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This paper is part of a special issue on Advances
in Soundscape: Emerging Trends and Challenges in Re-
search and Practice.
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The exploration of the soundscape relies strongly on the characterization of the sound sources
in the sound environment. Novel sound source classifiers called Pre-trained Audio Neural
Networks (PANNs), are capable of predicting the presence of over 500 diverse sound sources.
Nevertheless, PANNs models use fine Mel spectro-temporal representations as input, whereas
sensors of an urban noise monitoring network often record fast third-octaves data which
have significantly lower spectro-temporal resolution. In a previous study, we developed a
transcoder to transform fast third-octaves into the fine Mel spectro-temporal representation
used as input of PANNs. In this paper, we demonstrate that employing PANNs with fast
third-octaves data, processed through this transcoder, does not strongly degrade the classi-
fier’s performance in predicting the perceived time of presence of sound sources. Through a
qualitative analysis of a large-scale fast third-octave dataset, we also illustrate the potential
of this tool in opening new perspectives and applications for monitoring the soundscapes of
cities.

[https://doi.org/10.1121/10.0026479]
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I. INTRODUCTION

Over the years, noise level measurements and sim-
ulations have been widely used to gauge noise nui-
sance caused by different urban environments. Directive
2002/49/EC of the European Union (Commission, 2022)
enforces noise level mappings in urban areas with more
than 100,000 residents and close to major transportation
hubs. However, the assessment of noise extends beyond
mere quantitative loudness measures, as it is insepara-
ble from human perception (Lavandier and Defréville,
2006). The acoustic environment as perceived by humans
in a specific context, is encapsulated by the definition of
”soundscape”, as standardized in ISO 12913-1:2014 (ISO,
2014). Gaining insight into human emotions, such as an-
noyance experienced in a sound environment, proves to
be non trivial and dependent on the specific subgroups
of citizens involved (Tarlao et al., 2021; Yong Jeon et al.,
2011). For instance, the sound environment near a bar
perceived by residents may not be as pleasant as it is by
tourists, due to their distinct expectations. These con-
flicting assessments highlight the need for more nuanced
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approaches in soundscape evaluation that go beyond a
singular reliance on evaluating annoyance.

Analyzing the various sound sources within an en-
vironment provides a holistic understanding of sound-
scape quality. In previous studies, road traffic, human
voices, and bird sounds have been frequently considered
in soundscape evaluations (Aumond et al., 2017; Riccia-
rdi et al., 2015), representing the prevalent sounds in me-
chanical, human, and natural urban environments (ISO,
2014; Jeon and Hong, 2015). Previous work argues that
as opposed to sole reliance on loudness assessment, focus-
ing on characterizing these three environments is essen-
tial to better describe a soundscape (Aletta et al., 2016;
Axelsson et al., 2010; Botteldooren et al., 2011).

Sound sources are usually evaluated by their pres-
ence, sound level, or dominance in the sound environ-
ment. In the soundscape standard ISO/DIS 12913-2
(ISO, 2018), the term ”dominance” of a source is em-
ployed, implying a notion of competition among sources.
In this paper, we align with the terminology employed
by Lavandier et al. (Aumond et al., 2017; Gontier et al.,
2019; Lavandier et al., 2021), and adopt the term ”time
of presence” instead. The significance of this choice will
be elaborated further in Section V.
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To evaluate the time of presence of sound sources, re-
searchers frequently employ questionnaires, either in situ,
or in vitro, i.e. by having participants listen to sound
recordings using headphones. These questionnaires are
typically conducted on small audio segments of durations
ranging from 30 seconds to several minutes (Aumond
et al., 2017; Axelsson et al., 2010; ISO, 2014; Papadakis
et al., 2023). This approach yields valuable insights on
the perception of soundscapes. However, human annota-
tions are time-consuming and error-prone, therefore in-
feasible to scale to large datasets.

Acoustic measurements present a promising solution
to address this challenge, provided they can effectively
help predict the presence of sound sources. The IEC
61672-1 (Commission et al., 2013) standardizes the mea-
surement of fast (125-ms hops) and slow (1-s hops) third-
octave spectral representations, which finds application
in various noise monitoring contexts (Aumond et al.,
2017; Can et al., 2021; Farrés, 2015; Mietlicki et al., 2015;
Nilsson et al., 2007; Torija et al., 2013). The charac-
teristics of the fast third-octave measurements provided
by Cense sensors (Ardouin et al., 2021) are described
in Table I. Fast third-octave spectrograms present sev-
eral advantages in long-term monitoring applications. In
particular, they enforce unintelligibility, thus preserv-
ing privacy, as demonstrated by Gontier et al.(Gontier
et al., 2017). Furthermore, these representations are
lightweight, with a bit rate 140 times lower than that
of mono waveform recordings (16-bit - 32 kHz), and 30
times lower than that of 64 Mel bands with 10ms hops.
They also facilitate the deployment of affordable noise
monitoring networks, as most sound level meters already
provide these acoustic features.

