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ABSTRACT

We consider a material made of a periodic distribution of damped resonators em-
bedded in a porous matrix. The homogenization method is used to grasp to which
extend the resulting material behaves singularly with respect to the genuine sys-
tem where seemingly vanishing resonators are weakly damped in contrast with the
surrounding chamber and porous matrix. The resulting macroscopic material is gou-
verned by a complex coupled system involving two components from the porous and
the resonating parts on one hand, and a third non local component arising from the
wake inside the porous matrix.

Mathematical Subject Classification (2000). 35B27, 76M50, 76Rxx, 74F10,
74Q05.

Keywords. fractured porous media, two-scale homogenized system, Darcy law,
Beavers-Joseph conditions, Helmholtz resonator.

1. Introduction

This paper deals with the modelisation of poro-acoustics media made of a rigid porous
connected matrix with embedded inner resonators. Under the hypothesis that materi-
als under consideration present a statistically invariant representative volume element
and are conveniently represented by periodic media, they are eligible for mathematical
homogenization methods and unconventional macroscopic acoustic properties leading
to singularly behaving metamaterials.

More precisely, we consider highly heterogeneous materials where embedded
Helmholtz resonators are characterized by small constricted ducts behaving differ-
ently from the surrounding chamber [9]. As the total volume of the ducts is chosen of
unity order to balance their vanishing volume at local scale, the macroscopic asymp-
totic behaviour of the system may differ according to whether damping is weak inside
the duct. Unlike [12] where damping is assumed to be of order one everywhere, the
present study considers weak damping inside the thin ducts. To that aim, the control-
zone method is revisited.

The paper is organized as follows. Section 2 is devoted to the description of the
mathematical model and of the functional setting with an emphasis on the physical
background [9]. In Section 3, the main results of [12] are recalled as long as they
contribute to the present study. In particular, it requires results of two-scale homoge-
nization [23] and of the so-called Control-zone method [6]. The first main convergence
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result is established in Section 3. The solution of the heat equation in a cylindrical ring
is explicited in Section 4 as part of the Control-zone method which needs profound
changes to take into account weak damping in thin ducts. The resulting problem is
derived in Section 5. It displays a complex coupling between two expected components
arising from the porous and the resonating parts of the structure. More interestingly,
a third non local component is identified with originating location in the wake of the
resonator, inside the porous matrix.

2. The fluid problem

2.1. Geometric preliminaries

As is usual in homogenization theory, a small parameter ¢ is introduced to discriminate
between microscopic and macroscopic scales. More precisely, denoting by L, resp. ¢,
the characteristic length of the long wavelength in the porous matrix, resp. of the
distribution period size, we may define € as the scale ration ¢ = % which is small as
soon as the size of the period is small compared to the characteristic length L.

We proceed to describe the geometry of the periodic structure. We refer to Figure 1
below for an illustrative example.

|:|Matrix o -Chamber %

1777 Wake

-Duct -

Figure 1. Helmholtz resonator in a cell (left) and the resulting periodic distribution (right)

Let ¢ > 0 denote the period and let ¢ > 0 denote the size of the small period
designed to tend to zero. Set

11
I::|—§,§|:, ]i:Ek—’—&‘I, kEZ, e>0.

and let Y = I® denote the rescaled period of the microstructure. In what follows, we



introduce:
Z.={keZ3 Y nQ 0}

Without loss of generality, we may assume that the problem under consideration is
set in a domain §2 of the form:

L L[
92}2,2[ for some L > 0. (1)

Then, setting: &, = (27{%1), Vn > 0 we immediately find that Z.  # 0, Vn > 0.

Let Y CC Y denote the rescaled embedded resonator. Denoting by R > 0 its typical
length, we assume that R € ]O, %[ and set:

V=1 xI, YF=ck+ eV =1I; xIj xI; VkeZ
=Y’ —:Ye

The set of resonators Q§ is the periodic repetition Ukezsfff of individual resonators

ffak defined as the homothetic images of the unscaled resonator defined by:

Y ={(z/,z3) €Y, |x3| <R, |2| <o(xz3)}, I:=]—R,R[, IF=ck+el

for some 2R-periodic C!-function o : R —]0, 400, namely:

- — ek
YF = ck+{(a' 23) € R?xR, |z3—cks| < eR, |2’ —ck'| < o (3:3563> = eof(x3)}

. — ek
Qf = Upez {z € Q, |2’ —ek!| < ep <$3663> = eof(z3) and |z3 — k3| < eR}

=:YF

€

We assume that resonators are embedded in a porous matrix 2, which amounts to
define ¢ as the complementary part of the resonators Qg in the domain 2, namely:

QF =0\ Q.
The set of ducts Q¢ at the core of the resonators are defined by the periodic rep-
etition of individual cylindrical ducts T/¥ of axis I’* and straight circular sections of

very small radius r. << ¢, namely:

QF = Upez-T*  where: T* =¢k+ D,. x I. = ek + D,_x]0,eR|, Vk € Z?,

D,={2 eR?® |2'|<r}, C,=0D,, DF:=ck'+eD,, CF :=ck'+eC., r>0.



and:

I = ¢k + eI’ = ek+]0,eR] where I' =]0,R].
=1

Our main assumption is that the radius r. of the section of small ducts is very small,
compared with the period e, that is:

lim Te _ =0.
E— £
and that:
lim v. = v €]0, o0|. (2)
e—0

We introduce the wake € of the resonator as a parallel extension of the ducts €2’
contained in the global wake 7%, namely:

T° = Upez-T" where TF =ck+ D, x }—% %[ Vk € 73, (3)
but reduced to the porous matrix, namely:
b=t NTE.

To discriminate between the resonators and the chambers inside the resonators, we
defined:

Q7= Q5 \T° = 05\ QF

so that resonators Q§ may be seen as an extension of the chambers QF by the ducts .

