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ABSTRACT 
 

Supersaturated designs (SSDs) are crucial in factor screening experiments, especially when factor 
sparsity is assumed, meaning only a few factors are expected to be significant. Building on the 

foundational work of Jones and Majumdar [1], who introduced the 𝑈𝐸(𝑆2)   criterion as an 
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improvement over the 𝐸(𝑆2) criterion by Booth and Cox [2], this study simplifies the construction of 

𝑈𝐸(𝑆2) -optimal designs. The 𝑈𝐸(𝑆2) criterion is similar to the 𝐸(𝑆2)  criterion but removes the 
requirement for factor level balance. Our contribution lies in further simplifying these methods, 

explaining them with practical examples, and providing proofs for lower bounds for 𝑈𝐸(𝑆2) designs. 
Through this study, we aim to make the concepts and applications of supersaturated designs more 
accessible and easier to understand for practitioners. These methods can significantly optimize 
resource use and reduce costs in industrial, biological, and agricultural experiments. The study's 
implications extend to any field requiring efficient factor screening, offering a robust framework for 
future research. 
 

 

Keywords: Supersaturated design; 𝐸(𝑆2)-optimality; 𝑈𝐸(𝑆2)-optimality; Hadamard matrix. 
 

1. INTRODUCTION 
 

Supersaturated designs (SSDs) have emerged 
as a pivotal tool in the realm of experimental 
design, particularly for scenarios where the 
number of potential factors exceeds the number 
of experimental runs. This methodological 
innovation provides a solution to the challenges 
posed by resource constraints in large-scale 
experiments, enabling researchers to identify 
significant factors efficiently without the need for 
prohibitively large sample sizes. The genesis of 
SSDs can be traced back to the growing demand 
for cost-effective experimental strategies in 
various scientific fields, including engineering, 
biotechnology, and industrial processes. By 
permitting the investigation of numerous factors 
simultaneously, SSDs facilitate the exploration of 
complex systems and the identification of key 
variables that influence system performance to 
achieve an unbiased estimate of the main effects 
for each factor, the number of runs must be at 
least equal to the number of factors plus one. 
When the number of runs equals the number of 
factors, the design is termed a saturated design. 
However, if the number of runs is less than the 
number of factors, it is referred to as a 
supersaturated design. Specifically, a 
supersaturated design is a factorial design with n 
observations and m factors, where m exceeds            
n - 1. 

SSDs have evolved through various construction 
methods, allowing researchers to optimize 
designs for specific objectives while minimizing 
experimental costs. The pioneering work by 
Youden et al. [3] laid the foundation for this 
approach, which has since evolved with various 
methods and improvements. Lin [4] introduced a 
new class of SSDs, while Wu [5] used partially 
aliased interactions, and Tang and Wu [6] 

emphasized 𝐸(𝑆2)-optimality in their construction 
methods. Bulutoglu and Cheng [7] and Ryan and 
Bulutoglu [8] further refined these designs, 
emphasizing optimality and minimax properties. 
More advancements include the development of 
large SSDs by Eskridge et al. [9] and the 
construction of group-orthogonal SSDs by Jones 
et al. [10]. Other notable contributions include the 
review of two-level SSDs by Kole et al. [11], the 
examination of optimal SSDs for 𝑆𝑚 Factorials in 
N≢ 0 (mod s) runs by Chai et al. [12] and the 
exploration of large row-constrained SSDs by 
Smucker et al. [13], and the study of 

discriminating between superior 𝑈𝐸(𝑆2) -optimal 
SSDs by Chai et al. [14]. The ongoing interest 
and research, as seen in the works of Singh and 
Stufken [15] and Georgiou [16], highlight the 
importance of SSDs in modern statistical 
practice, particularly in the context of high-
throughput screening and electronic games [17]. 

 

Preliminary Definitions: 
 

Level balanced designs: “A design is said to be Level balance if the numbers of times each level 
appear in a column is same, i.e., For balanced two level design the number of +1’s and -1’s is equal in 
the each column of design otherwise it is unbalanced”. 
 

Orthogonal Designs: “Let  𝐗 = (𝑥𝑖𝑗) be an n × m design matrix for a factorial experiment in m factors 

and n runs. For a two-level design, 𝑥𝑖𝑗 = +1 𝑜𝑟 − 1.The design matrix 𝐗 is called orthogonal if  𝐗′𝐗 is a 

diagonal matrix”. 
 