Some acoustic indices, which can be computed from
third-octave measurements, have shown significant corre-
lations with the presence of specific sound sources, such
as LAeq for road traffic and the Time Frequency Sec-
ond Derivation Index (TFSD) for bird presence (Au-
mond et al., 2017). The package seewave (Sueur et al.,
2016) incorporates many other acoustic indices, designed
for ecoacoustic analyses, which are intended to detect
geophonic, anthropogenic, and natural sounds. Un-
fortunately, creating specific acoustic indices is time-
consuming and case-specific as it requires a context-aware
understanding of the acoustic characteristics of the tar-
get sound source. For example, while TFSD effectively
captures rapid spectro-temporal variations in bird sounds
within a particular frequency range, it does not perform
optimally when applied to other sound sources with sim-
ilar characteristics yet different frequency ranges, such as
human voices (Aumond et al., 2017). Similarly, although
LAeq correlates strongly with the time of presence of
traffic noise in busy streets, its effectiveness in predicting
the presence of road traffic diminishes in environments
dominated by other sound sources, such as construction
sites or factories.

Artificial intelligence (AI) has proven to be a valuable
tool for detecting sound sources (Bansal and Garg, 2022)
and predicting their perceived time of presence. Gontier

at al. (Gontier et al., 2019) obtained accurate predic-
tions of the perceived time of presence of traffic, voices
and birds, by training a Convolutional Neural Network
(CNN) on fast third-octave spectrograms. In this paper,
we refer to their model as CNN-TrainSynth. While
CNN-TrainSynth shows good performance on the Cense
Lorient dataset (Can et al., 2021), it also demonstrates
a lack of robustness when applied to alternative datasets
recorded with fast third-octave. This limitation stems, in
part, from the model’s training on highly homogeneous
data. Furthermore, despite the standardization of time
weighting for fast third-octave spectrograms, variations
in other parameters, such as the number of frequency
bins and the frequency bounds, can induce problems in
generalization to other data distribution. Additionally,
while the architecture could easily be adapted to a given
sound source, it would require re-training and thus a
cumbersome procedure to produce a clean and annotated
dataset.

As mentioned previously, annoyance assessment is in-
herently intertwined with the listening context. Predict-
ing annoyance level with a trained deep learning model
would thus pose serious problems in interpretation and
transparency for users, a practice that differs from the
principles of explainable AI (Mueller et al., 2019). In
our case, we have chosen to focus on time of presence,
which is a perceptual concept that is less sensitive to
context. Addressing the same concerns, Hou et al. (Hou
et al., 2023) aimed to develop a model that jointly pre-
dicts sound sources and annoyance, exemplifying the on-
going pursuit of enhanced explainability and precision in
predicting the emotional impact of the sound environ-
ment.

spectral representation 10-ms 64Mel fast third-octave

origin PANN Lorient Cense Network

sample rate 32kHz 32kHz

window size 1024 (32ms) 4096 (128ms)

fft size 1024 (32ms) 4096 (128ms)

hop size 320 (10ms) 4000 (125ms)

window hann tukey

frequency bins 64 29

min frequency 50Hz 20Hz

max frequency 14kHz 12,5kHz

mel normalisation slaney -

mel formula slaney -

bit rate 100kb/s 3,71kb/s

TABLE I. Differences between PANN (ResNet38) and Cense

spectral representations

In recent years the realm of deep learning has seen
a surge of a family of robust and versatile pre-trained
classifiers, known as Pre-trained Audio Neural Networks
(PANNs) (Kong et al., 2020). PANNs are highly effec-
tive deep learning models that have been trained on Au-
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acoustic

indicator

CNN-

TrainSynth

PANN-

1/3oct

PANN-

Mel

input

spectrogram

fast third

octave

fast third

octave

fast third

octave

10-ms

64Mel

output classes 1 3 527 527

needs training

annotations Yes Yes No No

TABLE II. Specifications of the different inference methods.

The need for training annotations refers to the need to use

time of presence annotations for each sound source

dioset, an extensive audio dataset comprising more than
2 million audio clips (Gemmeke et al., 2017). These mod-
els operate as sound classifiers and are capable of making
predictions on the presence of 527 different sound sources
without the need for additional training. For each class,
they output a confidence score between 0 and 1, indi-
cating the likelihood of the source’s presence. Over 20
distinct pre-trained models are accessible online, all em-
ploying the same 10-ms 64Mel bands spectro-temporal
representation as input. This representation has a much
higher frequency and time resolution compared to fast
third-octaves, as shown in Table I.

