
HAL Id: hal-04676819
https://hal.science/hal-04676819v1

Submitted on 24 Aug 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Beyond Fuzzing : Exploit Automation with PMCMA
Jonathan Brossard

To cite this version:

Jonathan Brossard. Beyond Fuzzing : Exploit Automation with PMCMA. HITB. 2011. �hal-04676819�

https://hal.science/hal-04676819v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Exploit
Automation
with PMCMA

BEyOND
FuzziNg

S
ay you've been fuzzing a given application,
possibly yours, for a few days. You are now left with
a bunch of fuzz files that can trigger bugs inside
the application. Now what? Send all this data to

the vendor (or fix them yourself)? They probably won't
even care. What you need to do now is determine which
of those bugs are exploitable, with which probability, and
then write proper PoCs to demonstrate your claims.

Of course, it is not 1998 anymore and this is by far the
hardest part : it requires extensive knowledge of assembly
and reverse engineering, encyclopedic knowledge of
exploitation techniques & security features bypass.

End of all hopes? Not quite... In fact, we have automated
most of the task for you...

Exploitation is hard: overview of software
security counter measures
Welcome in 2011: most operating systems now feature
non executable memory pages either via software
emulation (PaX and its derivatives) or hardware based
(Intel NX bit). Most OSes actually enforce X^W meaning
that you can't execute writable data: the good old days of
putting shellcode in the stack or heaps are over.

Most, if not all sections are randomized, meaning they are
mapped at different addresses at runtime.

Heap chunks are also now protected by safe unkinking on
both GNU/Linux (ptmalloc) and Windows. This killed entire
classes of vulnerabilities such as simple double free().

The stack is most of the time protected by compilers
enhancements (/GS compilation under Visual Studio, stack
canaries under gcc since version 4.2). In fact, the whole
toolchains have been enhanced to reorganize binary
sections so that writable data sections, potentially subject
to overflows, are not followed by critical sections (such
as the Global Offset Table under GNU/Linux). Even the
dynamic linking process has been enhanced to minimize
attack surface by allowing relocations to be performed at
load time, and subsequently remapping the GOT as read
only. Hence preventing its malicious hijacking entirely.

Finally, known function pointers such as destructors
(stored in the .dtors section when the binary has been
compiled with gcc) can be removed entirely via custom
linker scripts (removing the entire .dtors section !).

Under those conditions, triggering a bug is by far the
easiest part of exploitation. Understanding how to
actually exploit the binary, in other words, defining an
exploitation strategy, has become the meat of binary
hacking.

AppLiCATioN sECuriTy

43OCTOBEr 2011 i HitB mAgAziNEHitB mAgAziNE i OCTOBEr 201142

Jonathan Brossard
Security Researcher & CEO at Toucan System

45OCTOBEr 2011 i HitB mAgAziNEHitB mAgAziNE i OCTOBEr 201144

AppLiCATioN sECuriTy

In the rest of this article, we will focus on the x86 GNU/
Linux architecture. PMCMA is also constantly being
ported to new architectures, please visit http://www.
pmcma.org for more details. The actual distribution used
to perform the tests in this article is a x86 Ubuntu version
10.10, but Pmcma runs on x86_64 cpus too, and Arch
Linux, Debian, Gentoo and Fedora distrubutions have
been used successfully with it.

Introducing PMCMA
PMCMA stands for Post Memory Corruption Memory
Analysis. In a nutshell, it is a new type of ptrace() based
debugger we presented at the latest Blackhat US
Conference. PMCMA is free software. It is available at
http://www.pmcma.org/ under the Apache 2.0 license.

Unlike standards debuggers, build by software maintainers
to help manually fix software, PMCMA is an offensive one,
designed with automation and exploitation in mind.

The core novelty of PMCMA is to allow a debugged
process to be replicated at will in memory by forcing it
to fork. By creating many replicas of the same process, it
allows for easy empirical automation and manipulation.
For instance, it can be used to overwrite sequentially all
writable sections of memory with a remarkable value
after a memory corruption bug has occurred inside
the address space, and artificially continue execution.
This is the best known way to determine all the
function pointers actually called within a binary path.
Without the need of lengthy single stepping. And fully
automatically.