2.2. A priori estimates

Resonators Qg are made of chambers ° and constricted ducts Q% delimited by thin

impervious rigid surfaces I and I"¢. Each duct T*, k € Ze, is of length eR and its
constant section 3¢ (aperture on the matrix) and 3¢ (aperture on the chamber) is
much smaller than that of the period, i.e. lim._,gr.c~! = 0, so that the duct volume
|€2¢| is negligeable, compared to ||, namely:

2
9| ~ 27R|Q| (5) -0,
e—0 e e—0

and negligeable, compared to the resonators volume \Qﬂ namely:

Q5] = me” ) /

keze Y eha—elt

akﬁ-sR
.%'3 d.%'g ~ 7T‘9|/ y3 dy3 > 0.
%



Remark 1. In the present study, we consider weakly damped resonators in the sense
of the following model heat equation (to be compared with Section 4)

£

pe% —k Ayt =0 in QF
where coefficients p® and k° are defined by
a_ ; e
<|T€\7b> in T¢,

(1,1)  in Q\TF,

(pe, ko) =

and where €2, resp. T¢, is defined by (1), resp. (3). Direct computation yields that a
system of fundamental solutions is given by:

yE(x,t) = e e yu(z), w>0.

where the damping term satisfies:

— ko2t b T%|w?t 2 w2t

e re = 1Te€_5 -+ 1Q\T€e—w ~ 1T5 —+ 1Q\Ts€_
e—0

that is, damping asymptotically vanishes in the thin duct 7°.

Let f € C.(2), g € Co(R2) and let T,a,b > 0. Having in mind the homogenization
methods developped in [6], [8], [13], we consider the following problem where poro-
acoustic equations in the matrix are coupled with a viscous compressible fluid in
resonators.

v =K (=Vg +[f) in Q°x]0, T, (4)
;ﬂ%‘f Fdives =0 in QF\T°x]0,T], I;EI %q; +bdive® =0 in QEx]0,T],
ag — AU + VP = f, b}r%ig +divic =0 in Q°x]0, T,
a€(0) =a5 in QF,
|;€| 8;: — bAU® + Vp* = |;€|g, ;Tagf +dive/* =0 in Q¢x]0,T],

w(0) =uf in QF,

W =vu* a-nf=u*-n*"=0 on I°x]0,T]



bv®-nj+0v°-n°=0 on I}x]0,T][

@ -4+ -nf=0 on T°x]0,T[, @ -a°+bf-nf=0 on Xx]0,T]|

ou; . .
alf; — P N5 — g n§ = aetr(K:) 2 (a; — (a° - n°)n;), on I'°x]0,T] (5)
n

oulf
b aufg P — =0, W onf 40" -nf=0 on ¥x]0,T]|
n

ou's ous ~
—bau; +p 0y — C,;f; +p°; =0, wf=1u; on X°x]|0,T[, ie{1,2,3}.
n n
v n=0 on JNx]0,T], (6)

where nf, resp. n;, 7%, n'?, n, denotes the outward unit normal on 0QF, resp. 9,
00, 0T¢, 092, K. > 0 is the constant (positive) permeability tensor, ae € L*(2) is
the non-dimensional Beavers-Joseph number, g € L%(Q) is the exterior force.

The variational formulation of the boundary value problem (4)—(6) will be based on
the following spaces. Set:

L) = {v € L*(Q), / vdr = 0}
Q
H(div,Q) = {v € L*(Q), div(v) € L*(Q)}, Ho(div,Q) = {v € H(div,Q), wv-n|sq = 0},
Voi={ve H(Q%), wv-#flp-=0}, V/:={ve HY D), v -n|p-=0}

Us = {u € Ho(div,Q), ulgng- € HH(Q\Q), ulg. € Vo, ulge € V.

H. = {v € Hy(div,Q), vig\o- € H'(Q\ Q°)}. (7)

The same arguments as in [16] yield that when equipped with the scalar product

(u,v)m. ::/ u-vd:H—b/ u-vd:c—i—/ div(u)div(v)dw—i—/
Qe\Qs Q .

Vu-Vvdx—i—b/ VuVuodxr+
Q\Qe

e re
b

+ ﬁi as(u— (u-n°)n)vde (8)



H. is a Hilbert space for the norm: u — ||ul|g. = v/ (u, w) 5.

In the functional framework (7)—(8), existence and unicity of the problem (4)—(6)
will result from Cauchy-Lipschitz’s theorem once we have introduced the following
rescaled bilinear forms. Set

A® = tr(K)K:!
so that there exists ag > 0 such that:

B. = tr(K.) >0 and A%€¢-€>aplf)?, VEeRY.

Consider the rescaled velocity:

u/a in le , pla in Q/& ,
tr(Ko)u® =< @° in QF, pP=< p° in QF,
v®  in QF. q¢¢ in €F,

and define: Yu,v € H., Vg € L&(12),

re

ac(u,v) = B2 < ~ VuVudr + b/ Vquda:) + 6155/ as(u — (u-n°)n)vdo,
QE €

+/ Aeu-vdw—l—b/ Afu - vdx
Qe\Qs Q

€
b

b-(q,v) = — /Q\QE gdivudx — b/Q gdivudx

€
b

(u,v)e = Ra][ uvdx +/ u“vdr,
o O\

1 1 1
(P, @)t = (2 - R) a][ pqdx + o pqdx + R pSqdx
Q m JQe\Te r JO\Qe

With these notations in mind, (uf,p°) is solution of: (uf,p%) € CY(0,T;U.) x
C(0,T; L3()) and

i(ué’v)s + as(ua,v) + bs(ps,v) - /

fvdz —1—][ gvdx, Vv € U. (9)
dt Q\Q/r—; Q/E

d
5 (0, 9)t —b-(q,u®) =0, Vqe L(Q) (10)



Proposition 2.1. Problem (9)—(10) admits a unique solution (u¢,p?) € C1(0,T;U,) x
CL(0,T; L3(9)).

Corollary 2.2. There exists some constant C' > 0 independent of € > 0 such that
vl g0y < Cllvllg., Yv e He.

Proof. This is a direct consequence of Korn’s inequality. See [16]. O

In the following, we assume that A. = A is a positive constant operator and then,
we may set A = I without loss of generality. Moreover, we assume that 8. = 8 > 0 is
constant and that a. behaves in a such a way that:

per

x
e 1Ba. = a (—) for some positive a € CL_ (V).
€

Now, we are in a position to establish the main preparatory estimate towards com-
pacity results of Theorems 3.1 and Proposition 3.8 resp.

