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ABSTRACT
Advancements in cloud computing have boosted Machine Learning
as a Service (MLaaS), highlighting the challenge of scheduling tasks
under latency and deadline constraints. Neural network compres-
sion offers the latency and energy consumption reduction in data
centers, aligning with efforts to minimize cloud computing’s carbon
footprint, despite some accuracy loss.

This paper investigates the Deadline Scheduling with Com-
pressible Tasks - Energy Aware (DSCT-EA) problem, which ad-
dresses the scheduling of compressible machine learning tasks on
several machines, with different speeds and energy efficiencies,
under an energy budget constraint. Solving DSCT-EA involves de-
termining both the machine on which each task will be processed
and its processing time, a problem that has been proven to be NP-
Hard. We formulate DSCT-EA as a Mixed-Integer Programming
(MIP) problem and also provide an approximation algorithm for
solving it. The efficacy of our approach is demonstrated through
extensive experimentation, revealing its superiority over traditional
scheduling techniques. It allows to save up to 70% of the energy bud-
get of image classification tasks, while only losing 2% of accuracy
compared to when not using compression.

KEYWORDS
scheduling, energy budget, neural network compression, deadlines

ACM Reference Format:
Tiago da Silva Barros, Davide Ferré, Frédéric Giroire, Ramon Aparicio-Pardo,
and Stéphane Pérennes. 2024. Scheduling Machine Learning Compressible
Inference Tasks with Limited Energy Budget. In The 53rd International
Conference on Parallel Processing (ICPP ’24), August 12–15, 2024, Gotland,
Sweden.ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3673038.
3673106

This work is licensed under a Creative Commons Attribution International
4.0 License.

ICPP ’24, August 12–15, 2024, Gotland, Sweden
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1793-2/24/08
https://doi.org/10.1145/3673038.3673106

1 INTRODUCTION
In recent years, there has been a growing usage ofMachine Learning
(ML) models in cloud computing, contributing to the adoption of
Machine Learning as a Service (MLaaS) [18], studied in several
applications such as image recognition and self-driving cars[17].

Cloud and network operators have faced challenges in devel-
oping efficient strategies for utilizing computational resources to
support machine learning tasks. Among these challenges, schedul-
ing is an important one. A scheduler must determine on which ma-
chine each task is executed and its processing order. This becomes
especially critical when tasks must adhere to deadline constraints.

In the context of saving computational resources, researchers
have investigated neural network compression techniques, includ-
ing pruning [13] and quantization [26]. However, these approaches
typically involve compressing the model during the training phase,
necessitating re-training the model after compression.

Recent approaches compress neural networks at inference time
[3, 28], reducing network size to varying degrees. Greater com-
pression yields lower latency (i.e., the processing time of a task)
but at the expense of accuracy. In [5], we introduced a scheduling
system using compressible neural networks for image classifica-
tion tasks, in which several heterogeneous machines could be used.
Wedeveloped an approximation algorithm with proven guarantees
for maximizing the average accuracy while respecting deadlines
constraints.

Cloud and network operators are compelled to mitigate their
cloud carbon footprint, driving researchers and scientists to inves-
tigate novel methods for conducting ML inference with greater
energy efficiency.

The adoption of MLaaS and the expanding size of neural network
models has resulted in increased energy consumption, particularly
during the inference stage [15]. According to reports from NVIDIA
[9], 80-90% of Artificial Intelligence (AI) costs stem from inference.
Indeed, processing millions of requests, such as those encountered
in social networks, can lead to a significant number of inferences
in deep learning models, resulting in elevated energy consumption
and a sizable carbon footprint [7].

Consequently, new energy-aware scheduling solutions are ur-
gently needed, even though the introduction of energy consumption
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considerations further complicates the scheduling problem. Neural
network compression could be used to reduce the energy consump-
tion of a model by reducing its size during inference. Therefore, we
propose constraining cloud inference services to operate within an
energy budget, which sets a maximum energy threshold for exe-
cuting a set of inference tasks. The energy consumption of a task
is influenced by both its processing time and the specific machine
that executes it, given that power consumption can vary across
different machines. In this paper, we extend our previous work to
tackle the challenge of limiting cloud energy consumption when
scheduling compressible tasks.

