Supplementary Information

Chemical Storage of Elemental Fluorine in Nanostructured Cerium Fluorides

Valentine Camus-Génot,¹ Edouard Boivin,¹ Christophe Legein,¹ Monique Body,¹ Etienne Durand,²

Alain Demourgues,² Marc Dubois,³ Batiste Clavier,³ Kévin Lemoine,³ Vincent Sarou-Kanian,⁴ Annie

Hémon-Ribaud,¹ Vincent Maisonneuve,¹ Jérôme Lhoste, ^{1*} Amandine Guiet^{1*}

¹ Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France

² Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), UMR 5026 CNRS, Université de Bordeaux, 33600 Pessac, France

³ Institut de Chimie de Clermont Ferrand (ICCF), UMR 6002 CNRS, Université Clermont Auvergne, 63178 Aubière, France

⁴ Conditions Extrêmes et Matériaux : Haute Température et Irradiation (CEMHTI), UPR 3079 CNRS, Université d'Orléans, 45071 Orléans, France

CORRESPONDING AUTHORS

Amandine Guiet : amandine.guiet@univ-lemans.fr

Jérôme Lhoste: jerome.lhoste@univ-lemans.fr

Figure S1. Schematic representation of the different steps of OPIF synthesis methodology4
Figure S2. Rietveld refinement of the powder X-ray diffraction patterns of CeF_3 -NP, CeF_3 -OPIF, CeO_2 -NP and
CeO ₂ -OPIF4
Figure S3. Characterization of CeF $_3$ and CeO $_2$ NP by TEM, N $_2$ sorption and DLS6
Figure S4. a) SEM image of dried PMMA particles. b) DLS analysis of PMMA particles in latex form. c) TGA
analysis of dried PMMA beads under synthetic air6
Figure S5. SEM, TEM, HRTEM and SAED patterns of a) macroporous CeF ₃ -OPIF and b) CeO ₂ -OPIF7
Figure S6. a) Powder XRD patterns of pristine (NP) and macroporous (OPIF) materials. b) Nitrogen sorption
isotherms of CeF ₃ -OPIF and CeO ₂ -OPIF7
Figure S7. Schematic representation of F_2 fluorination line8
Figure S8. a) Fluoride expansion assembly. b) Fluorination line under F2. c) Open half-shell furnace with
reaction chamber8
Figure S9. TEM images with corresponding SAED patterns of CeF ₃ -NP, CeF ₃ -OPIF, CeO ₂ -NP and CeO ₂ -OPIF
after fluorination at different annealing temperatures from 250°C to 400°C under pure F_2 and for 3h9
Figure S10. SEM images after fluorination under pure F_2 for 3h of CeF ₃ -OPIF at a) 350°C and c) 400°C and
CeO ₂ -OPIF at b) 350°C and d)400°C10
Figure S11. Rietveld refinement of the powder X-ray diffraction patterns of CeF_4 , obtained by direct
fluorination under pure F_2 flow for 3h at 350°C of a) CeF ₃ -NP, b) CeO ₂ -NP, c) CeF ₃ -OPIF and d) CeO ₂ -OPIF11
Figure S12. 19 F solid state MAS experimental and fitted NMR spectra of CeF ₄ ·0.33H ₂ O. The individual
resonances used for the fit are shown below (see Table S4)13
Figure S13. ¹⁹ F solid state MAS experimental and fitted NMR spectra of CeO ₂ -OPIF-F ₂ -350°C-day 1. The
individual resonances used for the fit are shown below (see Table S5)14
Figure S14. ¹⁹ F solid state MAS experimental and fitted NMR spectra of CeO ₂ -OPIF-F ₂ -350°C-day 7. The
individual resonances used for the fit are shown below (see Table S6)15
Figure S15. ¹⁹ F solid state MAS experimental and fitted NMR spectra of CeO ₂ -OPIF-F ₂ -350°C-day 38. The
individual resonances used for the fit are shown below (see Table S7)16
Figure S16. ¹ H solid state MAS experimental and fitted NMR spectra of CeO ₂ -OPIF fluorinated at 350°C, day
1, day 7 and day 38 and of $CeF_4 \cdot 0.33H_2O$. The individual resonances used for the fit are shown below (see Table
S8) 17