This paper builds upon the work presented by
Tailleur et al. (Tailleur et al., 2023) which focused on in-
troducing an algorithm for transforming fast third-octave
representations into 10-ms 64Mel bands representations.
This transcoding technique allows the use of classifica-
tion algorithms that necessitates Mel spectro-temporal
representations as input, such as PANNs, with fast third-
octave band measurements. In the following sections, the
ResNet38 PANN model with 10-ms 64Mel bands spectro-
grams as input will be referred to as PANN-Mel, and
the same PANN model that uses transcoded Mel spec-
trograms from fast third-octave measurements will be re-
ferred to as PANN-1/3oct. A summary of the avail-
able models and methods to predict the time of presence
of sound sources are presented in table II. Technical as-
pects of the transcoder are summarized in section II. De-
spite only being tested for this specific use case scenario,
theoretically the transcoder can be used to convert any
spectro-temporal representation into 10-ms 64Mel bands
spectrograms. It was demonstrated that the transcod-
ing technique applied to PANN on fast third-octaves en-
abled satisfactory classification performances on two ur-
ban sound datasets: SONYC-UST and UrbanSound8k.
However, the assertion that PANN-1/3oct output classes
are highly correlated with perceptual evaluations of time
of presence is yet unproven.

This study is specifically focused on showcasing the
effectiveness of PANN in accurately predicting the per-
ceived time of presence, a crucial metric in soundscape
analysis, for diverse sound sources. It particularly as-
sesses the applicability of PANN in analyzing the time
of presence of datasets recorded with fast third-octave

representations. PANN predicts accurately not only the
time of presence for traffic, voices, and birds but also the
presence of a diverse range of 527 different sound sources.
Thanks to the transcoder developped by Tailleur et al. in
(Tailleur et al., 2023), using PANN on fast third-octave
data allows predictions on lightweight datasets, while en-
suring privacy. Consequently, this approach facilitates
analysis on large datasets, such as Lorient Cense (ex-
plored in section V) which contains more than 500k hours
of fast third-octave spectro-temporal data on 75 different
sensors.

In the forthcoming section II, we present the
transcoding algorithm used for PANN-1/3oct. In
section III, we elaborate on our findings concerning
perceived time of presence assessment performance.
We then show an analysis of the soundscape of Lo-
rient through a fast third-octave recorded database
in section IV. In section V, we will discuss the
relevance, the opportunities, and potential enhance-
ments arising from this approach. Open source code
is available at https://github.com/modantailleur/
paperSoundscapeSourceClassification.

II. TRANSCODER

PANNs models (Kong et al., 2020) take a 10-ms
64Mel frequency band spectrogram as input, as shown
in table I. Audio can easily be transformed into the
corresponding Mel spectrogram in order to use PANN.
Nonetheless, there is no easy transformation from fast
third-octave spectrograms to 10-ms 64Mel frequency
band spectrograms, as the latter have much finer reso-
lutions. In order to use PANN models to predict the
presence of sound source from fast third-octave record-
ings, a transcoder is employed to convert them into 10-
ms 64Mel frequency bands spectral representations. In
the subsequent sections, we will refer to the fast third-
octave spectrograms as ”coarse spectrograms” and
the 10-ms 64Mel frequency bands spectrograms as ”fine
spectrograms”. We direct readers to (Tailleur et al.,
2023) for further details on the training procedure, and
on the model’s classification performances compared to
other state-of-the-art methods.

A. General description

The transcoder outputs the fine spectrogram format
that is required as input of PANNs models. This trans-
formation is performed on audio segments with a dura-
tion of 1 second. The Lorient Cense project’s method for
fast third-octave (coarse spectrogram) calculation (Can
et al., 2021) is chosen. This method involves computing
29 third-octave bands within the frequency range of 20Hz
to 12.5kHz, using a tukey 125-ms temporal window, as
depicted in table I.

The transcoder is trained on the TAU Urban Acous-
tic Scenes 2020 Mobile dataset (Mesaros et al., 2018),
an urban dataset of raw audio data. We highlight that
this dataset does not include any annotations regarding
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the presence of sound sources in the audio recordings. It
consists of 30h of 10-second audio clips from 10 different
acoustic scenes.

B. Transcoder architecture

The proposed CNN transcoder model consists of two
parts: a Pseudo-INVerse (PINV) transcoder and a Con-
volutional Neural Network (CNN), as shown in Figures 1
and 2. The PINV transcoder presented in Figure 1 first
reconstructs the full-band spectrogram from the coarse
spectrogram using a pseudo-inverse method (Penrose,
1955). The PINV stage enables leveraging knowledge
from the third-octave transform to provide an initial es-
timation of the fine spectrogram. This stage also theo-
retically allows the model to adapt to any coarse spec-
trogram calculated using different numbers of frequency
bins or varying time weightings. The CNN stage im-
proves the quality of this estimation by adding residual
information to it, as illustrated in Figure 2. The model
is very light, representing 0.3% of our selected ResNet38
PANN’s total number of parameters.

C. Learning approach

A teacher-student approach consists in leveraging an
existing pre-trained model to distill its knowledge into a
student model that learns from the teacher’s output (Hin-
ton et al., 2015). This approach offers several advantages
over traditional supervised learning, where a model is
trained solely from human-annotated audio samples. By
exclusively relying on the outputs of the teacher model,
a teacher-student training eliminates the need for human
annotations. Consequently, it is adaptable to various au-
dio datasets, making it highly convenient for training the
model with a large quantity of audio samples. As a re-
sult, such a training method often produces more robust
models.