Our objective is to maximize accuracy while adhering to an
energy budget constraint. The scheduling system determines task-
to-machine allocations and processing times for each job, ensuring
compliance with deadlines and energy budget limitations.

We formulate the problem as a non-linear program and develop
an approximation algorithm with proven guarantees. Subsequently,
we evaluate our approach against traditional scheduling techniques.

The contributions of this paper can be summarized as follows:
– We investigate the scheduling problem in which tasks can

be compressed, and the energy consumption must adhere to
an energy budget. The tasks under consideration are infer-
ence deep learning tasks, which present a trade-off between
latency and accuracy. We believe our approach could be ex-
tended to other tasks exhibiting diminishing marginal gain.

– We analyze the problem complexity and propose (i) an exact
algorithm to solve the problem using fractional relaxation,
which serves as the basis for (ii) an approximation algorithm
with proven guarantees for various heterogeneous machines
(in terms of speed and energy efficiency) that satisfy the
energy budget constraint.

– Finally, we validate and compare our approach with state-
of-the-art solutions.

The rest of this paper is organized as follows. In Section 2, we
provide a detailed review of related works, before introducing the
problem formulation in Section 3. Sections 4 and 5 are dedicated
to the exact and the approximation scheduling algorithms that
we propose, respectively. In Section 6, we assess the algorithm’s
performance through experiments. Finally, we delve into the main
discussions and conclusions in Section 7, alongside potential future
works.

2 RELATEDWORKS
NN Compression. Several papers have tackled the model com-
pression problem during the training phase, employing various
techniques such as pruning and knowledge distillation. For an ex-
tensive review, see [4].

Subsequently, some researchers [3, 28] have proposed solutions
to compress models during the inference phase without requiring
retraining. For instance, Cai et al. [3] introduced the Once-For-All
(OFA) method to compress Convolutional Neural Networks (CNNs)
across four dimensions: width, kernel size, depth, and image reso-
lution, aiming to reduce the neural network’s execution time while
minimizing the impact on model accuracy, particularly for image
classification tasks. In fact, the number of possible sub networks is
so high (for MobileNet, more than 1019) that we can compress the

model to any compression size. In this way, we argue we have a
continuous processing time (related to the compression levels) for
the inference tasks.

Additionally, in [5], the authors expanded upon the initial pa-
rameters utilized in OFA and observed an exponential relationship
between accuracy and inference latency tradeoff.
Scheduling DL inference tasks Numerous papers have been
dedicated to addressing the scheduling problem for classical tasks.
A seminal example is the work of Leyland and Liu [12], where they
introduced the Earliest Deadlines First (EDF) algorithm.

The application of scheduling techniques to deep learning tasks
has received significant attention in recent years. Various solutions
[8, 16, 19] have been proposed for scheduling inference request
tasks in cloud and edge environments. Notably, the work by Nigade
et al. [16] closely aligns with our research objectives. They investi-
gated methods to maximize the accuracy of a set of deep learning
model inference requests while meeting network and processing
latency constraints.

On top of that, several papers have addressed the scheduling
problem with the aim of minimizing energy consumption.

Xu et al. [25] investigated a Mobile Edge Computing (MEC)
environment to minimize energy consumption by determining the
number of tasks offloaded to the edge server. Ma et al. [14] aimed
to maximize a weighted function balancing reliability and accuracy
within an energy budget, optimizing task allocation. Wang et al.
[23] analyzed GPU energy consumption with spatial multitasking
(simultaneous execution of multiple kernels). They proposed a
scheduling system to balance energy efficiency and performance.

However, none of the aforementioned works consider compress-
ible jobs or involve a small number of models with different sizes
to fulfill tasks.
Scheduling compressible jobs Some studies have explored sched-
uling tasks with compressible processing times. For example, Vick-
son et al. [22], and Shabtay et al. [20] have proposed task com-
pression techniques. However, these studies primarily focus on
scenarios involving a single machine or a single deadline.

Regarding scheduling under energy constraints, some works
have addressed the single-machine scenario [21, 27]. Yin et al. [27]
aimed to minimize tardiness and energy consumption on a single
machine, considering discrete levels of compression. Tsao et al.
[21] sought to minimize energy costs using a genetic algorithm to
optimize task processing times.