Proposition 2.3. Assume:
ug|? + [p§l2 < C, Ve >0. (11)

Then:

T
sup (Jus(t)|2 + Ipa(t)lﬁg)Jr/ | (t)[.dt < C (12)
0<t<T 0

Proof. Setting v = u° and ¢ = p® in (9)—(10) yields: Vvt € [0,T],

[u ()12 + [ (4)E% < [u ()2 + [p° (1) 22 +/O ae(u”(s),u"(s))ds =

t
=!u6|§+|p6\£2+/ (giug(s)>eds£0+(/ 190 + |9°|o0) sup |uf(t)|c <
0 Q 0<t<T

S C(1+ sup |u(?)]e)
0<t<T

from which we deduce that

sup (Jus(t)|2 + [p°()[*?) < C.
0<t<T

Moreover, the ellipticity of a. leads to:

t t t
c / lu(s)[13.ds < C / ae (e (s), w5 (s))ds < [l + 5 1E2 + / (¢ u(s))eds < C
0 0 0

which ends the proof. O



3. Preliminary convergence results

3.1. Two-scale convergence limits

We pass to the limit in the variational formulation (9)—(10) is two steps, first with two-
scale convergence arguments in Theorem 3.1, second with tools of the Control-zone
method [8] in Proposition 3.8.

To that aim, we introduce classical notations of two-scale convergence theory [1],
[16], [23]. In the following, Q7 = (0,T) x © will denote the time-dependent domain.
Let Y C Y denote the rescaled resonator inside the period cell Y, namely:

Y={y=(p) €Y, sl <R |y| <olys)}, Ym:=Y\Y
To avoid technicalities, we have assumed that the duct is contained into the chamber.
Then, Y,, coincides with the porous matrix inside Y.

_ Following [16], [17], [18], [19], we introduce the periodic distributions of resonators
R? and the periodic porous matrix R3, defined by:

R = Upezs(k+Y), RS = Urezs(k+ Ypn)

and associated characteristic functions of Q‘g and ° resp. in €:

lg-(z) == X°(2) = x5 (g) , loe(z) = x5, () = xv, (g) , VzeR3

#

In the following theorem we introduce H! periodic functions of period Y, namely:

H1,.(V) = {p € HL,(R®), Y-periodic, / ody = 0}
Y

Theorem 3.1 below yields the main two-scale convergence result about our structure.

Theorem 3.1. There exist u € L*(QT; Hyoe(divy, R?)) and p € L>=(0,T; L2(2)) such
that

][ udy € L>°(0,T; L*(Q)) N L*(0, T; Ho(div, Q))
Y

][ pdy € L(0,T; L3(%))
Y
and:

w— u and p— p in L*QT xY).

ueé][ udy in L*(QY) and ueﬁ][ udy in  L*°(0,T; L*(Q)).
Y Y



ps—\][ pdy in L*(QY) and psi\][ pdy in  L%°(0,T; L*Q))
Y Y

Set:
u" = xyu, u"=xy,u, 4 2][ udy, o™ 2][ udy,
? Ym
resp.:
P =xyp, P =Xv.p, P = ][ pdy, p"= ][ pdy.
Y Yo
Then:
Cuf—— u" in L2QT xY) (13)
Xt P in LA(QT xY)) (14)
o, uf— u™ and XpF— p" in L*QT xY))
where:
p™ =p" € L*(0,T; H'(Q)) N L*(0,T; L§())
and

u" =a" € L*(0,T; H(Q)) N L*(0,T; Hy(div,Q)) are independent of y

and there exist w € L*(QT, HL. . (Y)), p* € L*(Q, L2, (Y;n)) such that

per per

X Vu; = xy(Vui + Vyw;) in L*(QF xY) (15)
X VP = Xm(VP™ +Vypf) in L2(Q7 xY) (16)
divju=0 in Q' xY. (17)

@™ -n=0 on ONQ. (18)

Proof. We refer to [12]. See also Lemma 3.1, Theorem 3.2 and Theorem 3.3 of [16]
for the proof of (13), (15) and (18).
O

10



3.2. The Control-zone method (see [8])

The analysis of the ducts deserves a special treatment to take into account the main
feature of its geometry characterized by its global vanishing volume:

2
2] ~ 2W\Q|R(i;) — 0
e—

e—0

contrasting with its non negligeable influence on the macroscopic behaviour of the
structure due to the rescaled coefficient |['?|~! in front of its contribution in the
energy. Similar problems have been studied in [6], [7], [8], [13], [14], [15], by means
of the so-called control-zone method introduced in [6] in the case of a distribution
of thin spherical particules, and inspired by the pioneering article [5] dealing with a
distribution of thin parallel rods.

We begin with a priori estimates involving specific quantities (19), (20) and (21).

Consider : Vo € C1(Q), Vx € Q,

Gi()wa) = 3 | plr0.aa)db1y (0 (19)

and set: V(p,u) € CH(Q) x C1(Q)3, vz € Q,

p(z)lo: () Vp(x)lg:(z) p Vp
i = ) Vi = y U= s Vi =

Gre (p)ljg\fg (x3) + Glzic (zs)(p)lig (23)
GEF () (x3) = , VkeZ. (20)
Ge (u)1 i (23)

Gr(i)(x) = Y GM(a)(ws) 1y (x) (21)

k’EZE
Below, we set:

C:=Upez {x € Q°, |/ —ck/| <r}, ¥Yr>0. (22)

k,
=:Cr¢

Proposition 3.2. Let (p,u) € HY(Q) x H'(Q)3. Then:

—e € (-~ 1
[0 — G () < 0" In - (1Vulf, + |90l ). (23)
where we set (see (22):
C. = Ci‘fa \Ci (24)

11



Moreover:

][ |G%.( 2d:z:—][ |G%. () *dz, (25)
Ts

Proof. See [12]. See also [5], [6] and [14]. O
Proposition 3.3. Let (p,u) € HY(Q) x H(Q)3. There holds:

1
][ @ |2dz < C max <5 lnr— 1) (/ |Vu]2dx—|—/ |Vp| d:n+/ || d:n) (26)
T= I3 €

Proof. See [12]. See also [6] and [14]. O

Proposition 3.4. The solution (uf,p?) € C1(0,T;U.) x C*(0,T; L(Q)) of Problem
(9)-(10) satisfies:

1
][QE |p°|2dx + ][Q/E\ua\zdx < C'max (52 In o 1) (\pgﬁp(gs) + |u£\ip@§)> . (27)
b

Proof. See [12]. O

Proposition 3.5. Let ¢ € C.(Q2) and set:

©° ::Z ][ wdzx | 17w,
I xIf, :

kEZs
Then:
lim lo — ¢°|?dx = 0.
e—0 Te
Proof. See Lemma 2.5 of [6]. O

Following estimate (26), we introduce the notation:

1 1
—:=e?ln— (28)
e Te
and we asssume that:
lim v. =~ €]0, o0|. (29)
e—0

Proposition 3.6. For every (¢f, ) € C.(Q) x C.(Q)3, define:

<5=<:0:>» = mi(@)(@)1y; (x)

kEZ.