The teacher-student approach taken to train the
transcoder diverges slightly from the aforementioned reg-
ular teacher-student methods, while benefiting from the
same advantages. Notably, only the parameters of the
CNN transcoder are updated during training (see Figure
3), whereas the entire student model would be trained if
a regular teacher-student approach had been employed.
As a result, at the end of the transcoder training, the
PANN model used in the student process remains iden-
tical to the one employed by the teacher. Training of the
transcoder is performed using the Binary Cross-Entropy
(BCE) loss function, computed on the predictions of both
the teacher and student PANN classifiers.

Several extra benefits arise from this improved
teacher-student approach. First, it minimizes computa-
tional complexity by limiting training to only a fragment
of the student network. Additionally, this approach im-
proves versatility, allowing the model to be easily adapted
to a broad spectrum of pre-trained classifiers that utilize
similar fine spectrogram as inputs.

To provide intuitive insight on this innovative
teacher-student process, the transcoder learns to recon-
struct a spectrogram based on the high-level features re-
sulting from the 527 output classes of PANN-Mel. In-
stead of aiming for a perfect reconstruction of the target,
the model thus prioritizes crafting a spectrogram that
encapsulates the fundamental characteristics of a sound
source being present or absent. In fact, the transcoder’s
objective is not an exact retrieval of what was lost but
rather a reconstruction of coherent data yielding predic-
tions close to those of the PANN-Mel teacher model.
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function

D. Validation

The training of the model lasts approximately 4h on
a V100 GPU. Interestingly, the resulting PANN-1/3oct
model trained with a transcoder, outperforms those that
are trained with a regular teacher-student method. This
surprising outcome is particularly noteworthy consider-
ing that the CNN transcoder is substantially smaller in
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Annotation

CNN-

TrainSynth PANN-1/3oct PANN-Mel

Traffic
.81** .75** .71**

Voices
.30** .54** .56**

Birds
.20 .73** .78**

**. correlation is significant at the .05 level

*. correlation is significant at the .01 level

FIG. 4. Pearson correlation on GRAFIC. Each plot shows

the annotations (y-axis) depending on the predictions (x-axis)

(n=74).

size. PANN-1/3oct obtains an accuracy of 89.3% in pre-
dicting the same first class as the teacher PANN-Mel
model on the evaluation dataset of TAU Urban Acous-
tic Scenes 2020 Mobile dataset (Mesaros et al., 2018).
Models trained using regular teacher-student methods
only reached a maximum accuracy of 83.7%. The pro-
posed model has also been tested in multi-class classifi-
cation tasks and multi-label classification tasks, reaching
a 62.4% accuracy on the UrbanSound8k dataset, and a
.44 mAUPRC on Sonyc-UST dataset, see (Tailleur et al.,
2023) for more details. Even if this model has proven
good performances for classification tasks, it’s perfor-
mances for assessing the time of presence of different
sound sources remains to be evaluated.

III. QUANTATIVE PERFORMANCE ANALYSIS

A. Materials and Method

1. Datasets

Two datasets of audio recordings are used for evalu-
ating the ability of PANN-1/3oct in predicting the per-
ceived time of presence of traffic, voices and birds: the
Lorient-1k and GRAFIC datasets.

Lorient-1k (Gontier et al., 2021) is recorded in the
city of Lorient in France with a zoom H4N at 10 different
locations. It has a total duration of 22.5min, consisting
in 30 acoustic scenes of 45s each. Four experts, who are
members of the project team with significant expertise
in soundscape analysis, annotated their perceived time
of presence of birds, traffic and voices over the 45s. Due
to the low number of annotators, the most experienced
expert homogenized the dataset.

Annotation

CNN-

TrainSynth PANN-1/3oct PANN-Mel

Traffic
.62** .72** .73**

Voices
.59** .88** .95**

Birds
.68** .61** .78**

**. correlation is significant at the .05 level

*. correlation is significant at the .01 level

FIG. 5. Pearson correlation on Lorient-1k. Each plot shows

the annotations (y-axis) depending on the predictions (x-axis)

(n=30).

The GRAFIC dataset (Aumond et al., 2017) was
created from a soundwalk in the 13th district of Paris.
The soundwalk was designed to cover a wide variety of
urban sound environments. The recording system em-
ployed was an ASAsense device, which was mounted
on the operator’s backpack as researchers were walking
alongside the volunteering citizens. The annotation pro-
cess involved a total of 37 different participants, with
9 to 11 of them present simultaneously at each 19 loca-
tion. While traversing different locations, they completed
questionnaires detailing the pleasantness, liveliness, per-
ceived loudness of specific sound sources (such as mopeds,
cars, horns, trucks, and buses), and the perceived time
of presence of others (including traffic, voices, footsteps,
birds, wind, and water). With four sessions conducted,
74 audio files were obtained from the 19 different loca-
tions, ranging in duration from 1 to 3 minutes each. An
estimation of the perceived time of presence for the var-
ious sound sources was obtained by averaging the ques-
tionnaire results from annotators present during each ses-
sion at each location.