On the other hand, Wu et al. [24] addressed the problem of sched-
uling in multiple machines with controllable processing times. They
aimed to minimize makespan and energy consumption, consider-
ing variables such as job processing time (discrete levels) and the
machines where tasks are assigned. They proposed an evolutionary
metaheuristic for solving the problem.

However, the above works never consider both deadlines and
multiple machines, and they often employ discrete levels of task
compression. In contrast, our solution utilizes the Once-For-All
approach [3] to accommodate compressible tasks. Additionally, we
are the first to propose an approximation algorithm with proven
guarantees for scheduling such compressible tasks under energy
constraints.
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Figure 1: Energy efficiency vs
speed for various GPUs [7].

Figure 2: Once-for-All: Ac-
curacy vs number of float-
ing operations [5]

3 PROBLEM FORMULATION
In this section, we define the Deadline Scheduling with Com-
pressible Tasks - Energy Aware (DSCT-EA) problem, and formu-
late it as a Mixed-Integer Program (MIP). Let us consider a set 𝐽 of
𝑛 tasks, which can be scheduled on a set𝑀 of𝑚 machines.

Each machine 𝑟 ∈ 𝑀 is characterized by its speed 𝑠𝑟 , quantified
in FLOPS (Floating-point Operations per Second), power consump-
tion 𝑃𝑟 , measured in Watts (W), and energy efficiency 𝐸𝑟 = 𝑠𝑟 /𝑃𝑟 ,
computed as the ratio of speed to power consumption. In this regard,
the energy efficiency of servers can exhibit significant heterogene-
ity, largely depending on the hardware architecture specifications.
Figure 1, derived from a comprehensive evaluation conducted by
Desislavov et al. [7], illustrates the relationship between energy
efficiency and speed for across various NVIDIA GPUs designed
for servers . The general observed trend is that devices exhibit
linear improvement in energy efficiency with the advancement of
hardware speed. We order the machines by non decreasing energy
efficiency, i.e., 𝑟 < 𝑟 ′ if 𝐸𝑟 < 𝐸𝑟 ′.

Each job 𝑗 ∈ 𝐽 represents a compressible inference task that
requires 𝑓𝑚𝑎𝑥

𝑗
floating-point operations for full execution (i.e.,

without compression) and must be completed before a deadline
𝑑 𝑗 (measured in seconds). We order the tasks by non decreasing
deadlines, i.e., 𝑖 < 𝑗 if 𝑑𝑖 < 𝑑 𝑗 . An accuracy function 𝑎 𝑗 (𝑓 ) specifies
the accuracy reached by job 𝑗 when dedicating 𝑓 < 𝑓𝑚𝑎𝑥

𝑗
floating

operations to it. Let 𝑎max
𝑗

= 𝑎 𝑗 (𝑓𝑚𝑎𝑥𝑗
) be the maximum accuracy

reached by a task. This setting naturally describes scenarios involv-
ing slimmable networks, such as OFA and AutoSlim [3, 28], where
the accuracy of a task depends on its level of compression. Further
details regarding accuracy functions are provided in Section 3.1.

A solution for the DSCT-EA problem specifies, for each job 𝑗 , (i)
the machine on which it is executed and (ii) its compression level,
i.e, the number 𝑓𝑗 of floating-point operations allocated to it.

Below, we formally model DSCT-EA as a minimization problem
of an objective function, subject to several constraints.
Variables.We have two sets of decision variables. 𝑥 𝑗𝑟 represents
a set of binary variables with a value of 1 if task 𝑗 is processed on
machine 𝑟 . 𝑡 𝑗𝑟 denotes the set of variables indicating the processing
time of task 𝑗 on machine 𝑟 . The number of operations dedicated
to task 𝑗 is given by 𝑓𝑗 =

∑
𝑟 ∈𝑀 𝑠𝑟 · 𝑡 𝑗𝑟 .