Figure S17. XRD patterns of CeF ₃ -NP, CeF ₃ -OPIF, CeO ₂ -NP and CeO ₂ -OPIF after defluorination under vacuum	for
3h at different annealing temperatures	_19
Figure S18. Rietveld refinement of the powder X-ray diffraction patterns of a) CeF ₃ -NP-C1, b) CeO ₂ -NP-C1	L, c)
CeF ₃ -OPIF-C1 and d) CeO ₂ -OPIF-C1	_19
Figure S19. Variable temperature PXRD study of CeF $_4$ ·0.33H $_2$ O under N $_2$	_20
Figure S20. Rietveld refinement of the powder X-ray diffraction patterns of commercial CeF $_4$ ·0.33H $_2$ O a) as
received and b) after one complete cycle (one defluorination and one fluorination)	_21
Figure S21. PXRD study of fluorination(F)/defluorination(D) cycles of CeO ₂ -OPIF	_22
Figure S22. PXRD patterns recorded before (CeF ₄ -2days / SiO ₂) and after (CeO ₂ -OPIF-C1-2days / SiO ₂ and Ce	•O2-
OPIF-C1-no break / SiO ₂) defluorination monited by gas-phase infrared under nitrogen (N_2) with the prese	nce
of SiO ₂	22

Figure S1. Schematic representation of the different steps of OPIF synthesis methodology.

Figure S2. Rietveld refinement of the powder X-ray diffraction patterns of CeF₃-NP, CeF₃-OPIF, CeO₂-NP and CeO₂-OPIF. Experimental in red, calculated in black and difference in blue. Vertical green lines mark the positions of CeF₃ or CeO₂ reflections, depending on the considered material.

Table S1. Crystal data, data collection and structure refinement details of CeF₃-NP, CeF₃-OPIF, CeO₂-NP and CeO₂-OPIF. CeF₃ : Crystal system trigonal, space group: $P\overline{3}c1$. CeO₂ : Crystal system cubic, space group: $Fm\overline{3}m$. Radiation type: CuK_{α}, 2 θ range (°): 13-110.

Sample	CeF₃ NP	CeF ₃ OPIF	CeO ₂ NP	CeO ₂ OPIF
Phase	CeF ₃	CeF ₃	CeO ₂	CeO2
a (Å)	7.1312(4)	7.1312(6)	5.4102(4)	5.41858(2)
c (Å)	7.2912(8)	7.2888(1)	-	-
V (Å ³)	321.118(0)	321.011(6)	158.358(2)	159.095(7)
Number of reflections	239	191	19	19
Number of parameters	31	41	35	36
R _p /R _{wp} (%)	8.72/8.39	8.70/7.48	8.33/7.65	7.44/6.66
R _B /R _f (%)	1.20/0.91	1.02/1.12	0.56/0.32	0.53/0.31
χ ²	2.44	2.06	1.49	1.48
Coherent domain size <l> (Å)</l>	63.66	147.05	26.16	49.35

Table S2. Atomic positions and isotropic displacement parameters of CeF ₃ -NP, CeF ₃ -OPIF, CeO ₂ -N	P and
CeO ₂ -OPIF from powder X-ray Rietveld analysis.	

Atom	Site	x	У	z	B _{iso} (Ų)
		CeF	₃-NP		
Ce1	6f	0.336(4)	0	1/4	0.505(8)
F1	12g	0.303(1)	0.022(1)	0.577(6)	1.164(1)
F2	4d	2/3	1/3	0.305(8)	0.344(1)
F3	2a	0	0	1/4	1.444(1)
		CeF ₃	-OPIF		
Ce1	6f	0.343(1)	0	1/4	0.530(0)
F1	12g	0.359(1)	0.050(2)	0.577(2)	1.714(1)
F2	4d	2/3	1/3	0.312(4)	0.838(1)
F3	2a	0	0	1/4	1.935(1)
		CeO	₂ -NP		
Ce1	4a	0	0	0	1.752(2)
01	8c	1/4	1/4	1/4	1.406(7)
CeO2-ODIE					
Ce1	4a	0	0	0	1.945(7)
01	8c	1/4	1/4	1/4	2.197(5)

Figure S3. Characterization of CeF₃ (top) and CeO₂ (bottom) NP by TEM (left), N₂ sorption (middle) and DLS (right).