2. PANN prediction processing to predict the perceived
time of presence

PANN ResNet 38 model processes Mel spectrograms
segments with a duration of 10-s, and outputs a confi-
dence level between 0 and 1 for the presence of each 527
different sound sources. To derive an indicator for the
presence of a specific source, we computed the average of
the model’s outputs across all available 10-s chunks for
each output class.
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To represent the time of presence of traffic, voices,
and birds, we select three output classes from PANN
that closely align semantically with these sources, namely
”traffic noise, roadway noise”, ”speech”, and ”bird vocal-
ization”. For further details on the available PANNs out-
put classes, please refer to the Audioset ontology (Gem-
meke et al., 2017).

PANN’s original training dataset is based on nor-
malized audio. However, normalizing each audio file in-
dividually could potentially lead to misleading results,
especially for relatively silent audio files that lack signifi-
cant level dynamics. In response, we adopt a strategy of
normalizing the audio data to the maximum level across
the entire dataset, with an exception for the top 1% per-
centile of the highest levels. This normalization process
thus simply involves adding the same level offset to all
audios. The exclusion of the highest levels mitigates the
impact of outliers (e.g., sensor hit, wind in the micro-
phone), contributing to improved model performance.

On a GPU V100, PANN-1/3oct processes 175 sec-
onds of real-time audio within a single second.

B. Results

The correlation results for the three selected PANN-
1/3oct classes are presented in Figures 4 and 5, alongside
the correlations for the CNN-TrainSynth and the PANN-
Mel models. PANN-1/3oct demonstrates overall superior
performance compared to the CNN-TrainSynth model
for the 3 sound sources. It only exhibits slightly lower
performance compared to the CNN-TrainSynth model
on traffic for GRAFIC, and got similar correlations for
birds on Lorient-1k. Furthermore, the performance of
PANN-1/3oct closely rivals that of PANN-Mel, despite
PANN-Mel utilizing more refined spectro-temporal repre-
sentations as input. PANN-1/3oct appears to outperform
PANN-Mel for traffic correlation on Lorient-1k. However,
this observation is likely influenced by the low number of
data points on which the correlation is calculated.

IV. QUALITATIVE PERFORMANCE ANALYSIS

Previously exploited datasets such as Lorient-1k and
GRAFIC are relatively small, encompassing less than 4h
of audio recordings in total. Unfortunately, no larger-
scale audio datasets in the literature include annotations
for the time of presence of sound sources. Due to this
limitation, we now focus on a large-scale dataset of fast
third-octave recordings that doesn’t contain any explicit
annotations. We conduct a qualitative analysis of this
dataset to assess if the PANN-1/3oct prediction results
align with our expectations.

A.Methods

1. CENSE sensor network

The CENSE project has developed low-cost noise
monitoring sensors designed to be incorporated into a

large network of sensors (Ardouin et al., 2021; Picaut
et al., 2020). Such a network of sensors has been deployed
between January 2020 and April 2022 in the city center of
Lorient in France. The overall network includes 78 noise
sensors connected to the cloud. This network utilizes
the public street lamp network, incorporating power-line
communication systems.

The sensors utilize micro-electromechanical system
(MEMS) microphones, equipped with a Raspberry Pi for
recording and transmitting purposes, featuring real-time
audio processing capabilities. They allow the recording
of an acoustic spectrum every 125 milliseconds using 29
third-octave bands covering the frequency range from 20
Hz to 12.5 kHz (as shown in table I).

2. Dataset processing

The entire dataset encompasses over 500k hours of
fast third-octave measurements derived from the previ-
ously outlined network. Given the computational effi-
ciency of PANN-1/3oct, estimating source levels across
the entire dataset would necessitate about 3k hours
of computation. Consequently, we opt to sample the
dataset within specific time intervals and spatial areas
to showcase the efficacy of PANN-1/3oct in the context
of large-scale urban datasets.

For long-term analysis on multiple sensors, we ran-
domly select a certain number of 1-min samples per day
of calculation. In cases where data is not accessible on
a particular day or for a randomly selected sensor, that
specific sample is omitted from the subset. For short-
term analysis on only a few sensors, the entirety of the
available 1-min samples per day are selected. The time
period of each study (TP), the number of samples used
per day (NSD), the total number of samples (TNS), and
the number of sensors available or involved (NS) are spec-
ified within the figures’ captions of each analysis.

As detailed in section IIIA 2, the subsets are nor-
malized using the maximum level observed within the
dataset of 33,443 recordings collected between January
and March 2020, with the top 1% percentile excluded.
This established level offset is consistently applied to all
other subsets of the Cense Lorient dataset.