Hadamard Matrix: “Hadamard matrix is a square matrix whose entries are either +1 or −1 and whose 

rows are mutually orthogonal (𝐻𝑛𝐻𝑇
𝑛 = 𝑛𝐼𝑛). A Hadamard matrix is said to be Normalized if the first 

row and first column consists entirely of positive 1’s”. 

https://en.wikipedia.org/wiki/Square_matrix
https://en.wikipedia.org/wiki/Orthogonal
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2. OPTIMALITY CRITERIA FOR 
SUPERSATURATED DESIGNS  

 
Consider experiments involving p - 1 two-level 
factors and an a priori model that includes the 
main effects and an intercept term. Let 𝐗 
represent both the design and model matrix, 
where 𝐗 is n × p matrix with entries of -1 or 1, 
and the first column consisting of 1's. Assuming 
p > n and that the rank (𝐗) is n.  

 
Let 𝐒 = 𝐗′𝐗 be the information matrix, with 𝑠𝑖𝑗 as 

its elements. If 𝑠𝑖𝑗 = 0, then factors i and j are 

orthogonal. A design that satisfies this condition 
for all i and j (i ≠ j) is an orthogonal design, which 
allows for the intercept and all main effects to be 
estimated with maximal efficiency. For an 
orthogonal design to exist, it is necessary that n 
= 2 or n ≡ 0(mod 4) and n ≥ p. Since p > n in 
supersaturated designs, orthogonal designs are 
not possible. Therefore, the efficiency of a two-
level supersaturated design (SSD) is                      
measured by its deviation from orthogonality, or 
the extent of non-orthogonality present in the 
design. 

 

2.1 𝑬(𝑺𝟐) Criterion (Booth and Cox, [2]) 
 
Booth and Cox [2] introduced the 𝐸(𝑆2) criterion 
for selecting SSDs, which requires that the 
means of all main effects be orthogonal to the 
intercept 

 

𝑬(𝑺𝟐) = ∑ ∑ 𝒔𝟐
𝒊𝒋

𝑝
𝑖≠𝑗=1 ⧸(𝒑 − 𝟏)(𝒑 − 𝟐)     (2.1) 

 
A design d* is said to be 𝐸(𝑆2)  -optimal 

if 𝐸(𝑆𝑑∗
2) = 𝑚𝑖𝑛{𝐸(𝑆𝑑

2)}    𝑤ℎ𝑒𝑟𝑒 𝑑 ∈ 𝐷. 

 

2.2 𝑼𝑬(𝑺𝟐)  Criterion (Jones and 
Majumdar, [1]) 

 
Since the condition requires that all main effects 

be orthogonal to the intercept, 𝐸(𝑆2) -optimality 
can be considered a form of conditional 
optimality. Jones and Majumdar [1] examine an 
unconditional version of this optimality          
criterion. 

 
Let  

 
𝑶(𝑿)  = ∑ ∑ 𝒔𝟐

𝒊𝒋
𝑝
𝑖≠𝑗=1                               (2.2) 

 

Minimizing O(X) without imposing condition that 
means of all main effects are orthogonal to 

intercept. To distinguish it from   𝐸(𝑆2)optimality 

calls this approach 𝑈𝐸(𝑆2) -optimality,                        
where U stands for “unconditional.”                     

Given n and p, a design will be called 𝑈𝐸(𝑆2)-
optimal if it minimizes O(X) among all              
designs. 
 

𝑼𝑬(𝑺𝟐) = 𝑶(𝑿) ⧸ 𝒑(𝒑 − 𝟏) 

𝑼𝑬(𝑺𝟐) = ∑ ∑ 𝒔𝟐
𝒊𝒋

𝑝
𝑖≠𝑗=1 ⧸ 𝒑(𝒑 − 𝟏)…       (2.3) 

 
This formula can be expressed as   
 

Let   𝑹 =  𝐗𝐗′   with elements denoted by 𝑟𝑖𝑗; note 

that  𝑟𝑖𝑖 = 𝑝,i=1,…, n. 

𝑼𝑬(𝑺𝟐) = ∑ ∑ 𝒔𝟐
𝒊𝒋

𝑝

𝑖≠𝑗=1

⧸ 𝒑(𝒑 − 𝟏) 

𝑼𝑬(𝑺𝟐) = {𝒕𝒓𝒂𝒄𝒆(𝐗′𝐗)𝟐 − 𝒑𝒏𝟐} ⧸ 𝒑(𝒑 − 𝟏) 

𝑼𝑬(𝑺𝟐) = {𝒕𝒓𝒂𝒄𝒆(𝐗𝐗′)𝟐 − 𝒑𝒏𝟐} ⧸ 𝒑(𝒑 − 𝟏) 

𝑼𝑬(𝑺𝟐) = {∑ ∑ 𝒓𝟐
𝒊𝒋

𝒑

𝒊≠𝒋

+ 𝒏𝒑𝟐 − 𝒑𝒏𝟐} ⧸ 𝒑(𝒑 − 𝟏) 

𝑼𝑬(𝑺𝟐) = {∑ ∑ 𝒓𝟐
𝒊𝒋

𝒑
𝒊≠𝒋 + 𝒏𝒑(𝒑 − 𝒏)} ⧸ 𝒑(𝒑 − 𝟏) (2.4) 

 

3. METHODS OF CONSTRUCTION OF 

𝑼𝑬(𝑺𝟐) -OPTIMAL DESIGNS (JONES 

AND   MAJUMDAR, [1]) AND LOWER 

BOUNDS FOR 𝑼𝑬(𝑺𝟐)  DESIGNS  
 

3.1 Method 1 for p = 0 (mod 4), 2 ≤ n             
≤ p − 1.  

 
Step 1: Start by selecting a Normalized 
Hadamard matrix of order p denoted                   
as 𝑯𝒑. 