Model Formulation

min
𝑛∑︁
𝑗=1

[
1 − 𝑎 𝑗

(∑︁
𝑟 ∈𝑀

𝑠𝑟 · 𝑡 𝑗𝑟

)]
(1a)

s.t.
𝑗∑︁
𝑖=1

𝑡𝑖,𝑟 ≤ 𝑑 𝑗 , 𝑗 ∈ 𝐽 , 𝑟 ∈ 𝑀 (1b)

𝑡 𝑗𝑟 · 𝑠𝑟 ≤ 𝑓𝑚𝑎𝑥𝑗 , 𝑗 ∈ 𝐽 , 𝑟 ∈ 𝑀 (1c)
𝑡 𝑗𝑟 ≤ 𝑥 𝑗𝑟 · 𝑑 𝑗 , 𝑗 ∈ 𝐽 , 𝑟 ∈ 𝑀 (1d)∑︁
𝑟 ∈𝑀

𝑥 𝑗𝑟 = 1, 𝑗 ∈ 𝐽 (1e)∑︁
𝑟 ∈𝑀

∑︁
𝑗∈ 𝐽

𝑠𝑟

𝐸𝑟
· 𝑡 𝑗𝑟 ≤ 𝐵, (1f)

𝑡 𝑗𝑟 ∈ R+, 𝑥 𝑗𝑟 ∈ {0, 1} 𝑗 ∈ 𝐽 , 𝑟 ∈ 𝑀 (1g)

Equation (1a) outlines the objective function, which aims to mini-
mize the accuracy error across all jobs (or equivalently, to maximize
the accuracy). Constraint (1b) ensures that we do not exceed the
deadline of a job, accounting for the processing time of previously
executed jobs on the same machine. Constraint (1c) restricts the
total number of floating-point operations dedicated to job 𝑗 to be no
more than 𝑓𝑚𝑎𝑥

𝑗
. Constraints (1d) and (1e) guarantee that each job

is allocated processing time on a single machine. Finally, constraint
(1f) states that the total energy consumed by all machines must not
exceed the energy budget 𝐵 for the system. Here, we consider, in
order to evaluate the energy derived from tasks, when some task is
processed.
NP Hardness of the problem. DSCT-EA is NP-Complete, as it
is an extension of DSCT [5]. This can be shown with a reduction
from Sum Partition Problem.

3.1 Accuracy function
We consider accuracy functions that stem from slimmable neural
networks [3, 28]. Figure 2 provides an example of such a function,
where the accuracy achieved in a ML inference task depends on the
model’s size processing it, directly linked to the total number of
floating-point operations performed. Such accuracy functions are
concave, meaning that the derivative with respect to the number
of floating-point operations decreases as the number of operations
increases. For a task 𝑗 where 𝑓 floating operations have been exe-
cuted, we define the marginal gain as the right-hand derivative of
the accuracy function 𝑎′+𝑗 (𝑓 ), and themarginal loss as the left-hand
derivative 𝑎′−𝑗 (𝑓 ). In this work, we will consider piecewise linear
functions, where these two derivatives may not always be equal.
Piecewise linear function We consider the special case of linear
piecewise functions in the following, as (i) they are a good model
for the accuracy function of slimmable models (see Figure 2) and
(ii) they can be used to approximate any accuracy functions, for a
sufficiently large number of pieces. We use the following notation:

𝑎(𝑓 ) =
{
𝛼𝑘 · 𝑓 + 𝑏𝑘 , if 𝑝𝑘 ≤ 𝑓 ≤ 𝑝𝑘+1, ∀𝑘 ∈ K (2)

Here, K = {1, . . . , 𝐾}, where 𝐾 is the number of segments, and 𝛼𝑘
and 𝑏𝑘 , for 𝑘 ∈ K , represent, respectively, the slope and 𝑦-intercept
point for a linear segment 𝑘 . The values of 𝑝𝑘 and 𝑝𝑘+1, called
breakpoints, represent the start and the end point for each linear
segment 𝑘 . We have 𝑎(𝑝𝐾+1) = 𝑎max, and 𝑎(0) = 𝑏1 = 𝑎min.