Determining exploitability with PMCMA
When they are not caught by security checks withing the
heap allocator or stack cookie integrity checks, most bugs
eventually trigger an invalid memory access resulting in a
Segmentation Fault (Signal 11).

There are three types of invalid memory accesses
depending no the faulting assembly instruction triggering
this access (read mode, write mode or execution mode).

Determining why an application generated an invalid
memory access at assembly level is the first step towards
exploitation.

Let's use CVE-2011-1824 as an example. It is a vulnerability
in the Opera web browser we responsibly disclosed earlier
this year1.

In order to determine what happens at binary level when
triggering the vulnerability, let's execute Opera inside a
pmcma session. This can be done with a command line
such as:

 ./pmcma --fptr --segfault -C `which opera` /
tmp/repro.html

Here is an output of the analysis automatically generated
by Pmcma:

--°=[Exploitation analysis performed by
PMCMA]°=--
 1.0 // http://www.pmcma.org
(...)

--[Command line:
/usr/lib/opera/opera /tmp/repro.html

--[Pid:
11112

--[Stopped at:
mov dword ptr [ebx+edx], eax

--[Registers:
eax=0x00000000
ebx=0x77838ff8
ecx=0x0000001d
edx=0x00000008
esi=0x5d1d4ff8
edi=0x00368084
esp=0xbfeac3ac
ebp=0xbfeac3b8
eip=0x080baceb

--[Walking stack:
 --> Stack was likely not corrupted (43
valid frames found)

--[Instruction analysis:
 --> write operation
 --> (2 operands) reg1:edx=0x00000008,reg2:e
ax=0x00000000
 --> the first operand is dereferenced

--[Crash analysis:

 ** The application received a (SIGSEGV) signal (number
11), while performing an instruction (mov dword ptr
[ebx+edx], eax) with 2 operands, of which the first one
 is being dereferenced.

 ** The pointer dereference is failing because the register
edx, worthing 0x00000008 at this time, is pointing to
unmapped memory.

 ** The impact of this bug is potentially to modify the
control flow.

 ** It is also worth mention that if register eax can only
worth 0x00000000 exploitation will be harder (but not
necessarily impossible, due to possible unaligned pointer
truncations, or by overwriting other data and triggering
an other memory corruption indirectly).

The human readable analysis is pretty self explanatory:
the faulting instruction didn't corrupt the stack, but
Opera generated a Segmentation Fault when executing a
« mov » instruction in write mode, potentially allowing an
attacker to modify the flow of execution.

This analysis took only a few seconds and contains as
much information as you would normally read from an
advisory !

In order to turn such a PoC into a working exploit, a
shortcoming exists : since we can overwrite some data
inside the address space (a few trials and errors quickly
ensures that we can in fact write anywhere in the address
space), the idea would be to find a function pointer called
after this point by the process, and overwrite (or truncate)
it to execute arbitrary code.

To balance this example of a potentially exploitable bug,
let's have a look at an other analysis, performed on a non
exploitable bug :

 --°=[Exploitation analysis
performed by PMCMA]°=--
 1.0 // http://www.pmcma.
org

--[Command line:
/usr/lib/opera/opera /tmp/repro2.html

--[Pid:
8172

--[Stopped at:
mov ebx,DWORD PTR [esi+0x4]

--[Registers:
eax=0xffffffff
ebx=0x00000031
ecx=0xbf9f3e78
edx=0x00000000
esi=0x00000031
edi=0x0a5badd0
esp=0xbf9fa2b0
ebp=0xbf9f42c8
eip=0x0805a7db

--[Walking stack:
 --> Stack was likely not corrupted (19
valid frames found)

--[Instruction analysis:
 --> not a write operation
 --> (2 operands) reg1:ebx=0x00000031
,reg2:esi=0x00000031
 --> the second operand is dereferenced

--[Crash analysis:

 ** The application received a (SIGSEGV) signal (number
11), while performing an instruction (mov ebx,DWORD

PTR [esi+0x4]) with 2 operands, of which the second one
is being dereferenced.

