full 
control flow hijacking! Bingo!!

It is worth noticing that this whole automated analysis 
took place without any user interaction, in less than 5 
minutes. Finding the same information manually using 
disassemblers and debuggers would have taken days to 
skilled reverse engineers. At best.

The special case of unaligned read/writes
In some cases, like with the Opera vulnerability introduced 
earlier, overwritting a function pointer to hijack the flow of 
execution is not practical. In the Opera bug, the value of 
eax is not user controlled, and is always null. It means an 
attacker can in fact write 0x00000000 anywhere in memory. 
If an attacher used this value to overwrite a function 
pointer, Opera would later on attempt to execute the 
address 0x00000000, which is never mapped in userland 
since kernels 2.6.23. In addition, the value of ebx+edx, 
corresponding to the destination address of the memory 
write, is always 4 byte aligned, reducing even more the 
influence of an attacker over the target application.

When such a difficult situation arises, a last resort strategy 
is to attempt to truncate unaligned variables in writable 
sections. Listing those sections is typically hard: the 
current state of the art is to change the permissions of 
data sections on the fly to not readable, not writable, not 
executable, wait for a segmentation fault,  understand 
why the segfault occurred by disassembling the latest 
instruction and looking at its registers... then remap the 
section readable/writable, execute one instruction (by 
setting the trap flag in the EFLAG register). Rince and 

repeat. Obviously, this process is both slow and painful 
when performed manually.

Pmcma has a better way to list all the unaligned memory 
accesses inside a binary, by setting the UNALIGNED 
flag in the EFLAG register. By doing so, Pmcma will 
automatically receive a signal 7 (Bus error) when a 
unaligned access is performed. Hence breaking only on 
unaligned memory access instead of every data access 
like with the previous method.

To illustrate this feature, let's monitor all the unaligned 
memory accesses in the OpenSSH deamon of a Fedora 15 
distribution.

We start by verifying that OpenSSH is currently running :

[root@fedora-box pmcma]# netstat -atnp|grep 
ssh 
tcp        0      0 0.0.0.0:22      
0.0.0.0:*      LISTEN      7619/sshd            
tcp        0      0 :::22           :::*           
LISTEN        7619/sshd            
[root@fedora-box pmcma]#  

In a second terminal, we initiate an SSH 
connection :

[endrazine@fedora-box ~]$ ssh localhost

Then, back in the first terminal, we attach to the pid of 
the newly instanciated sshd fork by its pid, giving pmcma 
the –unaligned additional parameter. We obtain the 
following log :

signo: 7 errno: 0 code: 1 
00BD9FDF: mov [edx-0x4], ecx 
 ecx= 00000000 
 edx= 214e57b6 
signo: 7 errno: 0 code: 1 
00BDA336: mov ecx, [eax+0x6] 
 eax= bfb3cb08 
 ecx= 0000000a 
signo: 7 errno: 0 code: 1 
00BDA339: mov [edx+0x6], ecx 
 ecx= cae03591 
 edx= 214e20cc 
signo: 7 errno: 0 code: 1 
00BDA33C: mov ecx, [eax+0x2] 
 eax= bfb3cb08 
 ecx= cae03591 
signo: 7 errno: 0 code: 1 
00BDA33F: mov [edx+0x2], ecx 
 ecx= 60000000 
 edx= 214e20cc 
...

In which we can verify that at each assembly instruction, 
one of the operands is unaligned. This technique is 
both faster and more elegant than using mprotect() 
repeatedly.