12



where: Yk € Z., Vx € §,

][ P @ Ly g
m(B)(x) = , MEP) (@) = Y ME(2) g (x)
][ Dk,f(y/”i*)dy'l?;(x) v

where: Vk € Z¢, Vx € Q,
ME(@)(x) =
< ][ G wa)dy L 7 (w3) + €77 / P w3)dy'1 . (w3)> Lyevye (@)
Iz xIf e xIg \ ::é"«zs)

! 1
€ /k,a oy, z3)dy 1Y;(x)
cek(z3)

Then: V(¢f, @) € D(Q) x D(Q)3,

][ym 2dx<][ |F|2d, (30)
TE

][ M () 2de < ][ 32 (31)
Te Q

Then, operators ms and M. are linked by duality identities:

Fome@lin = { GMB)dn, V0 (0,0 € ) x CUOP. (32)

Proof. See [12]. O
Remark 2. The Mean Value Theorem yields: V(pf, ¢) € Ce(Q) x Ce(Q2)3,

li [12(5) — Floe =0, (33)

lim [ Me(F) = Floc = 0. (34)
e—0

Proposition 3.7. For every (¢%, ) € L*(0,T;C.()) x L*(0,T;C.(Q)?),

lim / ][ B)|?dx = 0.
e—0 Te

Proof. See Lemma 3.6 of [13]. O

13



In Propositions 3.8 and 3.9 below, we show that two-scale limits of Theorem 3.1 are
completed by macroscopic limits arising from the ducts ’¢. To that aim, we introduce
modified averages (36) (37) (38) of the control-zone method specific to the Stokes
problem.

Proposition 3.8. Assume that (29) holds true and that

InR
lim ——= = 0. (35)
e—0 Inr,
Set:
1 € 8
Loy Qep
U = S?pa , U= 1s.u® |, Ve>0.
1aeu # Q
Qu 1QIEU€

Gr (@) () = Y GPM@) (ws)lye (x), m®(@)(x) = Y mE(@)(z)lyx(z)  (38)

k€Z. kEZ.

Then, there exist (q,u',v) €€ L*(QT) x L2(QT)3 x L2(QT)? such that:

19/5 * dﬂf . 00 Y
Wusdxévﬁ in  L>(0,T; My(2)) (39)
Loenre o % ,dx oo re)
Wu drz>u 9l in  L>(0,T; My(2)) (40)
195 x dr . ) ey
|Q;|p€dx4q|ﬁ in  L>(0,T; My(Q2)) (41)

b

14



(1-2R)q

me(Uz) — U= Ru/ in L*(Q7) (42)
Rv
Moreover:
G5 (@) — ( . ) in L*(Q7) (43)
Proof. See [12] O

Proposition 3.9. Let (¢*, ¢) € C(2) x Ce(2)3. Set:

and
fo AWt g @[ 't (@)
NE(E) =3 Ly () T XN s )
s -2 / /
= € / W PWhs)dyl (xs)

0 x I i
kEZ. 0 k1XI’i2
=:ME(P)
Then:
|M=(P)]a < |@lo (44)

and

: rE(R) _ FE —

lim [M*() — Ffloo = 0. (45)

Proof. Let k € Z.. There holds:

|zf4s<so>\%@s2<1f,i 7 <x3>]l Py +1;, (“73)][1 1 rs5|2dy’)
3 3 °3 ZIXEQ

€ €
IR, xIf,

which yields (44). Moreover: Vz € €,

B,/ ! g0,
-, O (Y, z3)dy’ — (2, x3)
M (@) (@)= (2) = D vz (@) | 1 \7; (a5) ][ I, xIf,
kEZ. S 0

15



+17: (23) <][ 55 (v w3)dy’ — s5§(1",x3)>>
3 I, <1,

which yields (45).

4. The heat equation in a cylindrical ring

4.1. Preliminary computations

Passing to the limit as ¢ — 0 in the variational formulation (9)-(10) require the
construction of adequate with test functions taking into account vanishing ducts. To

that aim, we introduce the following fundamental problem. Let b > 0. Set

( In(p) — In(R.)
In(r:) — In(R;)

Wolp) =4 4 if 0<p<re,

0 if p>R.,

and let W¢ € L?(0,T; H}(Cg.)) denote the solution of:

(3
8?: —AW®=0 in Cg \C,.x]0,T7],
£
psagz —bAW® =0 in C, x]0,T7,
3
(We] = [kaag; ] =0 on C, x]0,T]

We0)=W§ in Cg \C,,.
where
(3

2
__a (&
] ()

b in C
g __ Te
K _{ 1 in Cgr_,

Proposition 4.1. Let (Jy,Yy) denote a fundamental system of:

pw” 4+ w4 pw =0

16

if r.<p<R.,

(46)



satisfying:

Jo(0) =1, Ji(0) =0, Jim Yo(t) = t_l}frnooYO’(t) = +00. (54)
Then, (55)
W) = Wilo) + [ (e S (o)) (55)

where he and S are defined through their Laplace transform for Re(p) > 0 by:

(% <saﬁf>
o Toav=D) if 0<p<re,
e\P) =
Yo(v/—=pR:)Jo(v/—p p) — Jo(/—pR:)Yo(v/—p p) if r.<p<R
Yo(v/=pRe)Jo(v/=pre) — Jo(v/=pRe)Yo(v/—pre) : -
‘ (56)
- dSe dse 1
he(p) (b op| _ op| +) = ro(In(ro) — In(R.))’ (57)
p=r p=rd
where we set:
o=, /W (58)
Moreover
lim . (p) = _—;bp =: ho. (59)
Yt

2

Proof. By definition of the Laplace transform:

~ +OO
f(x,p) == F(f)(z,p) = / flz,t)e?dt, peC, z€Q, feC (QxR")
0
there holds:

F(f)(p) = —£0) +pf(p),

from which we deduce that we may look for W¢ of the form:

We(z,t) = Wi (x) +/0 he x Se(x)ds

17



where:

1€ Wg !
We(x,p) = p +f</ hE*SE(ZL')dS)
~— 0
=F(Ws)

Notice that

t
hoS¢ = F(he % S.) = pF (/ he % Ss(m)d5>
0

Then:
pWe(@,p) = Wi (x) + he(p)S° (2, p)
satisfies:
£\? A
<) a?pSe if 0<p<re,
ASE =< \Te
pSa if re <p<Re,

Let 7. < p < R. and set: V(0, z) € R?,
§ == R(p)O(0)Z(2)
Direct computation yields:

(pR/)/ 1 @// Zl/
pR p% © Z

from which we deduce that:

(pRl)/ igﬁ B Z//
pR p? O P

that is:
Z" + (p— A)Z =0.