 ** The pointer dereference is failing because the register
esi, worthing 0x00000031 at this time, is pointing to
unmapped memory.

** The impact of this bug is potentially to perform
a controled read operation, leading either to direct
information leakage (of an interresting value, or more
generally of the mapping of the binary), or indirectly to
an other memory corruption bug.

Here, the impact of the bug is much lower since it is
essentially a null pointer dereference in read mode :
even if he controlled esi entirely, all an attacker could do
is assign a value to register eax. In most cases, this is not
interesting, unless eax plays a special role in the assembly
instructions executed right after this one.

A first possible usage of Pmcma is therefore to determine
quickly if a given Segmentation Faulr is of any interest
security wise. This is indeed useful for software maintainers
as well as computer hackers in general.

Function pointers overwrite
Finding function pointers inside the address space
of a process is a complex operation. We could try to
disassemble the application including all its libraries and
look for explicit instructions such as :

 call eax

This would certainly give us a list of some function
pointers inside the address space. But, we don't want to
overwrite just about any function pointer: it has to be one
actually called during the execution of Opera given the
PoC we give it as an input.

A second idea would be to single step execution until we
find a suitable function pointer. In this case, given the size
of the application, it is clearly unpractical!

This is where Pmcma really becomes handy : it is capable
of listing all the function pointers executed after a given
point in time, in all of the binary (including its shared
library). In this case, the full analysis of Opera with Pmcma
takes a few hours.

Listing function pointers
CVE-2010-4344 is a heap overflow in Exim2. This bug is
interesting for many reasons, in particular because it has
been found exploited in the wild in 2010 while it had in
fact been reported in 2008.

47OCTOBEr 2011 i HitB mAgAziNEHitB mAgAziNE i OCTOBEr 201146

AppLiCATioN sECuriTy

repeatability:3/100

 --> total : 14 validated function pointers
 (and found 0 additional control
flow errors)

In this case, Pmcma has found 14 potential function
pointers with this analysis. Overwriting one of them
(actually, any present in the heap) would allow us to
modify the flow of execution.

The astute reader will have noticed the repeatability
metric provided along with every result: it quantifies the
probability to find the associated pointer at this address
in memory between different runs (because of ASLR).
Those in the data sections of the binary itself (which
wasn't compiled as a Position Independent Executable in
this case) are always mapped at the same address (100%
repeatability). Those in the heap of Exim or in the data
sections of shared libraries have a much lower probability
of being mapped at the same address between runs
(below 3% repeatability).

Targeting function pointers with higher probabilities of
being mapped at a given address will lead to much better
exploits, requiring less, if any, bruteforcing in general. In our
case, because we are studying an overflow instead of an
atomic write, we don't care about their address in memory,
just their offset from the beginning of the buffer : any
function pointer in the heap from the list above would do...
unfortunatly, if we look further at the output of Pmcma, we
can verify that those two pointers at address 0xb755cXX are
in fact part of the data section of the libc, not in the heap :