Figure S4. a) SEM image of dried PMMA particles. b) DLS analysis of PMMA particles in latex form. c) TGA analysis of dried PMMA beads under synthetic air.

Figure S5. TEM, HRTEM and SAED patterns of a) macroporous CeF₃-OPIF and b) CeO₂-OPIF.

Figure S6. a) Powder XRD patterns of pristine (NP) and macroporous (OPIF) materials. b) Nitrogen sorption isotherms of CeF₃-OPIF and CeO₂-OPIF.

Table S3. Comparison of particle sizes and surface area of CeF₃-NP, CeF₃-OPIF, CeO₂-NP and CeO₂-OPIF determined by XRD (D_{XRD}), TEM (D_{TEM}) and N_2 sorption (S_{BET}).

Sample	CeF ₃ -NP	CeF ₃ -OPIF	CeO ₂ -NP	CeO ₂ -OPIF
S_{BET} (m ² /g)	135 ± 5	33 ± 5	165 ± 5	50 ± 5
D _{TEM} (nm)	5 ± 1	7 ± 2	5 ± 1	7 ± 2
D _{XRD} (nm)	8 ± 1	10 ± 1	3 ± 1	7 ± 1

Figure S7. Schematic representation of F₂ fluorination line.

Figure S8. a) Fluoride expansion assembly. b) Fluorination line under F₂. c) Open half-shell furnace with reaction chamber.

Figure S9. TEM images with corresponding SAED patterns of CeF₃-NP, CeF₃-OPIF, CeO₂-NP and CeO₂-OPIF after fluorination at different annealing temperatures from 250°C to 400°C under pure F₂ and for 3h.

Figure S10. SEM images after fluorination under pure F_2 for 3h of CeF₃-OPIF at a) 350°C and c) 400°C and CeO₂-OPIF at b) 350°C and d)400°C.

Figure S11. Rietveld refinement of the powder X-ray diffraction patterns of CeF_4 , obtained by direct fluorination under pure F_2 flow for 3h at 350°C of a) CeF_3 -NP, b) CeO_2 -NP, c) CeF_3 -OPIF and d) CeO_2 -OPIF. Experimental in red, calculated in black and difference in blue. Vertical green lines mark the positions of CeF_4 . CeF_4 ·0.33H₂O and CeOF reflections.

Table S4. Crystal data, data collection and structure refinement details of CeF₃-NP, CeF₃-OPIF, CeO₂-NP and CeO₂-OPIF after fluorination at 350°C under pure F₂ flow. CeF₄ : crystal system monoclinic, space group: C2/c. Radiation type: CuK_{α}, 2 θ range (°): 13-110.

Sample	CeF₃ NP	CeF ₃ OPIF	CeO ₂ NP	CeO ₂ OPIF
Phase after fluorination	CeF₄	CeF₄	CeF₄	CeF₄
a (Å)	12.5924(6)	12.6022(6)	12.5839(5)	12.6059(4)
b (Å)	10.6361(1)	10.6422(5)	10.6310(5)	10.7646(3)
c (Å)	8.2363(0)	8.2379(9)	8.2354(1)	8.2303(9)
β(°)	126.3143(9)	126.3720(2)	126.2916(7)	126.2931(5)
V (Å ³)	888.88	889.61	888.02	900.18
Number of reflections	459	663	560	663
Number of parameters	88	75	99	91
R _p /R _{wp} (%)	10.6/11.1	11.7/11.4	13.2/12.9	16.1/17.1
R _B /R _f (%)	3.33/1.99	3.11/2.13	3.24/1.87	10.5/7.59
χ ²	11.3	4.37	4.34	7.91
Coherent domain size <l> (Å)</l>	178	146	196	46

Samples after F2-350°C	CeF2-NP	CeF2-OPIF	CeO2-NP	CeO ₂ -OPIF
% mol CeF4	89	87	80	60
% mol CeOF	6	7	7	3
% mol CeF ₄ ·0.33H ₂ O	5	6	13	37
D _{XRD} (nm)	24±2	12±1	26±2	6±1

Table S5. Composition of CeF₃-NP and -OPIF and CeO₂-NP and -OPIF after fluorination under 100% F_2 at 350°C for 3h and after one week of exposure to ambient air.