3.2 Fractional Relaxation
Here, we introduce a fractional relaxation of the DSCT-EA problem,
namedDeadline Schedulingwith Compressible Tasks - Energy
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Aware - Fractional Relaxation (DSCT-EA-FR), in which a task
can be executed on multiple machines. We will utilize a solution to
this problem as a starting point for our approximation algorithm
for DSCT-EA. We give the formulation for the case in which the
accuracy functions are piecewise linear.
Piecewise linear formulation. DSCT-EA-FR could be directly
reformulated as a linear program by simply altering the type of
the variable 𝑥 𝑗𝑟 in the MIP of Section 3 to a real number within
the range [0, 1]. However, we can further simplify the fractional
relaxation by directly omitting the variables 𝑥 𝑗𝑟 , as shown below:

min
𝑛∑︁
𝑗=1
−𝑧 𝑗 (𝐷𝑢𝑎𝑙) (3a)

s.t. 𝑧 𝑗 ≤ 𝛼 𝑗𝑘
∑︁
𝑟 ∈𝑀

𝑠𝑟 · 𝑡 𝑗𝑟 + 𝑏 𝑗𝑘 , 𝑗 ∈ 𝐽 , 𝑘 ∈ 𝐾 (𝛾 𝑗𝑘 ) (3b)

𝑗∑︁
𝑖=1

𝑡𝑖,𝑟 ≤ 𝑑 𝑗 , 𝑗 ∈ 𝐽 , 𝑟 ∈ 𝑀 (𝜇 𝑗𝑟 ) (3c)∑︁
𝑟 ∈𝑀

𝑡 𝑗𝑟 · 𝑠𝑟 ≤ 𝑓𝑚𝑎𝑥𝑗 , 𝑗 ∈ 𝐽 (𝜆 𝑗 ) (3d)∑︁
𝑟 ∈𝑀

∑︁
𝑗∈ 𝐽

𝑠𝑟

𝐸𝑟
≤ 𝐵, (𝛽) (3e)

𝑡 𝑗𝑟 ∈ R+, 𝑗 ∈ 𝐽 , 𝑟 ∈ 𝑀 (𝜈 𝑗𝑟 ) (3f)

A new variable 𝑧 𝑗 is introduced for each task 𝑗 ∈ 𝐽 . Constraints (3b)
ensures that it is lower than the value of the accuracy function 𝑎 𝑗
over each segment 𝑘 ∈ 𝐾 for any values of the execution times 𝑡 𝑗𝑟 ,
𝑟 ∈ 𝑀 . The minimization makes its equal for an optimal solution.
Karush - Kuhn - Tucker ConditionsWe first discuss the KKT
(Karush-Kuhn-Tucker) conditions for the optimization problem and
then, we present an algorithm to solve it with polynomial time
complexity.

In our convex problem, the KKT conditions are necessary and
sufficient conditions for optimality [2] (Chap. 5 p. 226 and 244).
First, we write the Lagrangian of the above formulation:

𝐿(𝒕, 𝝁) =
𝑛∑︁
𝑗=1
−𝑧 𝑗 +𝜸𝑻 𝒍 (𝒕) + 𝝁𝑻𝒈(𝒕) + 𝝀𝑻𝒉(𝒕) + 𝝂𝑻 𝒊(𝒕) + 𝛽 𝑗 (𝑡),

where 𝜸 = [𝛾1 ...𝛾𝑛𝑘 ], 𝒍 (𝒕) = [𝑧 𝑗 − 𝛼 𝑗𝑘
∑𝑚
𝑟=1 𝑠𝑟 · 𝑡 𝑗𝑟 − 𝛽 𝑗𝑘 ] 𝑗𝑘𝝁 =

[𝜇1 ...𝜇𝑛𝑚], 𝒈(𝒕) = [∑𝑖≤ 𝑗 𝑡𝑖𝑟 − 𝑑 𝑗 ] 𝑗,𝑟 , 𝝀 = [𝜆1 ...𝜆𝑛], 𝒉(𝒕) =

[∑𝑟 ∈𝑀 𝑡 𝑗𝑟 · 𝑠𝑟 − 𝑓𝑚𝑎𝑥𝑗
] 𝑗 , 𝝂 = [𝜈1 ...𝜈𝑛𝑚], 𝒊(𝒕) = [−𝑡 𝑗𝑟 ] 𝑗,𝑟 and

𝑗 (𝑡) = ∑
𝑗∈ 𝐽

∑
𝑟 ∈𝑀 𝑡 𝑗𝑟 · 𝑠𝑟𝐸𝑟 − 𝐵.