 

Step 2: From 𝑯𝒑 matrix, we form the design 

matrix by selecting any 𝑛 rows 𝑯𝒑. These     rows 

constitute an 𝑛×𝑝 matrix 𝐗 𝟎. The 𝐗 𝟎matrix will be 
asuper saturated design. 

 

Step 3: Once the matrix is formed, the next step 
is to verify that 𝐗 𝟎 meets the criteria for a type 

𝐓 𝟎  design.  This verification is done by 

calculating 𝐑 𝟎  = 𝐗 𝟎 𝐗 𝟎 ′ . If 𝐑 𝟎 equals to 𝑝  
times the identity matrix  𝑰𝒏, then 𝐗 𝟎 is confirmed 

as a type 𝐓 𝟎   supersaturated design. 
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Example 3.1: Let 𝑝 =16 and 𝑛 =10, so consider a Hadamard matrix of order 16. 
 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 
1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 
1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 
1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 
1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 
1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 
1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 
1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 
1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 
1 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 
1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 
1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 
1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1 
1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1 
1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1 

 

From 𝑯𝟏𝟔 select any 10 rows to form the 10 × 16 matrix 𝐗 𝟎 ,Thus 𝐗 𝟎 a supersaturated design  
                                                                      

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 
1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 
1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 
1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 
1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 
1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 
1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 
1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 
1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 

 

Calculate 𝐑 𝟎 = 𝐗 𝟎 𝐗 𝟎 ′ the resulting matrix is given by  
 

16 0 0 0 0 0 0 0 0 0 
0 16 0 0 0 0 0 0 0 0 
0 0 16 0 0 0 0 0 0 0 
0 0 0 16 0 0 0 0 0 0 
0 0 0 0 16 0 0 0 0 0 
0 0 0 0 0 16 0 0 0 0 
0 0 0 0 0 0 16 0 0 0 
0 0 0 0 0 0 0 16 0 0 
0 0 0 0 0 0 0 0 16 0 
0 0 0 0 0 0 0 0 0 16 

 

Since 𝐑 𝟎 is 16 times of times the identity matrix of order 10 (𝑹𝟎 = 16𝐈𝟏𝟎 ),this condition is satisfied, 

and therefore, the design 𝐗  𝟎called a type 𝐓 𝟎design. 
 

By using equation 2.3, the calculated value 𝑈𝐸(𝑆2) is 4. The lower bound for 𝑈𝐸(𝑆2) , if p = 0 (mod 4), 
is given by  
 

𝐦𝐢𝐧𝑼𝑬(𝑺𝟐) = 𝒏𝒑(𝒑 − 𝒏) ⧸ 𝒑(𝒑 − 𝟏)                                                                                     (3.1)  

 

Proof: 
 

The result follows from the inequality: 
 

𝒕𝒓𝒂𝒄𝒆(𝐗𝐗′)𝟐 ≥
{𝒕𝒓𝒂𝒄𝒆(𝐗𝐗′)}𝟐

𝒏⁄   
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We know that: 
 

𝑼𝑬(𝑺𝟐) = {𝒕𝒓𝒂𝒄𝒆(𝐗𝐗′)𝟐 − 𝒑𝒏𝟐} ⧸ 𝒑(𝒑 − 𝟏) 

 

𝑼𝑬(𝑺𝟐) = {
{𝒕𝒓𝒂𝒄𝒆(𝐗𝐗′)}𝟐

𝒏
− 𝒑𝒏𝟐} ⧸ 𝒑(𝒑 − 𝟏) 

 
We know that 𝑹 = 𝑿𝑿′ = 𝒑𝑰𝒏, we get: 
 

𝑼𝑬(𝑺𝟐) = {
{𝒏𝒑}𝟐

𝒏
− 𝒑𝒏𝟐} ⧸ 𝒑(𝒑 − 𝟏) 

 
Simplifying this, we obtain: 
 

𝒎𝒊𝒏𝑼𝑬(𝑺𝟐) = 𝒏𝒑(𝒑 − 𝒏) ⧸ 𝒑(𝒑 − 𝟏) 

 

Hence, the minimum value of 𝑈𝐸(𝑆2) is achieved when 𝑹𝟎 =  𝒑 𝑰𝒏 , confirming that hence type T0 

designs are 𝑈𝐸(𝑆2) -optimal. 
 