--[Listing writable sections:
 <*> Section at 0x080e5000-0x080e9000 (RW) /
usr/sbin/exim4
 <*> Section at 0x080e9000-0x080eb000 (RW)
 <*> Section at 0x09051000-0x09074000 (RW)
[heap]
 <*> Section at 0xb73e7000-0xb73e9000 (RW)
 <*> Section at 0xb7400000-0xb7401000 (RW) /
lib/libpthread-2.12.1.so
 <*> Section at 0xb7401000-0xb7403000 (RW)
 <*> Section at 0xb755c000-0xb755d000 (RW) /
lib/libc-2.12.1.so
 <*> Section at 0xb755d000-0xb7560000 (RW)
 <*> Section at 0xb76c1000-0xb76c2000 (RW) /
usr/lib/libdb-4.8.so
 <*> Section at 0xb76e7000-0xb76e8000 (RW) /
lib/libm-2.12.1.so
 <*> Section at 0xb76f2000-0xb76f3000 (RW) /
lib/libcrypt-2.12.1.so
 <*> Section at 0xb76f3000-0xb771b000 (RW)
 <*> Section at 0xb772f000-0xb7730000 (RW) /
lib/libnsl-2.12.1.so
 <*> Section at 0xb7730000-0xb7732000 (RW)
 <*> Section at 0xb7743000-0xb7744000 (RW) /
lib/libresolv-2.12.1.so
 <*> Section at 0xb7744000-0xb7746000 (RW)
 <*> Section at 0xb774b000-0xb774d000 (RW)

 <*> Section at 0xb7758000-0xb7759000 (RW) /
lib/libnss_files-2.12.1.so
 <*> Section at 0xb7763000-0xb7764000 (RW) /
lib/libnss_nis-2.12.1.so
 <*> Section at 0xb776b000-0xb776c000 (RW) /
lib/libnss_compat-2.12.1.so
 <*> Section at 0xb776c000-0xb776f000 (RW)
 <*> Section at 0xb778d000-0xb778e000 (RW) /
lib/ld-2.12.1.so
 <*> Section at 0xbfc27000-0xbfca9000 (RW)
[stack]

Advanced usage of Pmcma
Now that the reader is hopefully familiar with the basic
strategy followed by Pmcma, let's look at more advanced
exploitation strategies.

Since we didn't find a proper function pointer in the
heap, it may be a good idea to look for a pointer in the
heap pointing not directly to a function pointer, but to a
structure elsewhere in memory (for instance in the data
section of Exim itself). If we could overwrite this pointer
to structure to point to a fake structure in a location we
control, we could have a function pointer under our
control dereferenced.

Pmcma also automates this search as part of its analysis :

--[Searching pointers to datastructures
with function pointers

 0xbfc679f8 --> 0xbfc67a38 //
repeatability:100/100
 0xbfc67a38 --> 0xbfc67c38 //
repeatability:100/100

 --> total : 2 function pointers identified
inside structures

Pmcma identified two such interesting pointers during
its analysis. Unfortunately, given the mapping presented
earlier, they are located in the stack, and we won't be able
to overwrite them using our heap overflow...

Now, plan B is the violent strategy of attempting to
overwrite any writable 4byte address located in data
sections, hence relaxing the heuristics explained earlier,
and see if we can somehow achieve control flow hijacking:

--[Overwriting any writable address in any
section (hardcore/costly mode):

 <*> Dereferenced function ptr at 0xbfc67964
(full control flow hijack)
 0xbfc67964 --> 0xb746ad5f //
repeatability:100/100

 <*> Dereferenced function ptr at 0xbfc67990
(full control flow hijack)
 0xbfc67990 --> 0xb746b076 //

In a nutshell, Exim before version 4.70 was keeping a buffer
in the heap to store data to be sent to its main log file. But
it failed at ensuring the buffer wasn't full when adding
more data to this buffer, resulting in a heap overflow.

HD More and Jduck wrote a very reliable exploit for this
vulnerability by overwriting the configuration file stored
in the heap of Exim itself when overwriting this buffer.
This is a very elegant solution as it allows them to inject
arbitrary shell commands to be executed instead of using
shellcodes.

If nonetheless we wanted to use shellcodes instead,
we would first need to determine the address of a
function pointer stored in the heap (after the address
of overflowed buffer) and overwrite it with any chosen
address. If the heap itself is executable, a possible option
is to return to the buffer itself (which contains user
controlled data, hance possibly a shellcode), provided
the address of this buffer can be guessed. Since we can
send large amount of data (Jduck used 50Mb of padding
in the Metasploit exploit for instance), we could still use
it as nop sled padding, and bruteforce a bit the address
of the heap.