From the zero-gradient condition (i.e., the gradient at the optimum
(𝒕∗, 𝝁∗, 𝝀∗, 𝝂∗, 𝜷∗) should be 0), we have:

𝜕𝐿

𝜕𝑡 𝑗𝑟
= −

∑︁
𝑘∈𝐾

𝛼 𝑗𝑘𝑠𝑟𝛾 𝑗𝑘+
𝑛∑︁
𝑖=𝑗

𝜇𝑖𝑟+𝜆 𝑗𝑠𝑟−𝜈 𝑗𝑟+𝛽
𝑠𝑟

𝐸𝑟
= 0, ∀𝑗 ∈ 𝐽 , 𝑟 ∈ 𝑀.

(4)
𝜕𝐿

𝜕𝑧 𝑗
= −1 +

∑︁
𝑘∈𝐾

𝛾 𝑗𝑘 = 0, ∀𝑗 ∈ 𝐽 . (5)

Discussion on Constraints (3b). For each job 𝑗 , we encounter
two scenarios for this set of constraints.

Either the execution time 𝑡 𝑗 lies between 2 breakpoints of the
piecewise linear accuracy function or it lies at a breakpoint. In the
former case, a single constraint (3b) is tight, and its corresponding

dual variable is positive (𝛾 𝑗𝑙 ≥ 0), while all the dual variables of the
other constraints are null. Equation 5 implies that 𝛾 𝑗𝑙 = 1. In the
latter case, two constraints 3b are tight, and the two consecutive
corresponding dual variables are positive (𝛾 𝑗𝑙 ≥ 0 and 𝛾 𝑗,𝑙+1 ≥ 0).
The dual variables of all the other constraints are null. Equation 5
implies that 𝛾 𝑗𝑙 + 𝛾 𝑗,𝑙+1 = 1. Hereafter, we express the equations
using a single dual variable 𝛾 𝑗𝑙 for a job 𝑗 (which can be set to 1
when 𝑗 is not at a breakpoint).
Conditions for job execution times on the same machine 𝑟 .
Consider two consecutive jobs 𝑗 < 𝑛 and 𝑗 + 1 on a machine 𝑟 .
Applying Equation 4 on job 𝑗 gives:

𝜇 𝑗𝑟 +
𝑛∑︁

𝑖=𝑗+1
𝜇𝑖𝑟 = 𝛼 𝑗𝑙𝑠𝑟𝛾 𝑗𝑙 + 𝛼 𝑗 (𝑙+1)𝑠𝑟 (1 − 𝛾 𝑗𝑙 ) − 𝜆 𝑗𝑠𝑟 + 𝜈 𝑗𝑟 − 𝛽

𝑠𝑟

𝐸𝑟

For task 𝑗 + 1:
𝑛∑︁

𝑖=𝑗+1
𝜇𝑖𝑟 = 𝛼 ( 𝑗+1)𝑙 ′𝑠𝑟𝛾 𝑗 ′𝑙 ′+𝛼 ( 𝑗+1)𝑙 ′𝑠𝑟𝛾 𝑗 ′ (𝑙 ′ + 1)−𝜆 𝑗+1𝑠𝑟+𝜈 ( 𝑗+1)𝑟−𝛽

𝑠𝑟

𝐸𝑟

Taking the difference, we obtain:

𝜇 𝑗𝑟 =(𝛼 𝑗𝑙𝑠𝑟𝛾 𝑗𝑙 + 𝛼 𝑗 (𝑙+1)𝑠𝑟 (1 − 𝛾 𝑗𝑙 )) − (𝛼 ( 𝑗+1)𝑙 ′𝑠𝑟𝛾 𝑗 ′𝑙 ′ (6)
+ 𝛼 ( 𝑗+1)𝑙 ′𝑠𝑟𝛾 𝑗 ′ (𝑙 ′ + 1)) − 𝜆 𝑗𝑠𝑟 + 𝜆 𝑗+1𝑠𝑟 + 𝜈 𝑗𝑟 − 𝜈 ( 𝑗+1)𝑟 .