Figure S12. ¹⁹F solid state MAS (60 kHz) experimental (blue line) and fitted (dashed red line) NMR spectra of $CeF_4 \cdot 0.33H_2O$. The individual resonances used for the fit are shown below (see Table S4). The small resonance at -151 ppm is assigned to an unidentified impurity.

$\delta_{ m iso}$	LW	Ι
157.9	43.1	6.6
169.4	9.5	8.2
176.4	6.8	3.6
202.9	14.9	32.0
203.3	36.5	16.4
211.0	8.8	9.3
219.7	14.0	21.4
230.5	7.7	2.5

Table S6. Isotropic chemical shifts δ_{iso} (ppm), line widths LW (ppm) and relative intensities I (%), of the NMR lines used for the fits of the ¹⁹F solid state MAS (60 kHz) NMR spectrum of CeF₄·0.33H₂O.

Figure S13. ¹⁹F solid state MAS (60 kHz) experimental (blue line) and fitted (dashed red line) NMR spectra of CeO₂-OPIF-F₂-350°C-day 1. The individual resonances used for the fit are shown below (see Table S5). The small resonance at -123 ppm is assigned to an unidentified impurity.

Table S7. Isotropic chemical shifts δ_{iso} (ppm), line widths LW (ppm) and relative intensities I (%) of the NMR lines used for the fits of the ¹⁹F solid state MAS (60 kHz) NMR spectrum of CeO₂-OPIF-F₂-350°C-day 1 at 350°C, day 1.

$\delta_{ m iso}$	LW	Ι
83.6	92.3	2.9
173.3	31.5	4.5
191.4	3.9	0.4
198.2	13.8	13.1
208.1	7.0	2.1
220.0	21.1	14.4
225.4	43.4	61.4
237.5	5.6	1.1

Figure S14. ¹⁹F solid state MAS (60 kHz) experimental (blue line) and fitted (dashed red line) NMR spectra of CeO₂-OPIF-F₂-350°C-day 7. The individual resonances used for the fit are shown below (see Table S6). The small resonance at -123 ppm is assigned to an unidentified impurity.

Table S8. Isotropic chemical shifts δ_{iso} (ppm), line widths LW (ppm) and relative intensities I (%) of the NMR lines used for the fits of the ¹⁹F solid state MAS (60 kHz) NMR spectrum of CeO₂-OPIF-F₂-350°C-day 7.

$\delta_{ m iso}$	LW	Ι
148.6	16.5	1.2
169.0	45.4	10.0
170.6	16.2	4.9
204.7	27.0	60.9
215.4	15.1	15.3
223.4	10.1	3.7
230.0	10.3	3.9

Figure S15. ¹⁹F solid state MAS (60 kHz) experimental (blue line) and fitted (dashed red line) NMR spectra of CeO₂-OPIF-F₂-350°C-day 38. The individual resonances used for the fit are shown below (see Table S7). The small resonance at -123 ppm is assigned to an unidentified impurity.

Table S9. Isotropic chemical shifts δ_{iso} (ppm), line widths LW (ppm) and relative intensities I (%) of the NMR lines used for the fits of the ¹⁹F solid state MAS (60 kHz) NMR spectrum of CeO₂-OPIF-F₂-350°C-day 38.

$\delta_{ m iso}$	LW	Ι
149.4	16.0	1.3
166.5	45.1	10.8
171.1	15.3	4.5
202.9	25.7	55.3
214.7	16.3	20.8
222.6	9.5	2.9
229.1	11.0	4.4

Figure S16. ¹H solid state MAS (60 kHz) experimental (blue line) and fitted (dashed red line) NMR spectra of CeO₂-OPIF fluorinated at 350°C, day 1, day 7 and day 38 and of CeF₄·0.33H₂O. The individual resonances used for the fit are shown below (see Table S8).