Remember that by definition, a function pointer is stored
in a writable section and points to an executable section.
It should even point to the beginning of a valid assembly
instruction, and very likely to a function prologue. This
heuristic is very time saving when listing potential
function pointers by parsing a writable section, hence
Pmcma normally uses it for its analysis, relaxing it only if it
fails to find any suitable function pointer (see next section
for an exemple).

Let's look at a snipped of the analysis provided by Pmcma
when the debugger is used to attach to the pid of the
running Exim :

 --°=[Exploitation analysis
performed by PMCMA]°=--
 1.0 // http://www.pmcma.
org

--[Command line:
/usr/sbin/exim4 -bd -q30m

--[Pid:
5958
 ...

--[Loop detection:
<*> crash in a loop : no

--[Validating function pointers (strict
mode):
 <*> Dereferenced function ptr at

0x080e5000 (full control flow hijack)
 0x080e5000 --> 0xb7463260 //
repeatability:100/100

 <*> Dereferenced function ptr at 0x080e5048
(full control flow hijack)
 0x080e5048 --> 0xb74e7300 //
repeatability:100/100

 <*> Dereferenced function ptr at 0x080e504c
(full control flow hijack)
 0x080e504c --> 0xb742d820 //
repeatability:100/100

 <*> Dereferenced function ptr at 0x080e5064
(full control flow hijack)
 0x080e5064 --> 0xb748d130 //
repeatability:100/100

 <*> Dereferenced function ptr at 0x080e5108
(full control flow hijack)
 0x080e5108 --> 0xb745fba0 //
repeatability:100/100

 <*> Dereferenced function ptr at 0x080e5138
(full control flow hijack)
 0x080e5138 --> 0xb745f6d0 //
repeatability:100/100

 <*> Dereferenced function ptr at 0x080e51a8
(full control flow hijack)
 0x080e51a8 --> 0xb74e6ba0 //
repeatability:100/100

 <*> Dereferenced function ptr at 0x080e51ec
(full control flow hijack)
 0x080e51ec --> 0xb74632b0 //
repeatability:100/100

 <*> Dereferenced function ptr at 0x080e5220
(full control flow hijack)
 0x080e5220 --> 0xb74c19e0 //
repeatability:100/100

 <*> Dereferenced function ptr at 0x080e5228
(full control flow hijack)
 0x080e5228 --> 0xb74c3480 //
repeatability:100/100

 <*> Dereferenced function ptr at 0x080e5240
(full control flow hijack)
 0x080e5240 --> 0xb74e6f70 //
repeatability:100/100

 <*> Dereferenced function ptr at 0x080e5b88
(full control flow hijack)
 0x080e5b88 --> 0x08097dd4 //
repeatability:100/100

 <*> Dereferenced function ptr at 0xb755c00c
(full control flow hijack)
 0xb755c00c --> 0xb7473ed0 //
repeatability:3/100

 <*> Dereferenced function ptr at 0xb755c018
(full control flow hijack)
 0xb755c018 --> 0xb7473df0 //

Conclusion
Based on those simple examples, we hope to have
convinced the reader of the virtues of exploit
automation. Pmcma is capable of achieving in little
time tasks that would take the best reverse engineers

multiple days to do. Pmcma is a free and open source
framework and always a work in progress. Feel free
to hack it to perform analysis we couldn't have even
thought of, and if you like the result, please send us
patches! •

49OCTOBEr 2011 i HitB mAgAziNEHitB mAgAziNE i OCTOBEr 201148

>> rEFErENCEs
1. http://www.toucan-system.com/advisories/tssa-2011-02.txt Opera, SELECT SIZE Arbitrary null write.

2. http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-4344 Heap-based buffer overflow in Exim before 4.70

3. https://dev.metasploit.com/redmine/projects/framework/repository/revisions/11274/entry/modules/exploits/unix/smtp/exim4_string_format.
rb : Exim <= 4.69 Exploit.

AppLiCATioN sECuriTy

Est. 1999

repeatability:100/100

(...)