3.2 Method 2 for p = 1(mod 4), 2 ≤ n ≤ p − 1.  
 

Step 1: Start by selecting a Normalized Hadamard matrix of order p-1 denoted as 𝑯𝒑−𝟏 

 
Step 2: From 𝑯𝒑−𝟏 matrix, we form the design matrix by selecting any 𝑛 rows 𝑯𝒑−𝟏  ,these  rows 

constitute an 𝑛 × (𝑝 − 1) matrix 𝑽. 
 
Step 3: Create an 𝑛 × 1 vector φ with entries 1 or -1. 
 
Step 4: Combine 𝑽 and φ to form the design matrix 𝐗𝟎 = (𝑽, φ), which will be super saturated design. 
 
Step 5: calculate 𝐑 𝟎  = 𝐗 𝟎 𝐗 𝟎 ′, if 𝐑 𝟎 = (𝒑 − 𝟏)𝑰𝒏 + φφ ′, resulting in a matrix with diagonal entries 𝑝 

and off-diagonal entries 1 or -1, then design 𝐗 𝟎  in this case will be called a type T1 design. 
 
Example 3.2: Let 𝑝 − 1 = 8 and 𝑛 =7, so consider a Hadamard matrix of order 8 (𝑯𝟖). 

 

1 1 1 1 1 1 1 1 
1 -1 1 -1 1 -1 1 -1 
1 1 -1 -1 1 1 -1 -1 
1 -1 -1 1 1 -1 -1 1 
1 1 1 1 -1 -1 -1 -1 
1 -1 1 -1 -1 1 -1 1 
1 1 -1 -1 -1 -1 1 1 
1 -1 -1 1 -1 1 1 -1 

 

𝑽  be the matrix of order 7 × 8 formed by first 7 rows of 𝑯𝟖 
 

1 1 1 1 1 1 1 1 
1 -1 1 -1 1 -1 1 -1 
1 1 -1 -1 1 1 -1 -1 
1 -1 -1 1 1 -1 -1 1 
1 1 1 1 -1 -1 -1 -1 
1 -1 1 -1 -1 1 -1 1 
1 1 -1 -1 -1 -1 1 1 
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Let φ be the 7 × 1 vector with entries -1, then combined 𝑽 and φ to form the design matrix 𝐗𝟎 which 

will be super saturated design of order 7 × 9. The matrix 𝐗𝟎 presented below 
 

1 1 1 1 1 1 1 1 -1 
1 -1 1 -1 1 -1 1 -1 -1 
1 1 -1 -1 1 1 -1 -1 -1 
1 -1 -1 1 1 -1 -1 1 -1 
1 1 1 1 -1 -1 -1 -1 -1 
1 -1 1 -1 -1 1 -1 1 -1 
1 1 -1 -1 -1 -1 1 1 -1 

 
𝐑 𝟎 = 𝑿𝟎𝑿𝟎′ is calculated it is of order 7 × 7 
 

9 1 1 1 1 1 1 
1 9 1 1 1 1 1 
1 1 9 1 1 1 1 
1 1 1 9 1 1 1 
1 1 1 1 9 1 1 
1 1 1 1 1 9 1 
1 1 1 1 1 1 9 

 
Verified that 𝐑 𝟎 = 8𝑰𝒏 + φφ ′, hence design 𝐗 𝟎 will be called a type T1 design. 

 

The lower bound for 𝑈𝐸(𝑆2) If p = 1 (mod 4) is given by 
 

𝒎𝒊𝒏𝑼𝑬(𝑺𝟐) = {𝒏(𝒏 − 𝟏) + 𝒏𝒑(𝒑 − 𝒏)} ⧸ 𝒑(𝒑 − 𝟏)                           …                               (3.2) 

 
Proof: 
 
Let entries of X are 𝑥𝑖𝑡, then 
 

 𝑟𝑖𝑗 = ∑  𝑥𝑖𝑡  𝑥𝑗𝑡

𝑝

𝑡=1

 

 

Since  𝑥𝑖𝑡  𝑥𝑗𝑡 ∈ {−1,1} and p is odd  ⎥ 𝑟𝑖𝑗⎥ ≥ 1, and therefore  

 

𝑚𝑖𝑛 ∑ ∑ 𝒓𝟐
𝒊𝒋

𝑝

𝑖≠𝑗=1

= 𝑛(𝑛 − 1) 

 
We know that  
 

𝑼𝑬(𝑺𝟐) = {∑ ∑ 𝒓𝟐
𝒊𝒋

𝒑

𝒊≠𝒋

+ 𝒏𝒑(𝒑 − 𝒏)} ⧸ 𝒑(𝒑 − 𝟏) 

 
And hence, 
 

𝒎𝒊𝒏𝑼𝑬(𝑺𝟐) = {𝒏(𝒏 − 𝟏) + 𝒏𝒑(𝒑 − 𝒏)} ⧸ 𝒑(𝒑 − 𝟏) 

 
The minimum in (3.2) is attained whenever R is a matrix with diagonal entries p and off-diagonal 

entries either 1 or −1. Hence type T1 designs are  𝑈𝐸(𝑆2) -optimal. 
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3.3 Method 3 for p = 2(mod 4), 2 ≤ n ≤ p − 2.  
 