3. Predictions processing

The PANN model predictions are not standardized.
For instance, the predictions for the class ”Bird Vocal-
ization” in GRAFIC and Lorient-1k, discussed in section
III, fall within the range of 0 to 0.2, while the corre-
sponding annotations for each traffic, voice and birds
annotations span from 0 to 1. This annotation scale
of 0 to 1 represents a linear and bipolar scale, ranging
from ”sound source not present at all” to ”sound source
always present”. Similar discrepancies are observed in
traffic predictions (0 to 0.4) and voice predictions (0 to
0.6). To address this disparity and ensure alignment with
perceived time of presence annotations, we employ lin-
ear interpolation without intersection, calculated on the
GRAFIC and Lorient-1k predictions. This approach ef-
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FIG. 6. Clock graphs representing the estimated perceived time of presence of traffic, voices and birds, on a sensor close to a

traffic street, a pedestrian street and a residential area. The source time of presence prediction is averaged per hour. The time

period considered ranges from January 1st to March 1st of 2020, with a random data sampling rate of 14% per day across 67

sensors, resulting in a total of about 500 hours of recording.
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FIG. 7. Clock graphs representing the presence of music dur-

ing a music festival, and on a regular summer day. The source

presence likelihood is averaged per hour. The time period con-

sidered for Figure a) encompasses every sunday of July 2021,

taking into account all data from 5 sensors, resulting in a total

of about 200 hours of recording. The time period considered

for Figure b) is the 8th of August 2021, taking into account

all data from 5 sensors, resulting in a total of about 100 hours

of recording.

fectively adjusts traffic, voices, and birds predictions to a
range consistent with perceived time of presence values,
enabling fair inter-class predictions comparisons.

Regrettably, this normalization procedure cannot be
extended to other classes like ”music”, ”church bell”, and
”civil defense siren” due to the unavailability of datasets
with annotations regarding the time of presence for these
sound sources. Instead, the PANN-1/3oct output for
those classes will systematically be compared to another
time period or another location.
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FIG. 8. Clock graphs representing the presence of church bells

on January 2020 when the bells were operational, and on Oc-

tober 2020, when they were not. The source presence likeli-

hood is averaged per minute. The time period considered for

Figure a) is October 2020, taking into account all data from

1 sensor, resulting in a total of about 300 hours of recording.

The time period considered for Figure b) is January 2020,

taking into account all data from 1 sensor, resulting in a total

of about 600 hours of recording.

B. Results

1. Temporal analysis

In order to evaluate the accuracy of the model in pre-
dicting the time of presence of traffic, voices and birds,
we consider the time period between January 1, 2020,
and March 1, 2020. To delve into the temporal analy-
sis of this time period, we focus on three specific sensors,
each selected to represent distinct acoustic environments.
One sensor is in a residential area near a children’s play-
ground, one on a busy traffic street, and one situated in a
pedestrian area with bars and nightclubs. The intention
behind this selection is to encompass various temporal

J. Acoust. Soc. Am. / 23 August 2024 JASA/Sample JASA Article 7



  

Rush hour (17h-19h) Early morning (5h-8h)Night life (22h-2h)

Main bars and 
night clubs

City center, with 
pedestrian areas

Residential areas

traffic
voices
birds

➢
 N

200m
1000ft

FIG. 9. Maps representing the time of presence of traffic, voices and birds over different time intervals. Each node has 3 colors,

the area of each color being related to the time of presence of their respective sound source. The circles are not superposed,

but should be seen as one circle with the area of each color within it representing the time of presence of each sound source.

The time period considered ranges from January 1st to March 1st of 2020, with a random data sampling rate of 0.7% per day

across 67 sensors, resulting in a total of about 600 hours of recording.
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FIG. 10. Map illustrating the predicted presence of civil de-

fense sirens on the first Wednesday of each month at 11h45.

The map displays the locations of sirens and their estimated

coverage. The time period considered encompasses every first

wednesday of the month at 11h45 between January and July

of 2020, taking into account all data from 67 sensors, result-

ing in a total of about 5 hours of recording.

patterns of the three sound sources across these three
distinct sensor locations.

We observed highly contrasting distributions of traf-
fic, voices, and birds (see Figure 6), all in line with our
expectations:

• In the traffic street, a notably higher presence of
traffic is observed compared to the other locations,
particularly from 7h to 19h. Additionally, we iden-
tify the presence of birds on the traffic street, with
their activity commencing approximately one hour
before sunrise, as anticipated. The existence of
trees along this street provides a plausible expla-
nation for the birds’ presence. The decrease in
bird activity during the rest of the day could be at-
tributed to birds leaving, reduced chirping, or being
masked by traffic noise.

• In the pedestrian street, voices become prevalent in
the afternoon, specifically starting from 14h. This
voice activity declines from 18h to 21h and in-
creases between 21h and 0h. This pattern aligns
with the proximity of this sensor to bars that usu-
ally open in the afternoon and close around 2h.
The surprising fluctuations in the time of presence
predictions for birds throughout the day on the
pedestrian street could be attributed to the pres-
ence of various other sound sources in this area (e.g.
speech, bicycle bell, horn), leading to inaccuracies
in the predictions.
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• Within the residential area, birds are consistently
more active throughout the day, with a notable con-
centration in the morning, two hours before sunrise.
The predictions also show a slight increase at sun-
set, aligning with expectations. Additionally, we
observe minor fluctuations in voice activity between
7h and 8h, and between 17h and 18h, likely linked
to people leaving and returning home.