If both jobs 𝑗 and 𝑗 + 1 are not constrained (by 𝑓𝑚𝑎𝑥 , by 0, and
by their deadlines), the complementary slackness conditions state
that 𝜆 𝑗 = 𝜆 𝑗 = 𝜈 𝑗𝑟 = 𝜈 ( 𝑗+1)𝑟 = 0, giving

𝛼 𝑗𝑙𝛾 𝑗𝑙 + 𝛼 𝑗 (𝑙+1) (1 − 𝛾 𝑗𝑙 ) = 𝛼 ( 𝑗+1)𝑙 ′𝛾 𝑗 ′𝑙 ′ + 𝛼 ( 𝑗+1)𝑙 ′𝛾 𝑗 ′ (𝑙 ′+1) (7)

If both jobs are not at a breakpoints (i.e., 𝛾 𝑗 (𝑙+1) = 𝛾 ( 𝑗+1) (𝑙 ′+1) = 0),
we get

𝛼 𝑗𝑙 = 𝛼 ( 𝑗+1)𝑙 ′ (8)
It means that two unconstrained consecutive jobs should have the
same marginal gains (same slopes). Otherwise, it would have been
better to execute the one with the larger slope till its deadline or
next breakpoint.

If 𝑗 and/or 𝑗 + 1 jobs are at a breakpoint, using that 𝛼 𝑗𝑙 ≥ 𝛼 𝑗 (𝑙+1)
and 𝛼 ( 𝑗+1)𝑙 ≥ 𝛼 ( 𝑗+1) (𝑙+1) (concave accuracy functions), it gives
that

𝛼 ( 𝑗+1) (𝑙 ′ ) ≥ 𝛼 𝑗𝑙 ≥ 𝛼 ( 𝑗+1) (𝑙 ′+1) for 𝑗 ′ at a breakpoint (9)
𝛼 ( 𝑗+1) (𝑙 ′ ) ≥ 𝛼 𝑗 (𝑙+1) and 𝛼 𝑗𝑙 ≥ 𝛼 ( 𝑗+1) (𝑙 ′+1) when (10)

both j and j+1 at a breakpoint

The first inequality ensures that it is not better to decrease 𝑡 𝑗 and
increase 𝑡 𝑗+1, and the second one that is not better to increase 𝑡 𝑗
and decrease 𝑡 𝑗+1. We say here that the marginal gains of 𝑗 and 𝑗 ′
are comparable.

If job 𝑗 is constrained by its deadline, in this case 𝜇 𝑗𝑟 ≥ 0, because
of the non-negativity of dual variables. We obtain

𝛼 𝑗𝑙 ≥ 𝛼 ( 𝑗+1)𝑙 ′ when 𝑗 + 1 is not at a breakpoint and (11)
𝛼 𝑗𝑙 ≥ 𝛼 ( 𝑗+1) (𝑙 ′+1) otherwise. (12)

We thus have decreasing marginal gains (decreasing slopes) of jobs
(not constrained by their maximum number of operations) on a
given machine in an optimal solution. Indeed, otherwise, it would
have been better to increase the execution time of job 𝑗 + 1.
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Note that, when 𝑗 + 1 is constrained by its maximum number
of operations (𝑓𝑗+1 = 𝑓𝑚𝑎𝑥𝑗+1 ), it may happen that the marginal gain
and loss of 𝑗 + 1 are higher than the marginal gain of 𝑗 . Indeed,
in this case, the dual variable 𝜆 𝑗+1 ≥ 0. Equation (6) becomes
𝛼 ( 𝑗+1)𝑙 ′ = 𝛼 𝑗𝑙𝑠𝑟 +𝜆 𝑗+1, when 𝑗 and 𝑗 ′ are not at breakpoint and 𝑗 is
not constrained by its deadline nor by 𝑓𝑚𝑎𝑥

𝑗
. Other cases are dealt

with similarly and omitted here due to lack of space.
The Energy Profiles Let us introduce the concept of energy profile,
which will be used extensively throughout the rest of the paper.
The energy profile 𝑝𝑟 of a machine 𝑟 ∈ 𝑀 indicates the maximum
amount of work (in seconds) that can be done on that machine
to respect some energy constraints. In particular, the following
conditions must be satisfied:∑︁

𝑗∈ 𝐽
𝑡 𝑗𝑟 ≤ 𝑝𝑟 ,∀𝑟 ∈ 𝑀 and

∑︁
𝑟 ∈𝑀

𝑝𝑟 · 𝑃𝑟 ≤ 𝐵.