❖ Case 1: n is even, n = 2m. 

 
Step 1: Start by selecting a Normalized Hadamard matrix of order p-2 denoted as 𝑯𝒑−𝟐 

 
Step 2: From 𝑯𝒑−𝟐 matrix, we form the design matrix by selecting any 𝑛 rows 𝑯𝒑−𝟐  ,these  rows 

constitute an 𝑛 × (𝑝 − 2) matrix 𝑿∗. 
 
Step 3: Create an 𝑛 × 2 matrix 𝑼𝟏 with each of the first m rows either (1, 1) or (−1,−1)      and each of 
the last m rows either (1,−1) or (−1, 1). 
 
Step 4: Combine 𝑿∗

 and 𝑼𝟏  to form the design matrix 𝐗𝟎 = (𝑿∗, 𝑼𝟏), which will be super saturated 
design. 
 
Step 5: calculate 𝐑 𝟎  = 𝐗 𝟎 𝐗 𝟎 ′, The resulting 𝐑 𝟎  matrix has the block diagonal structure: 
 

(
𝑆𝑚           𝑂𝑚,𝑚

𝑂𝑚,𝑚           𝑆𝑚
) 

 
Where the notation 𝑂𝑚,𝑚  denotes a m× m matrix with entries 0, and 𝑆𝑚   denotes a m × m matrix with 

diagonal entries p and off-diagonal entries either 2 or −2. If 𝐑 𝟎  has this specified block diagonal 

structure, then 𝐗𝟎  is called a type T2 design. 
 
Example 3.3.1: Let 𝑝 = 18, 𝑛 =10(even), m=5 and 𝑝 − 2 = 16, so consider a Hadamard matrix of 
order 16 (𝑯𝟏𝟔). 

 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 
1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 
1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 
1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 
1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 
1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 
1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 
1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 
1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 
1 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 
1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 
1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 
1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1 
1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1 
1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1 

 

𝑿∗   be the matrix of order 10×16 formed by first 10 rows of 𝑯𝟏𝟔 
 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 
1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 
1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 
1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 
1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 
1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 
1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 
1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 
1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 



 
 
 
 

Manjunatha et al.; J. Sci. Res. Rep., vol. 30, no. 8, pp. 850-862, 2024; Article no.JSRR.120658 
 
 

 
857 

 

Consider  𝑼𝟏 be the 10 × 2 matrix with each of the first 5 rows (1, 1) and each of the last 5 rows  

(1,−1). Next by combining  𝑿∗
 and 𝑼𝟏  to form the design matrix 𝐗𝟎 = (𝑿∗, 𝑼𝟏), which will be super 

saturated design with  p=18 and n=10 represented bellow 
 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 1 
1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 
1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 1 
1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 
1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 
1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 1 -1 
1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 
1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 
1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 1 -1 

 

𝐑 𝟎 = 𝑿𝟎𝑿𝟎′ is calculated, it is of order 10 × 10 
 

18 2 2 2 2 0 0 0 0 0 
2 18 2 2 2 0 0 0 0 0 
2 2 18 2 2 0 0 0 0 0 
2 2 2 18 2 0 0 0 0 0 
2 2 2 2 18 0 0 0 0 0 
0 0 0 0 0 18 2 2 2 2 
0 0 0 0 0 2 18 2 2 2 
0 0 0 0 0 2 2 18 2 2 
0 0 0 0 0 2 2 2 18 2 
0 0 0 0 0 2 2 2 2 18 

 

By using equation 2.3 Calculated 𝑈𝐸(𝑆2) of 𝑿𝟎= 5.88. The lower bound for 𝑈𝐸(𝑆2) If p = 2 (mod 4) 
and n is even, then 
 

𝒎𝒊𝒏𝑼𝑬(𝑺𝟐) = {2𝒏(𝒏 − 𝟐) + 𝒏𝒑(𝒑 − 𝒏)} ⧸ 𝒑(𝒑 − 𝟏)                    …                                     (3.3.1)                                                                                                            

 
Proof: 
 
Let entries of X are 𝑥𝑖𝑡, then 
 

 𝑟𝑖𝑗 = ∑  𝑥𝑖𝑡  𝑥𝑗𝑡

𝑝

𝑡=1

 

 
If there are a terms that are −1 in  𝑟𝑖𝑗 and p – a terms that are 1, then  𝑟𝑖𝑗  = p – 2a. Since p is even, | p 

– 2a | is either 0 or even. This means that for I ≠ j ,  ⎥ 𝑟𝑖𝑗⎥ = 2  whenever  𝑟𝑖𝑗 ≠ 0. 