Assuming that Z =1 yields:

and then:

(pR/)/ 9 _ @/I

18



that is:
0"+ X0 =0 (61)
and
p’R" + pR' — (pp* + X2)R = 0. (62)

Set p = —w? < 0 and A2 = n?, n € N in (62). In particular, wy := /—p is the square
root of positive real part. Then:

S«s(p’ 0) = Z(aan(Hp) + bnYn(\/jpp))@n(e)

n>0

where (J,,,Y},) is a fundamental system of the Bessel equation:

PP’ + pw’ + (p* — n®)w =0

made of the Bessel function J, and its associated Neumann function Y,, n > 0, and
where ©,, solves (61) with Ay = n2. The requirement:

implies that

There remains:

S% = aoJo(v=pp) + boYo(v/~pp)

where constants ag, bg € R are defined by the other requirement: Se (R:) = 0, namely:

$(p) = Yo(v/=pR:)Jo(vV=pp) = Jo(vV=PR:)Yo(v/—pP)
Yo(vV=pRe)Jo(v=pre) = Jo(v/=pRe)Yo(v=pre)’

The same arguments yield S for 0 < p < r., that is (56).
Notice that:

re < p < Re. (63)

dSe _eay/=p Jy(ean/—p)

64
o | _,- re Jo(eay/=p) 9
with:
t2
Jo(t) =1——+o(t?) = 1, (65)
4 —0
i) ~ -1 (66)
0 t=0 2

19



Substitution of (65)—(66) into (64) yields:

d5¢ e
| S (67)
pP=Te
Relying on the asymptotics:
t
Yo(t) =2Jo(t)In - +O(1) ~ 2Int (68)
2 t—0
Ya(6) = 2060 In -+ 2J0(t) + O(1 2 69
1) = 2060 5 + TJo(t) + O(1) 1~ 5 (69)

we first infer that:

1 —1
(Yb(\/ _pRE)JO(V _pra) - JO(\/ _pRE)YO(V _prs)) 630 9l L= (70)
R,
and
2
Yo(v —pRs)Jé(v —pre) — Jo(v _PRE)YO/(V —pre) S0V —preIn R, — ﬁ
g
1 ) 2
= —— —préln Re + — 71
(e ) .
with
o\ 2
g
r2lnR. = <R> R’InR. =0 (72)
Substitution of (70), (71) and (72) into (63) yields:
08¢ 1
op — 50 7. In o (73)
Notice that
owW§ _ 1 (74)
ap p=rt Te In }%

Then substitution of (67), (73) and (74) into the definition (57) of h. yields:

biLE52a2 1+ ]Ale

7]? ~
2r; © e—0 1 In

20



that is:

~ | a®bp 1 1 1
h‘& — T ~ T ~ ~ —’)/
2 e2ln 7 [ e=0 e2In 5 =0 e2lnr, e—0
oY

which ends the proof of (59).

Proposition 4.2. There holds:

owe F.(t
9 lpn. R n ()
where:
pFE(p) ~ 1+ he —> 1+ hg = : pFy (76)
Proof. Notice that
ows|
p |—p. Reln s
Moreover, relying on (70) and (63), we obtain:
05° 1
~ (Yo(V=pR:)Jo(V—=pR:) — Jo(v/=pR:) Yy (V-PR:)) -
3p R e—0 21 R
p=1Iie
where substitution of the asymptotics (65), (66), (68), (69) yields:
2
Yo(vV=pRe)Jo(v=pRe) = Jo(V=pR)Y5(V=pR:) ~ —v—pR-InR. - N

2 2
Q/—p) e—0 B \/—pRE

1
—Ri (\/ —pRg hl Rg +
€

from which we deduce that

d5¢ 1
dp
p=1Ite
From (60) we infer that
owe oWg . 08° 1+ h
P75 ~ 9 The g Yo Rz
p p:Rs p P:Rs p p:Ra : c




which yields the result. O

Set:
w(w,t) = Y We(|la! — k'], 0)1pne (). (77)
kEZ, :
resp.:
wi(z,t) = > We(la/ — ek'[)Len (x). (78)
keZ.

Proposition 4.3. The sequence (wf). is uniformly bounded in L°°(0,T; L*(2)) N
L2(0,T; HY(Q)) and

w® — 0 in L®(0,T;L*(Q)).

e—0

4.2. Computation of the tangential component

As our problem lives in the three-dimensional space, it requires the introduction of a
tangential component which eventually reduces to its angular component along €y to
ensure that it remains incompressible. More precisely, let:

Wo = Wi (0)és + Wi 5(0)es

where W 5 is defined by (46) and where

(
re e (Rg_p> if ro<p<R.,

R2—r2\p R
WO,@(p) - 1 if 0 < P < e, (79)
0 if p>R.,

\

and let (W/E, P =0) € L*0,T; H}(Cr.)) x L*(0,T; L3(Cg.)) denote the solution of:

diviv =0
610/1—:/5 CAWE=0 in Cp \G.x]0,T], (80)
P 8?55 CBAWE 4 VP =0 i C.x]0,T], (81)
[We] = [l{sa(;/‘:} =0 on D, x]0,T]. (82)
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where

Proposition 4.4. Set

7|Qb
Then:
_>5 € — € —
We(z,t) = Wg(p)ép + W5(p)es

where W§ and W5 are defined by (55)—(76) and (85)-(87) resp. The same arguments
yield:

Wi = Weglp) + /0 (5% 55(p)) (5)ds (84)

where hy and Sy are defined through their Laplace transform for Re(p) > 0 by:

r J1< 0‘\/7 )
Jl(eozF) if 0<p<re,
S5(p) =
6 V(PR NV PP) = WV PRIVIVTDP) o g
Y1(v/=pRe)J1(v/—pre) — Ji(v/—pR:)Y1(v/—pre) e e
(85)
where (J1,Y1) is a fundamental system of solutions of the Bessel equation:

P’ + pw' + (p* = Dw =0 (86)

made of the Bessel function J1 and its associated Neumann function Y1 satisfying:
J1(0) =0, Jj(0)=1. (87)

Moreover:

~ ——— =i hyg. 88
4 e=0 140 0 ( )
Proof. We ate interested in componentwise tangential solutions, namelyn we look for

Ire €=
We = Wwee,,

23



resp.:
We = Wéj.
Direct computation yields that the general solution We = W7 + W solves the system:

oWe 2 OWe  We
€ P_k AWE — 2 0 _ P\ _
a ( Vo= 20 p2> !

LOWE . 20w W
P ot _ka(AW9+p2 - =0

10, .
;%(P p)+p80

In particular:

from which there results:

and the requirement W7 |p=r. = 0 leads to W =0 for 7. < p < R., which contradicts

W5 lp=r. = 1. So W¢ = W€, is not a solution and we are refered to the componentwise
solution:

-,

We = Wiép.

Then, the problem reduces to: find Wy solution of

pW§ if r. <p<R.,
Wy
AWF — ? - ca\?
<> pWy if 0<p<re,
Te
oWy
o0 =0

The same arguments as in Proposition 4.1 yield that

Wi = Wip+ 1S5

24



with ilz defined by (85). Relying on the asymptotics:

¢t 1
Jl (t) E:O 57 Jl (t) E:O 5
-2 , 2
<t) a:[) E’ 1(t) 6:0 7'('t2
we find that
85’5 _eay/—p Ji(ear/—p) 1
op s J1(eay/—p) e=0 12
p=rs

TTe

(Yi(v=pRe) L (V=pre) = W(V=PRYI(V=prs)) " ~ R.

VVTRRII D) = BRIV ) =

Noticing that

we infer that

@ ~ _(1+}AZ2) 7€ o 1 _. 70
re =0 Te e=0 145 0
O
Proposition 4.5. There holds:
oW 2b
- 4 (89)

—_ N
o | _g (1+b) RZ

Proof. Direct computation yields:

Ws OWE ~ Qe
ap ap dp
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with:

W
dp

o .
 (R2—1r2%) >0 R2

p:RE

Yl(\/ijs)Ji(\/?pRe) - J1(\/—7PR5)Y1/<\/—7PR5) 530 -

dS; o
dp on " R?
from which we deduce that
3W§ 26 7.

dp ‘ <50 (1+b) R?
p=R.

Remark 3. Notice that:

re e _re (e
RigRghl <_R€) = RE ln (RE> gj(]o

that is:
. 1
T2 =0 as ¢ — 0.
R2 R.In ( e )
Set:
@ (2, t) = 3 We(a! = k], D) pre ()
kEZ.
resp.:

Remark 4. [20]

1 s
Ia(z) = / cos(At — zsint)dt,
0

~cos(mA)x(z) — J_a(2)
Yi(z) = >1\1—>ml sin(mw\)

26
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Proposition 4.6. Set:
W (2, t) = Y Wo(|2! — e], 1)1 e (). (93)

resp.:

@i, t) = Y Wi (o' — ek (x). (94)

The sequence (). is uniformly bounded in L>(0,T; L?(Q)) N L?(0,T; HL(Y)) and

W — 0 in L(0,T; L*(Q)).

e—0

5. The limit problem

5.1. The new functional setting

In this Section we pass to the limit as € tends to zero in the variational problem
(9)—(10) with two-scale convergence results of Theorem 3.1 in mind.
Set:

X =Hx LXQF Hyo(V)), M ={q€ L§(Q L (Y)), ¢" = 3" € H (D)},

where:

H={uc L*(Q" xY)nL*QT, Hy(div,Q)), @€ Hy(div,Q),

u" =a" € L*(0,T, H'(Q)) N L*(0, T, Hy(div,Q))}

Then, X is a Hilbert space with respect to the scalar product:

((v,2), (0, 9))x = /

vcpd:zdydt—i—/ div(0)div(@)dzdt+
QT XY,

Or

+/ i (Vv+Vyz)(Vg0+Vy¢)da:dydt+/ (v—=(v-ny)ny)pdodzs
QT xY QxI

In the sequel, we set: : V((v,2),(p,¢)) € X x X, Vr e M

a((v, 2), (p,9)) = /Q v pdady + 2 /Q (V04 V)V + Vy)dady+

+/Q><f‘ a(v— (v-n)n) - pdrdo
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1" (2 - ny)dxdo — / mdivy(z)dzdy.
Qxy

b(m, (v, 2)) = _/

mdiv(v)dzdy + /
QxY

QxI
We begin with an auxiliary convergence result involving external forces.

Proposition 5.1. Set:

Then:
Fe—~F (95)

where
Flp) = /Qfgodx + ][Qggodx, Vo € HY(Q). (96)
Proof. See [12]. O

5.2. The Control zone method revisited

Proposition 5.2. Let ¢ € C1(Q). Then:
J

—ﬁ o (uf — (u€ - 7°)R) x Wme(p)do — —2myFoxuly - in L*0,T),
feuxs

(—keAu® + Vp©) * W me(p)dx — /~ u® * (—k: AW )me(p)dx+
QE

e
# #

e—0
where
t
Fop:=1 +/ ho(s)ds. (97)
0
1s defined after:
. 1+h a?b 1 1
FO = 2 = 9 2 = 2y = 27| (98)
D ¥ + aop ﬁ+p(58)T+p

Proof. Let ¢ € CL(2)3. There holds:

/ (—kAut+Vp°)xme(p)dx :/ ue*(k‘gAiﬁE)mE(ga)qL/ k‘gau *W M (0@) dx+
Qs Qs Qs Oz Oz