PANN-1/3oct also demonstrates effectiveness in pre-
dicting the presence of other sound sources. Figure 7
illustrates a substantial increase in music presence as-
sociated with the ”music” PANN-1/3oct class during a
festival day compared to a regular sunday. The ”Festival
Interceltique de Lorient”, an outdoor music event, exhib-
ited a substantial concentration of music on the Sunday
8th of July 2021, primarily in the afternoon. Of par-
ticular note is the prominent main outdoor concert that
commenced at 14h30, during which musicians paraded
through the streets. The beginning of this parade cor-
relates with the heightened music activity predicted by
PANN-1/3oct in this time period.

Furthermore, Figure 8 illustrates the temporal pat-
terns associated with the ”church bell” PANN class. Dur-
ing January 2020, when the bells were in full operation,
PANN-1/3oct predictions show that they rang in the
opening minutes of each hour. In October 2020, the bells
of Notre-Dame-De-Victoire were not ringing due to the
structural damages caused by the vibrations produced
by the bells. PANN-1/3 oct has indeed extremely low
predictions for the church bell class on this time period.
The predictions for church bells are significantly higher
at 9h, 12h05, and 19h05. This is probably due to the An-
gelus, a daily Catholic prayer traditionally recited three
times a day, usually at 7h05, 12h05, and 19h05. In cer-
tain churches, the 7h05 prayer may be postponed to a
later hour, which seems to be 9h for the Notre-Dame-
De-Victoire church.

2. Spatial analysis

Throughout the entire sensor network, we identify
distinct patterns in sound behaviors based on the gen-
eral sensor location and time periods between January 1,
2020, and March 1, 2020 (see Figure 9). Notably, boule-
vards exhibit significantly higher levels of traffic sounds
compared to other street types. Pedestrian streets and
areas near shops and bars tend to have a greater preva-
lence of voices. During nightlife periods, the sensors close
to regular shops tend to feature lower levels of voices than
the sensors close to bars and nightclubs. Residential ar-
eas show an increased presence of birds, coupled with
a low presence of voices and traffic, particularly in the
morning, aligning with the expected tranquility of nearby
parks. Furthermore, our analysis reveals that voice activ-
ity predominantly occurs during rush hours and nightlife
periods, being notably absent during the early morning.
In contrast, traffic sounds are consistently present across
all sensors, except during the night hours when the city
experiences an overall decrease in activity.

In France, civil defense sirens are activated every
first Wednesday of the month precisely at 11h45 These
sirens are distributed across various locations in the city.
Three main sources are situated in the city center of Lori-
ent. Figure 10 illustrates the prediction of ”Civil Defense
Siren” presence for each first Wednesday of the month be-
tween January 2020 and July 2020, at 11h45. In compar-
ison to this specific time, the predictions for the presence
of sirens for the remainder of the day (when civil defense
sirens are not activated) are negligible, being 70 times
lower on average. During siren activation, the prediction
scores tend to be higher for sensors located closer to the
siren sources.

V. DISCUSSION

A.Why use third-octaves measurement ?

While it’s possible to argue for an alternative ap-
proach involving sensors that capture raw audio, make
predictions on sound source presence at regular intervals,
and send only the predictions to a server to address pri-
vacy concerns, there are compelling reasons to consider
predicting sound sources directly from third-octave mea-
surements. Storing predictions rather than third-octaves
necessitates sensors capable of making such predictions.
This implies a requirement for more advanced, poten-
tially higher-cost sensors. Moreover, relying solely on
predictions would mean that future access to the original
audio data would be lost. In this context, predicting from
third-octave data with ever improving AI models could
potentially lead to more efficient predictions in the future,
even considering that we have access to raw audio in this
day and age. Furthermore, as third-octave measurements
from sound level meters are normed (Commission et al.,
2013), there are many already recorded datasets where
PANN-1/3oct could be used to make sources predictions
(Farrés, 2015; Mietlicki et al., 2015; Nilsson et al., 2007;
Torija et al., 2013).

B.Why use perceived time of presence? Isn’t evaluating the

time of presence the same as evaluating the signal duration

of a sound source ?

The evaluation of the presence of sound sources in
human assessments is often approached using the con-
cept of ”dominance,” which aims to capture the perceived
level of each sound source (Axelsson et al., 2010; Hong
and Jeon, 2015; Mitchell et al., 2021). We believe that
the term ”dominance” can be meaningful when multi-
ple sound sources are present in a scene. Most stud-
ies suggest measuring dominance as a score between 0
and 10. However, in our view, this approach has certain
limitations. Implicitly, asking for the ”dominance” of a
source implies that other sources are being dominated.
Therefore, evaluating dominance should involve more of
a comparative assessment (e.g., sound source A is twice
as dominant as sound source B, which is equally domi-
nant as sound source C), rather than providing individual
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FIG. 11. Differences between time of presence annotation procedure, and mean of detection annotation on a synthetic example.