 
Strategy in this case has two parts. In the first part, for each n determine N(n), the maximal number of 
zeros among the off-diagonal entries of R. In the second step, derive the lower bounds by considering 
a matrix R with N(n) off-diagonal entries zero and the remaining off-diagonal entries either 2 or−2. 

Clearly this matrix attains 𝑚𝑖𝑛 ∑ ∑ 𝑟2
𝑖𝑗

𝑝
𝑖≠𝑗=1 . 

 

Part 1: Firstly determine the maximal number of pairs (I, j) , I <j, such that  𝑟𝑖𝑗  = 0. Let us define a 

graph G with n vertices, where each vertex corresponds to a row of X. Two vertices I and j of G are 
defined to be adjacent (there is an edge connecting them), if the corresponding rows of X are 
orthogonal, that is,  𝑟𝑖𝑗   = 0. Note that, since p ≠ 0(mod 4) no subset of three rows of X can be 

mutually orthogonal. This means that there are no triangles in the graph G. Viewed in these terms our 
problem is to determine the maximal number of edges in this graph. It follows from Turan’s theorem 
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(Turan 1941; Harary 1972) that the maximal number of edges in a triangle-free graph with n vertices 

is 𝑛
2

4 ⁄ , and this maximal number is attained by a complete bipartite graph. 

 
When n is even, n = 2m, the maximal number is attained by a complete bipartite graph where both 

sets of the partition are of size n/2 = m. This graph has 𝑚2 edges; hence N(n) = 2𝑚2. 
 
Part 2: when n is even, n = 2m 
 

∑ ∑ 𝒓𝟐
𝒊𝒋

𝒑

𝒊≠𝒋=𝟏

≥ 𝟒[𝒏(𝒏 − 𝟏) − 𝟐𝒎𝟐] = 𝟐𝒏(𝒏 − 𝟐) 

 
And hence  
 

𝒎𝒊𝒏𝑼𝑬(𝑺𝟐) = {2𝒏(𝒏 − 𝟐) + 𝒏𝒑(𝒑 − 𝒏)} ⧸ 𝒑(𝒑 − 𝟏) 

 
The minimum in equation 3.3.1 is attained whenever the rows of X can be partitioned into two sets of 

size n/2 each such that if rows I and j belong to the same set then ⎥ 𝑟𝑖𝑗⎥ = 2 , and if rows I and j belong 

to different sets then  𝑟𝑖𝑗  = 0. The above type T2 designs possess this property hence they are 

UE(s2)-optimal. 
 

❖ Case 2: n is odd, n = 2m+1. 
 
Step 1: Start by selecting a Normalized Hadamard matrix of order p-2 denoted as 𝑯𝒑−𝟐 

 
Step 2: From 𝑯𝒑−𝟐 matrix, we form the design matrix by selecting any 𝑛 rows 𝑯𝒑−𝟐  ,these  rows 

constitute an 𝑛 × (𝑝 − 2) matrix 𝑿∗. 
 
Step 3: Create an 𝑛 × 2 matrix 𝑼𝟐 with each of the first m rows either (1, 1) or (−1,−1)      and each of 
the last m+1 rows either (1,−1) or (−1, 1). 
 
Step 4: Combine 𝑿∗

 and 𝑼𝟐  to form the design matrix 𝐗𝟎 = (𝑿∗, 𝑼𝟐), which will be super saturated 
design. 
 
Step 5: calculate 𝐑 𝟎  = 𝐗 𝟎 𝐗 𝟎 ′, The resulting 𝐑 𝟎  matrix has the block diagonal structure: 
 

(
𝑆𝑚           𝑂𝑚,𝑚+1

𝑂𝑚+1,𝑚           𝑆𝑚+1
) 

 

Where the notation 𝑂𝑚,𝑚+1 and 𝑂𝑚+1,𝑚  denotes matrices with entries 0, and 𝑆𝑚  and  𝑆𝑚+1 denotes 

matrices with diagonal entries p and off-diagonal entries either 2 or −2. If 𝐑 𝟎  has this specified block 

diagonal structure, then 𝐗𝟎  is called a type T2 design. 
 

Example 3.3.2:  Let 𝑝 = 10, 𝑛 =7(odd), m=3 and 𝑝 − 2 = 8, so consider a Hadamard matrix of order 8 

(𝑯𝟖). 
 