_/ ps*div(ws)mg(go)daﬁ—/ PExwsme (8@) da:—/ o (u®—(u-n)n®)*xw*m (p)do+
Q; T ~§ 81‘3 fEUZE
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with:
ou’ 0
/ ke 2 s i me (‘p> dz| < SOH < CliFlg. — 0,
Qg O3 Oxs 0xs o t =0
dp dp
£ £ . < I3
/sp *wSmE (8.%3) dx 81‘3 Hoo - C|w3|Q st 07

ow*® ow*
/acs Wk ke Gz me () / W e melp)do =
2 €k3+* a —e
_ZR// pR*(;U (p)dx3db
keze ka—5 P lp=R.
Ek’erg .
> 2nR. / GH (uf) * Fom (p)das
)(89) y 7 cks—3
where:
e
(R2—r2)
., 27,
F€ — - -
(B2 —12)
Fy
R.In
There follows:
e 9
/ ug*aaw me(P)do = WR /GE (p)dx.
R P

where:

2

21rEF?f*/G%LE(ug)mg(c,o)da: ~ 27r'y€F§*/G%£(u§)m€(gp)dx

— 27T’}’F0*/ uspdz.
e—0 Q
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Moreover, taking into account (90) we infer that:
drreR
i 51+ [ G () @ me(e)da =0, i € {0}
£

We conclude as in Proposition 4.7 of [13]. B
Moreover, there exists functions N € C}(£,Cl,.(Y)) such that

» “per
~ ~ €T - ~
N¢(x):=N <7> =n° on I°UX".
€
Set;:
G5 = (uf — (u* - N)N7)N5, Vi je{1,2,3}.
Then:
[ ag(u® — (u® - n°)n°) x Wme(p)do = [ a: G715 x wime(p)do =
Tsu3e TeuXe
oG . g
= Jo. Ba; * wime(p)dx
where:
0G; * wime(p)dz| < C|Vuslg. |0 |al|¢llee < Clufla — 0
q: Ox; v - Qe = e=0
that is:
;i_% . as(u® — (u® - n°)n%) x Wme(p)do = 0.
EU 1>
We conclude as in Proposition 4.7 of [13]. O

Remark 5. From Definition (58) we deduce that:

A 1
Fo(p) =5
27y
— Q| +p
a
There results:
Fy(t) = e 2191w >0, (99)

5.3. The limit problem

Now, we are in a position to pass to the limit as ¢ — 0 in the variational formulation
(9)—(10). We begin with tests functions from the two-scale homogenization theory,
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postponing to Propositions 5.4 and 5.5 the identification of non local limits v and q
resp.

Proposition 5.3. Set:

]
Y|

m:

Then, the limit ((u,w), (v,w'),(p,q)) is solution of: (u,w) € CY(0,T;X), (p,q) €
CL(0,T; M) x CH0,T; L*(2)) and ¥(p,v) € X, V1 € M,

d d
- (u” 22 1— Aumpmdad
g 0o+ R o+ (=) [ Aurgmazaye

+m52/ ][~ (Vu" + Vyw)(Ve" + Vyh)dedy + / [ a(u" — (u" - ny)ny )" dedo+
ol vy oJr

—(1—m) /mediv(cﬁm)dx - ﬁl/{zﬁ’“div(gor)dx —m /Q ][?(pr — p™)divyvdrdy =

= (1—m)/ﬂfgémdzv+ﬁ"L/wardmjLR][Qg(prda:. (100)

1 d m (1—’[71)(1 m_m p—
<2R> dt][ qm'™dx + . dt/p m derE dt/][ dxdy+

—i—(l—fn)/ﬂwmdiv(am)dx + ﬁl/Qﬁ’"div(ur)da: + m/Q f}}(ﬂr—ﬂm)divy(w)dxdy =0. (101)

Proof. Notice that (9)—(10) equivalently reads: find (uf,p) € L2(0,T;U®) x
L%(0,T; LE(Q2) solution of: V¢ € CL(0,T), Vv € Ue, Yq € L3(9),

T T T
/ OO [l @. 060 [ 06500008 = [ @ 0aro0)uh o).

T
/ &) (0 (1), )bt + / b H()dt + G(0) (5. q)f = 0.
0

Let ¢ € CL([0,T), ¢ € D(Q,C(Y)), ¥ € D(Q,C%.(Y)) such that (,) € X. Let
) € D(, Hyer(div,, Y)) denote any extension of ¢ and set: Vz € Q,

P (z) = (w g) ;Y (x) =1 (a: %) , (102)
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B = o + epf + wi(® — " — er). (103)

Direct computation yields:

/ p°div(p® + ey®)dx = / p°((dive)® + (divye)® + e(dive))®)dx
Q Q

— p(dive + divyy)dedy = —b(p, (¢,v)) ae.in ]0,T[.
e—0 QxY

There holds:

/ u®(p® +eyp)dx — u™ " dxdy,

=0 Jarxy,,

lim | VuV(e" +ey®)dx = / (Vu+ Vyw)(Ve" + Vy)dadydt,
Q

e—0 O <V
and:
’b][ VutV (" + eyp®)dx| < b|Vu® o V' o < C|IVe" e e 0
Qe €
][ us(p" +ep®)da = ][ ut " dx + 6][ ufpdx
Q/e Q/e le

with:

[ v < (f wepan)” (fwepae)” < o(f ubas) < cloln

o e e (27) Qo

and

][ u“ ' dr — ][ v dx
Qe e—0 Q
(39)

This yields (100).
As for (101), we set:

n(z) = (x 7) , 0%(2) = (1 — wi(2))7(2) + wi(2)n’(z), Vr e Q.
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with:

/ pewe—>/][ prdzdy
O\Qs oty

][ “ntdx = ][ p*rdr — grdx
QE e—0 9]

Moreover:
/ mediv(u / mediv(u®)dr — ][ mdivudzdy = —b(m, (u, w)).
Q Q\(C.UT*) =0 JoJ v
(17)
We conclude as in [16]. O

Proposition 5.4. Assume that there exists vo € L*(QT) such that: Vo € CH(QT),

T T
/ ][ ugpdr — R/ ][ vopdxdt.
0o J qe o Ja

Then, the limit v is solution of:

Proof. Direct computation yields:

—/~ p‘sugufsm{_;(cp)dac—i—/~ p‘Eu‘EwSmE(go)dac—l—/~ ae(u® = (u®-n°)n°)xwme(¢)do+
g § I