On this example, close traffic noise would have a perceived time of presence close to 1/1, and distant traffic noise a perceived

time of presence close to 0/1, even if their mean of detection annotation would be extremely close.

scores for each sound source (e.g., each sound source has
a dominance score between 0 and 10). Consequently, the
term ”dominance” has been replaced with ”time of pres-
ence” in some soundscape evaluation studies (Aumond
et al., 2017; Gontier et al., 2019; Lavandier et al., 2021),
a choice also made in this article.

It is crucial to acknowledge that the concept of ”time
of presence” comes with inherent limitations and should
not be confused with the precise determination of the
duration of a sound source being active in a given en-
vironment, which would require specifying exact onsets
and offsets. The term ”time of presence” functions as
a straightforward lexical substitution for the perceived
overall level of a sound source (Lavandier and Defréville,
2006), suggesting a holistic assessment of its presence
within a soundscape. Notably, a sound source may re-
ceive a maximum time of presence score while being phys-
ically present above a certain audible threshold only half
of the time, as human perception would naturally fill gaps
in auditory information during a holistic evaluation. Sim-
ilarly, a source physically present and audible for a signif-
icant duration, but at a low level or very large distance,
would result in a perceived time of presence score close to
none. Consequently, datasets annotated with onsets and
offsets of sound sources, such as Singa::Pura’s dataset
(Ooi et al., 2021), are not suitable for evaluating the per-
ceived time of presence. This phenomenon is showcased
with a synthetic example on Figure 11.

C. Is AI really necessary ? Why not simply use acoustic

indices as source presence predictors ?

While the lack of robustness of acoustic indices was
addressed in Section I, we also demonstrated in Section
IV that the utilization of PANN-1/3oct enables study-
ing a more extensive number of sound sources. This is
achieved without the need to create a specific acoustic

index for each distinct sound source, as PANNs inher-
ently feature 527 output sources. This approach opens
up possibilities for a more extensive comprehension of
the urban acoustic environment, as exemplified with the
music, church bells, and civil defense sirens analysis in
Figures 7, 8, and 10.

D. Can PANN-1/3oct be used for other applications ? Are

all the sound sources predictions reliable ?

We deliberately adopted a straightforward approach
to map PANN-1/3oct predictions to the perceived time
of presence to demonstrate the full potential of this algo-
rithm. We believe that this methodology can be further
refined, and that PANN-1/3oct predictions have the po-
tential to be applied to various other applications.

While our results have demonstrated the predictive
capabilities of PANN-1/3oct, extending beyond the pri-
mary classes of traffic, voices, and birds, it is important to
exercise caution in its application. There is no guarantee
of its performance when used on other sound classes for
time of presence predictions. Before deploying the model
for a new sound class, a preliminary study is essential to
verify the model’s compatibility and the correlation of its
results with the target sound class annotations.

VI. CONCLUSION

In this study, we have explored a novel approach to
accurately predict the time of presence of different sound
sources in urban soundscapes. Our approach leverages
deep learning models, specifically Pre-trained Audio Neu-
ral Networks (PANNs), and a transcoding algorithm to
convert fast third-octave representations into Mel spec-
trograms, which are used by PANNs models as input.
This method has shown promise in addressing the chal-
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lenges of assessing soundscape quality and predicting the
perceived time of presence of sound sources.

Our findings demonstrate that PANNs, whether us-
ing Mel spectrograms (PANN-Mel) or transcoded Mel-
spectrograms from third-octave measurements (PANN-
1/3oct), can accurately predict the time of presence of
sound sources in various urban environments, specifically
for traffic, voices and birds. This approach provides a ro-
bust and efficient means of assessing soundscape quality,
especially in situations where relying solely on human-
generated annotations is impractical. Additionally, we
have shown the versatility of such an approach, which
allows to potentially assess the presence of over 500 dif-
ferent sound sources. This capability allows for more
in-depth analyses of soundscapes, leading to a better un-
derstanding of the acoustic environment in urban areas.
However, it remains unproven whether those other PANN
classes are similarly correlated with time of presence, as
the literature on time of presence assessment has focused
on only a limited number of sources. In future investiga-
tions, we will explore transcoding fast third-octave mea-
surements into audio, enabling the use of any classifier
for sound source predictions, and providing the capabil-
ity to listen to the recordings. This advancement may
potentially enrich the applications of third-octave mea-
surements.

In conclusion, our study offers a promising path for
advancing our understanding of urban soundscapes, en-
hancing noise management strategies, and ultimately im-
proving the quality of life for city dwellers. By leverag-
ing artificial intelligence and acoustic measurements, we
can gain insights into the intricate relationships between
sound sources, human perception, and the quality of ur-
ban soundscapes. As the presence of sound sources is
closely related to higher-level perceptual attributes such
as pleasantness or eventfulness, identifying in-context re-
lationships between sound sources and these perceptual
attributes could enable the creation of perception-based
visual representations adapted to various stakeholders.
Properly displayed, this knowledge can guide decision-
makers, city planners, and researchers in creating more
pleasant and sustainable sonic environments for every-
one.
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