 <*> Dereferenced function ptr at 0xb73e76d0
(full control flow hijack)
 0x090616d0 --> 0xb776f414 //
repeatability:3/100

 <*> Dereferenced function ptr at 0xb755c00c
(full control flow hijack)
 0xb755c00c --> 0xb7473ed0 //
repeatability:3/100

(...)

 <*> Dereferenced function ptr at 0xbfc67c3c
(full control flow hijack)
 0xbfc67c3c --> 0x080519ad //
repeatability:100/100

 --> total : 45 validated function pointers
 (and found 0 additional control
flow errors)

If we look carefully, the address at 0x090616d0 is in fact
inside the heap: by overwriting it, we can achieve full
control flow hijacking! Bingo!!

It is worth noticing that this whole automated analysis
took place without any user interaction, in less than 5
minutes. Finding the same information manually using
disassemblers and debuggers would have taken days to
skilled reverse engineers. At best.

The special case of unaligned read/writes
In some cases, like with the Opera vulnerability introduced
earlier, overwritting a function pointer to hijack the flow of
execution is not practical. In the Opera bug, the value of
eax is not user controlled, and is always null. It means an
attacker can in fact write 0x00000000 anywhere in memory.
If an attacher used this value to overwrite a function
pointer, Opera would later on attempt to execute the
address 0x00000000, which is never mapped in userland
since kernels 2.6.23. In addition, the value of ebx+edx,
corresponding to the destination address of the memory
write, is always 4 byte aligned, reducing even more the
influence of an attacker over the target application.

When such a difficult situation arises, a last resort strategy
is to attempt to truncate unaligned variables in writable
sections. Listing those sections is typically hard: the
current state of the art is to change the permissions of
data sections on the fly to not readable, not writable, not
executable, wait for a segmentation fault, understand
why the segfault occurred by disassembling the latest
instruction and looking at its registers... then remap the
section readable/writable, execute one instruction (by
setting the trap flag in the EFLAG register). Rince and

repeat. Obviously, this process is both slow and painful
when performed manually.

Pmcma has a better way to list all the unaligned memory
accesses inside a binary, by setting the UNALIGNED
flag in the EFLAG register. By doing so, Pmcma will
automatically receive a signal 7 (Bus error) when a
unaligned access is performed. Hence breaking only on
unaligned memory access instead of every data access
like with the previous method.

To illustrate this feature, let's monitor all the unaligned
memory accesses in the OpenSSH deamon of a Fedora 15
distribution.

We start by verifying that OpenSSH is currently running :

[root@fedora-box pmcma]# netstat -atnp|grep
ssh
tcp 0 0 0.0.0.0:22
0.0.0.0:* LISTEN 7619/sshd
tcp 0 0 :::22 :::*
LISTEN 7619/sshd
[root@fedora-box pmcma]#

In a second terminal, we initiate an SSH
connection :

[endrazine@fedora-box ~]$ ssh localhost

Then, back in the first terminal, we attach to the pid of
the newly instanciated sshd fork by its pid, giving pmcma
the –unaligned additional parameter. We obtain the
following log :

signo: 7 errno: 0 code: 1
00BD9FDF: mov [edx-0x4], ecx
 ecx= 00000000
 edx= 214e57b6
signo: 7 errno: 0 code: 1
00BDA336: mov ecx, [eax+0x6]
 eax= bfb3cb08
 ecx= 0000000a
signo: 7 errno: 0 code: 1
00BDA339: mov [edx+0x6], ecx
 ecx= cae03591
 edx= 214e20cc
signo: 7 errno: 0 code: 1
00BDA33C: mov ecx, [eax+0x2]
 eax= bfb3cb08
 ecx= cae03591
signo: 7 errno: 0 code: 1
00BDA33F: mov [edx+0x2], ecx
 ecx= 60000000
 edx= 214e20cc
...

In which we can verify that at each assembly instruction,
one of the operands is unaligned. This technique is
both faster and more elegant than using mprotect()
repeatedly.