Sample	$\delta_{ m iso}$	LW	Ι	Assignment
CeO ₂ -OPIF-F ₂ -350°C, day 1	1.3	4.7	25.6	ОН
	1.3	1.2	1.5	ОН
	6.5	2.5	10.5	$OH \And H_2O$
	7.4	7.0	62.5	$OH \And H_2O$
CeO ₂ -OPIF-F ₂ -350°C, day 7	1.5	0.9	1.5	ОН
	1.8	6.1	16.9	ОН
	7.0	2.9	36.6	$OH \And H_2O$
	8.0	11.2	45.0	$OH \And H_2O$
CeO ₂ -OPIF-F ₂ -350°C, day 38	1.5	1.7	2.6	ОН
	3.2	11.0	34.9	ОН
	7.1	3.1	37.1	$OH \And H_2O$
	9.8	12.0	25.4	$OH \And H_2O$
Commercial $CeF_4 \cdot 0.33H_2O$	-0.4	3.44	0.8	ОН
	1.2	0.7	0.5	ОН
	6.8	1.7	21.6	H ₂ O
	6.8	5.1	77.0	H ₂ O
	8.8	0.7	0.3	H ₂ O

Table S10. Isotropic chemical shifts δ_{iso} (ppm), line widths LW (ppm), relative intensities I (%) and assignment of the NMR lines used for the fits of the ¹H solid state MAS (60 kHz) NMR spectra of CeO₂-OPIF-F₂-350°C-day 1, day 7 and day 38 and of commercial CeF₄·0.33H₂O.

Figure S17. XRD patterns of CeF₃-NP, CeF₃-OPIF, CeO₂-NP and CeO₂-OPIF after defluorination under vacuum for 3h at different annealing temperatures.

Figure S18. Rietveld refinement of the powder X-ray diffraction patterns of a) CeF_3 -NP-C1, b) CeO_2 -NP-C1, c) CeF_3 -OPIF-C1 and d) CeO_2 -OPIF-C1. Experimental in red, calculated in black and difference in blue. Vertical green lines mark the positions of CeF_3 reflections.

Table S11. Crystal data, data collection and structure refinement details of CeF₃-NP-C1, CeF₃-OPIF-C1, CeO₂-NP-C1 and CeO₂-OPIF-C1. CeF₃: crystal system trigonal, space group: $P\overline{3}c1$. Radiation type: CuK_α, 20 range (°): 6-100.

Sample	CeF ₃ -NP-C1	CeF ₃ -OPIF-C1	CeO ₂ -NP-C1	CeO ₂ -OPIF-C1	
Phase	CeF ₃	CeF ₃	CeF₃	CeF ₃	
a (Å)	7.1297(8)	7.1238(2)	7.1287(2)	7.1323(9)	
c (Å)	7.2892(1)	7.2807(3)	7.2877(1)	7.2929(3)	
V (Å ³)	320.895(2)	319.987(1)	320.734(2)	321.294(4)	
Number of reflections	145	85	147	171	
Number of parameters	40	41	43	43	
R _p /R _{wp} (%)	10.8/9.56	15.6/12.5	10.6/8.71	8.06/7.04	
R _B /R _f (%)	2.82/2.86	3.31/3.88	1.85/2.08	1.38/1.16	
χ ²	4.97	1.46	3.28	2.41	
Coherent domain size <l> (Å)</l>	651	528	887	264	

Table S12. Mass losses under argon (TGA analysis) of the materials after one cycle.

	CeF ₃ -NP-C1	CeF ₃ -OPIF-C1	CeO ₂ -NP-C1	CeO ₂ -OPIF-C1
Mass loss (%)	9	9	11	12

Figure S19. Variable temperature PXRD study of CeF₄·0.33H₂O under N₂.

Figure S20. Rietveld refinement of the powder X-ray diffraction patterns of commercial $CeF_4 \cdot 0.33H_2O$ a) as received and b) after one complete cycle (one defluorination and one fluorination). Experimental in red, calculated in black and difference in blue. Vertical green lines mark the positions of CeF_4 and $CeF_4 \cdot 0.33H_2O$ reflections.

Table S13. Crystal data, data collection and structure refinement details of commercial CeF₄·0.33H₂O a) as received and b) after one complete cycle (one defluorination and one fluorination). CeF₄·0.33H₂O : crystal system monoclinic, space group: *Im*. CeF₄ : crystal system monoclinic, space group: C2/c. Radiation type: CuK_α, 20 range (°): 6-100.