+/ (—keAu® + Vp©) x wme(p)dz — / u® x (—keAw®)m.(p)dx =
i

= / frwme(p)dr + ][ g*1me(p)
Q\Q/s Qe

with

/ ugwme(p)dz| < uglalwlallplle < Clula = 0
Q:\Qe e—0

][ ugwme(p)dx :][ ugme(p)dr — R][ vopdx
Qe Qe e—0 Q
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ﬁ utwime(p)dz| < |u|ofwglellelle < Clwgla — 0
Q;\Q,E e—0

][ uSweme(p)dx :][ utme(p)dr — R][ vpdz
Qe Qe e—0 Q

= C‘wg‘ﬂ aj() 0

/ frwme(p)dz
Q5\ Q=

][ (g*1)me(p)dz — R][ (g x 1)pdz.
Qe Q

e—0
Then, Proposition 5.2 implies:
1 e t 1
@v — 2myFy x uy€3 = /0 g(s)ds + @vo
and we conclude by derivation of this identity. O

Proposition 5.5. The limit (p"™,q) satisfies:
%, (AR ) Camg - L (f) +2 b/tdiv(f)d
oot T 1T\ 2 a ) TR g ), s

Proof. Let ¢ € D(Q). Direct computation yields:

J

:/ ksapa*wgmg(qb)dxﬂ—/ k‘g(—Ape—l—div(f))*wgmg(gf))daz—f—/ div(u®)*wime (p)dr =
. Ot c 0

div(u®) x wsme(¢)dx = / keaait * wime(¢)dx + / div(u®) x wsme(¢)dx =
Qe Q

€
#

= / P % kaagf’me(@dx + / " * (—keAws)me(p)dx + / k.div(f) x wime(¢p)dz+

€

=0

+ [ div(u®) x wime(¢)dx + / pep” *wa{%ms(gb)dz - / Pepf * wime(@)dz+
€

€ €

op° R 0¢ R ows
—l—/g kaE)T:g * W5Me <8x3> dx + /(%Ep o *kg—anxl me(¢)+
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—/ u® x Vwsme(¢p)dz —ﬁ U3 * WiMe ((%) dx

: : 8.%'3
where
/ div(u®) x wime(¢)dz| < [Vus|g. [wile.[[fllo < Clwsle. — 0
Q; # e—0
op° foler 0o
/E kgaw?) * WEM <83:3> dz| < C|Vp®|a:|wsle. 92s N < Clwsle. e 0
/Q; u® * Vwsme(¢)dz| < |u® d:ne. Vuwsle ||d]|oo < Cluf d:nc. 7y 0
o 99
/m e <a) dz| < Clulgglwsle. aHm < Clusle. 2,0
pep° * Wi sme(P)dr — 1—R at qx*odr
e c 0,37 e—0 \ 2 Q
/ PPy * wime(p)dr — 1 R a][ qo * ¢dx.
e 0 3 e—0 2 QO
/ k-div(f) x wsme(¢)dx — b][ div(f) x 1odz
e e—0 Q
We conclude as in Proposition 5.4. O

Corollary 5.6. The limit ((p™,q),a™) is solution of:

9 1 —hpm b b o[
a q—|—27rfy (q— ( - R) pa) = 27r7q0—’mdiv(f)+27wa/ div(f)ds in Q.
0

| ot 2
(104)
1 a 9q ~ 1 op™ o 3 .
- @99 1 op™ m ) | )
<2 R) oo (Em or T >> m][Y divy(w)dy.  (105)
Proof. See (101). -

Corollary 5.7. The limit (p", (u",w)), resp. ((p",p",q), (@™, u")), is solution of:

1 9p”

T ot +divyw +div(u") =0 in QT x Y. (106)
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resp.:

1_ i@ —1r Lapi s (1 ~ i@;ﬁ” . r _ . T
(2 R>|Q| ot +(1—m) (Em En + div(a )) +m (Er 5 + div(u )) =0 in
(107)

Proof. See (101), resp. (104) and (105). O

Proposition 5.8. The limit problem reads:
- 1 op™ _F . p™ 1
1— ——— = Ap™ —(p"—-p")+2 ——=- =
( m)<Em 5 p >+mG(p P+ 7w<a (2 R)Q)

= —(1 —m)div(f) — (1 — R) <2mq0 — idiv(f) + 2mg /Ot div(f)ds> in QF

2 Q
< (108)

a Oq 1 71pm_ b .. b [t
‘mm+%wG—(f4ﬁ a)—%waﬁMﬂ+%%AdMﬁ%

10 (F-1)

ST MY 1
o e ") =0 (109)
p" =p" 4+ Gdiv(u") (110)
a Ov uh g 21y (1
—— 42 — 3ea) =2 - d 111
0| ot +2my <U Ra€3> Tyvo + 0] « /, g(s)ds (111)
ou” R 5
;j — 2777% (v - ;jlé'g) — div(a"™™Vu") + Vp™" 4 Cu” =
R R (27y [ g
=f—-2ny— = | — ds — = 112
formiw s (2 [gtas- 5 (112

where constants F' and G are defined after cell problems:

/~ Vw0V pdy — / 7 divypdy = — / g
Y Y Y

wi 1
d v H

(Y). (113)

er

div,w” + Fé;; = 0, (114)
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][jrijdyjuGéij =0 (115)
Y

dwht owis

hom Kkl . ms

a ms:% 5i5~+’><5mi55~—|— t )dy—%w Oms + div,w™®)dy

ke, v < ki0¢j 8yj J ay]- v ( y )
(116)

and where the matriz C' is definded by

Cl‘j = /fa(éij — ﬁyjﬁyi)ddy.
Proof. Setting ¢ = ¢’ =1’ = 0 in (100) yields:

B’ / ][ (VU + V)V ywdady — m / ][ R
QJ Y ol v

from which there results: w = gzg wh(y), p"=pm+ g—z’:fﬂké(y) with (w*, %) solu-

tion of (113). Morover, assumption (114), resp. (115) implies:

][Ndivyw = —Fdiv(u") (117)
Y

resp.(110). Substituting (117) into (106), we infer that: EL% + (1 — F)div(u") =0
which, taking into account (110), leads to (109).
Notice that setting A = I and ¢" = ¢’ = 1) = ¢* = 0 in (100) also yields:
@™ = —Vp™ 4 f (118)
Then, substitution of (118), (117) and (110) into (105) yields (108). Setting

_ Oy;
- 8xj

w",

(8

in (100), we obtain (112). O
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