1 1 1 1 1 1 1 1 
1 -1 1 -1 1 -1 1 -1 
1 1 -1 -1 1 1 -1 -1 
1 -1 -1 1 1 -1 -1 1 
1 1 1 1 -1 -1 -1 -1 
1 -1 1 -1 -1 1 -1 1 
1 1 -1 -1 -1 -1 1 1 
1 -1 -1 1 -1 1 1 -1 
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𝑿∗   be the matrix of order 7×8 formed by first 7 rows of 𝑯𝟖 
 

1 1 1 1 1 1 1 1 
1 -1 1 -1 1 -1 1 -1 
1 1 -1 -1 1 1 -1 -1 
1 -1 -1 1 1 -1 -1 1 
1 1 1 1 -1 -1 -1 -1 
1 -1 1 -1 -1 1 -1 1 
1 1 -1 -1 -1 -1 1 1 

 
Consider  𝑼𝟐 be the 7 × 2 matrix with each of the first 3 rows (-1, -1) and each of the last 4 rows  
(1,−1). Next by  combining  𝑿∗

 and 𝑼𝟐  to form the design matrix 𝐗𝟎 = (𝑿∗, 𝑼𝟐), which will be super 
saturated design with  p=10 and n=7 represented bellow 
 

1 1 1 1 1 1 1 1 -1 -1 
1 -1 1 -1 1 -1 1 -1 -1 -1 
1 1 -1 -1 1 1 -1 -1 -1 -1 
1 -1 -1 1 1 -1 -1 1 1 -1 
1 1 1 1 -1 -1 -1 -1 1 -1 
1 -1 1 -1 -1 1 -1 1 1 -1 
1 1 -1 -1 -1 -1 1 1 1 -1 

 
𝐑 𝟎 = 𝑿𝟎𝑿𝟎′ is calculated it is of order 10 × 10 

 

10 2 2 0 0 0 0 
2 10 2 0 0 0 0 
2 2 10 0 0 0 0 
0 0 0 10 2 2 2 
0 0 0 2 10 2 2 
0 0 0 2 2 10 2 
0 0 0 2 2 2 10 

 

By using equation (2.3) Calculated 𝑈𝐸(𝑆2) of 𝑿𝟎 = 3.133. The lower bound for 𝑈𝐸(𝑆2) If p = 2 (mod 4) 
and n is even, then 

 

minUE(S2) = {2(n − 1)2 + np(p − n)} ⧸ p(p − 1)                                                       … (3.3.2) 

 
Proof : The proof is similar to that provided for equation 3.3(1). When n is odd, n = 2m + 1, the 
maximal number is attained by a complete bipartite graph where the sets of the partition are of sizes 
m and m + 1. This graph has m (m + 1) edges, hence N(n) = 2m(m + 1). 
 

∑ ∑ 𝒓𝟐
𝒊𝒋

𝑝

𝑖≠𝑗=1

≥ 4[𝑛(𝑛 − 1) − 2𝑚(𝑚 + 1)] = 2(𝑛 − 1)2 

 
And hence  
 

minUE(S2) = {2(n − 1)2 + np(p − n)} ⧸ p(p − 1) 

 
The minimum in equation (3.3.2) is attained whenever the rows of X can be partitioned into two sets of 

sizes (n − 1)/2 and (n + 1)/2 such that if rows i and j belong to the same set then  ⎥ 𝑟𝑖𝑗⎥ = 2 and if rows 

i and j belong to different sets then  𝑟𝑖𝑗 = 0. Above type T2 design possess this property hence they are 

𝑈𝐸(𝑆2)-optimal. 
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3.4 Method 4 for p = 3(mod 4), 2 ≤ n ≤ p − 1.  
 

Step 1: Start by selecting a Normalized Hadamard matrix of order p+1 denoted as 𝑯𝒑+𝟏 
 

Step 2: From 𝑯𝒑+𝟏 matrix, we form the design matrix by selecting any 𝑛 rows 𝑯𝒑+𝟏  ,these  rows 

constitute an 𝑛 × (𝑝 + 1) matrix 𝑋∗ 
 

Step 3: last column of X* is denoted by 𝛅  
 

Step 4: remove the last column 𝛅  from the design X* to form the design matrix 𝐗𝟎, which will be super 
saturated design. 
 

Step 5: calculate 𝐑 𝟎  = 𝐗 𝟎 𝐗 𝟎 ′, if 𝐑 𝟎 = (𝒑 + 𝟏)𝑰𝒏 − 𝛅 𝛅  ′, resulting in a matrix with diagonal entries 𝑝 

and off-diagonal entries 1 or -1, then design 𝐗 𝟎  in this case will be called a type T3 design. 
 