Sample	CeF4·0.33H2Ocomm	CeF4·0.33H2Ocomm-F ₂	
Phase	CeF₄·0.33H₂O	CeF₄	
% mol	100	93	
a (Å)	8.4390(6)	12.5971(0)	
b (Å)	11.731(9)	10.6349(9)	
c (Å)	9.3923(7)	8.2453(5)	
β (°)	95.9611(43)	126.3198(7)	
V (Å ³)	924.822(118)	890.026(0)	
Number of reflections	917	591	
Number of parameters	20	17	
R _p /R _{wp} (%)	13.1/14.3	26.1/29.9	
R _B /R _f (%)	4.60/2.08	15.4/8.23	
χ ²	6.76	8.16	
Coherent domain size <l> (Å)</l>	157 <mark>.22</mark>	316 <mark>.43</mark>	

Figure S21. PXRD study of fluorination(F)/defluorination(D) cycles of CeO₂-OPIF.

Figure S22. PXRD patterns recorded before (CeF_4 -2days / SiO₂) and after (CeO_2 -OPIF-C1-2days / SiO₂ and CeO_2 -OPIF-C1-no break / SiO₂) defluorination monited by gas-phase infrared under nitrogen (N_2) with the presence of SiO₂.

Table S14. Theoretical volume occupied by CeF₄ materials (obtained with CeO₂ as starting material) in a 50 L cylinder, associated F mass and container-to-content mass ratio.

Sample	V _{cyl.} (cm³)	V _{tot} (cm ³ .g ⁻¹)	m(CeF ₄) (g)	m(CeF₄) (kg)	m(F) (g)	m(F) (kg)	Mass ratio
CeF ₄	50000	0	119250	119.3	10494	10.5	5.2
CeF ₄ -NP	50000	0.35	8940	89.4	787	7.9	6.8
CeF ₄ -OPIF	50000	0.37	8627	86.3	759	7.6	7.1

The use of solid storage materials for the chemisorption of F₂ has the advantage of reducing the container-to-content mass ratio. As a reference, a 50 L cylinder has a mass of 54 kg for 2.2 kg of stored F₂. The mass ratio of these metal cylinders is thus: $\frac{m_{cyl.}}{m(F)} = \frac{54}{2.2} = 24.5$.

Table S14 summarizes the calculations of material masses for an absolute volume filling (if the porous volume is zero) and relative (taking into account intra- and intergranular porous volumes). CeF₄-NP and CeF₄-OPIF were not analyzed by nitrogen sorption to avoid any contamination of the apparatus due to the release of corrosive fluorine gas; the reported porous volumes (V_{tot}) are those of MgF₂-NP and MgF₂-OPIF, whose particle and pore sizes are similar to those of cerium compounds (7 and 10 nm respectively, and D_{pores} = 200 nm) as previously reported.¹ Note that the densities of CeF₄ and CeF₃ are 4.77 and 6.16 respectively, and that the mass loss associated with the release of half a mole of F₂ (CeF₄ \rightleftharpoons CeF₃ + $\frac{1}{2}$ F₂) is 8.8%. The masses of cerium tetrafluoride and associated fluorine are determined by the following relations:

$$m(CeF_4) = d(CeF_4) \times \frac{V_{cyl.}}{1 + d(CeF_4) \times V_{tot}}$$

$$m(F) = 0.088 \times m(CeF_4)$$

¹ Goharibajestani, Z.; Wang, Y.; Camus-Génot, V.; Arrii, S.; Comparot, J. D.; Polteau, B.; Lhoste, J.; Galven, C.; Gunes, V.; Hémon-Ribaud, A.; Pascual, S.; Body, M.; Legein, C.; Maisonneuve, V.; Brunet, S.; Guiet, A. MgF₂-Based Organized Porous Inorganic Nanofluorides as Heterogeneous Catalysts for Fluorination of 2-Chloropyridine. *ACS Appl. Nano Mater* **2021**, *4*, 10601–10612. https://doi.org/10.1021/acsanm.1c01768.