Example 3.4: Let 𝑝 = 15, 𝑛 =10 and 𝑝 + 1 = 16, so consider a Hadamard matrix of order 16 (𝑯𝟏𝟔). 
 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 
1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 
1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 
1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 
1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 
1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 
1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 
1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 
1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 
1 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 
1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 
1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 
1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1 
1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1 
1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1 

 

𝑿∗   be the matrix of order 10×16 formed by first 10 rows of 𝑯𝟏𝟔 
 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 
1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 
1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 
1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 
1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 
1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 
1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 
1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 
1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 

 

last column of X* is denoted by 𝛅, remove the last column 𝛅  from the design 
  

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 
1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 
1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 
1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 
1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 
1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 
1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 
1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 
1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 
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𝐑 𝟎 = 𝑿𝟎𝑿𝟎′ is calculated, it is of order 10 × 10 
 

15 1 1 -1 1 -1 -1 1 1 -1 
1 15 -1 1 -1 1 1 -1 -1 1 
1 -1 15 1 -1 1 1 -1 -1 1 
-1 1 1 15 1 -1 -1 1 1 -1 
1 -1 -1 1 15 1 1 -1 -1 1 
-1 1 1 -1 1 15 -1 1 1 -1 
-1 1 1 -1 1 -1 15 1 1 -1 
1 -1 -1 1 -1 1 1 15 -1 1 
1 -1 -1 1 -1 1 1 -1 15 1 
-1 1 1 -1 1 -1 -1 1 1 15 

 

𝛅 𝛅  ′ matrix is given below 
 

1 -1 -1 1 -1 1 1 -1 -1 1 
-1 1 1 -1 1 -1 -1 1 1 -1 
-1 1 1 -1 1 -1 -1 1 1 -1 
1 -1 -1 1 -1 1 1 -1 -1 1 
-1 1 1 -1 1 -1 -1 1 1 -1 
1 -1 -1 1 -1 1 1 -1 -1 1 
1 -1 -1 1 -1 1 1 -1 -1 1 
-1 1 1 -1 1 -1 -1 1 1 -1 
-1 1 1 -1 1 -1 -1 1 1 -1 
1 -1 -1 1 -1 1 1 -1 -1 1 

 

Verified that 𝐑 𝟎 = 16𝑰𝒏 − 𝛅 𝛅  ′  hence design 

𝐗 𝟎 will be called a type T3 design. 
 

By using equation (2.3), the calculated 𝑈𝐸(𝑆2) of  

𝐗𝐨 is 4. The lower bound for 𝑈𝐸(𝑆2) If p = 3(mod 
4) is given by: 
 

𝑼𝑬(𝑺𝟐) = {𝒏(𝒏 − 𝟏) + 𝒏𝒑(𝒑 − 𝒏)} ⧸ 𝒑(𝒑 − 𝟏) (3.4) 

 

Proof:  is similar given to that given for equation 
(3.2). The minimum in equation (3.4) is attained 
whenever 𝐑 𝟎 is a matrix with diagonal entries p 
and off- diagonal entries either 1 or −1. Hence 

type T3 design are 𝑈𝐸(𝑆2) -optimal. 
 

4. CONCLUSION 
 

This study delves into the realm of 
supersaturated designs, offering valuable 
insights into their construction and optimization 
for efficient factor screening experiments. By 

exploring various design criteria such as 𝐸(𝑆2)-

optimality and 𝑈𝐸(𝑆2) -optimality, the study 
highlights the significance of balancing efficiency 
and resource utilization in experimental design. 
The research primarily focuses on the utilization 

of Hadamard matrices to construct 𝑈𝐸(𝑆2)  -
optimal designs, thereby enhancing the 
understanding of design methodologies. 
 

The methods outlined, including the selection 
and manipulation of Hadamard matrices, provide 

a robust framework for creating supersaturated 
designs that achieve near-optimal efficiency. 
These methods demonstrate that it is possible to 
maintain a high degree of efficiency even when 
the number of factors exceeds the number of 
runs, a common challenge in large-scale 
experiments. The practical examples and proofs 

provided for lower bounds of 𝑈𝐸(𝑆2)   designs 
offer a comprehensive guide for practitioners 
aiming to implement these designs in various 
fields such as industrial, biological, and 
agricultural experiments. By bridging theoretical 
concepts with practical applications, this 
research contributes to the advancement of 
experimental design strategies, paving the way 
for more effective and cost-efficient factor 
screening studies. Overall, the study 
underscores the importance of developing and 
utilizing optimal SSDs to maximize resource use 
and reduce costs, thereby providing a  robust 
framework for future research and application in 
any field requiring efficient factor screening. 
 

our study acknowledges certain limitations. The 
methods described are primarily based on the 
use of Hadamard matrices, which may not be 
available or easily constructed for all parameter 
configurations. Future research could explore 
alternative construction methods that do not rely 
solely on Hadamard matrices, thereby 
broadening the applicability of the optimal SSDs. 
Investigating the integration of other optimality 
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criteria and their impact on design efficiency 
would also be valuable. 
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