These two conditions state that (i) the amount of work on a machine
cannot exceed its profile, and (ii) when all machines are fully used
up to their profile, the total energy consumption is at most the
energy budget. The energy profile for our system is the collection
𝑝 = {𝑝1, · · · , 𝑝𝑚} of the energy profiles of all machines.

We also define the energy marginal gain and loss of a task 𝑗

executed on machine 𝑟 , whose number of operation 𝑓𝑗 is in segment
𝑙 , as

Energy Marginal Gain =
𝐸𝑟

𝑠𝑟

𝜕+𝑎 𝑗
𝜕𝑡 𝑗𝑟

=

{
𝐸𝑟𝛼 𝑗𝑙+1 if 𝑗 at breakpoint
𝐸𝑟𝛼 𝑗 (𝑙 ) otherwise

Energy Marginal Loss =
𝐸𝑟

𝑠𝑟

𝜕−𝑎 𝑗
𝜕𝑡 𝑗𝑟

= 𝐸𝑟𝛼 𝑗 (𝑙 ) .

Characteristics of the Energy Profiles. Using again Equation (4)
and similar technics, we can show that:
- For machines 𝑟 and 𝑟 ′ such that 𝐸𝑟 ′ ≤ 𝐸𝑟 , the energy profile of the
most energy efficient machine should be the longest one.
- The last jobs executed on machines with not full energy profile
should have equal energy marginal gains when between breakpoint
or comparable gain when at breakpoint, meaning that the energy
marginal loss of 𝑗 ′ (first slope) should be lower than the one of 𝑗
with the first slope (otherwise, it would have been better to decrease
the execution time of 𝑗 and increase the one of 𝑗 ′), while its energy
marginal gain (second slope) should be higher than the one of 𝑗 ′
(otherwise, it would have been better to decrease the execution
time of 𝑗 ′ and increase the one of 𝑗 ).
- The energy slope product of the last job should be lower on machines
with a non full energy profile than on machines with a full energy
profile. The proof is omitted due to lack of space.

4 OPTIMAL ALGORITHM FOR DSCT-EA-FR
In this section, we present an optimal algorithmic solution for
DSCT-EA-FR, considering piecewise linear accuracy functions. In
particular, we first present an algorithm for solving DSCT-EA-FR
when a single machine is used, which is than used as a building
block to tackle the multiple-machines scenario.

4.1 Algorithm for DSCT-EA-FR, one machine
Algorithm 1 can be used to optimally solve DSCT-EA-FR on one
machine. Its inputs are the deadlines of tasks and a list 𝑙𝑖𝑠𝑡𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠
that stores information about the linear segments of the accuracy

functions of our tasks. For each segment we know its 𝑠𝑙𝑜𝑝𝑒 , the 𝑡𝑎𝑠𝑘
to which it is associated, its 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 within the accuracy function
(e.g., segment number 1 or segment number 2), the number of
operations 𝑡𝑜𝑡𝑎𝑙𝐹𝑙𝑜𝑝𝑠 needed to fully process it, and 𝑢𝑠𝑒𝑑𝐹𝑙𝑜𝑝𝑠 ,
the number of operations currently dedicated to it by the scheduler.

Note that, although Algorithm 1 does not explicitly take energy
into consideration, incorporating an energy budget is feasible by
treating it as an additional deadline (plus some additional steps).
Further insights into this process will be provided Algorithm 2,
where this transformation is explicitly outlined.

The algorithm starts by sorting the segments in non-increasing
order of slopes (line 1). Then, for each segment, the algorithms first
computes its total processing time based on the value of 𝑡𝑜𝑡𝑎𝑙𝐹𝑙𝑜𝑝𝑠
and the speed of the machine (line 5), and then adjusts it according
to the deadlines of the following tasks (lines 6 - 7). Indeed, increasing
too much the processing time for a segment could cause a following
task to violate its deadline, which is prevented by line 7. The process
is repeated for all the segments. Note that Algorithm 1 always
prioritizes segments with higher slope and, for a task 𝑗 ∈ 𝐽 , a
segment 𝑘 is considered only if segment 𝑘 − 1 (which has a higher
slope) was already processed.

Algorithm 1 Exact algorithm for scheduling on one machine using
piecewise linear accuracy functions
Require: List of deadlines [𝑑1, ..., 𝑑𝑛], speed 𝑠 of the machine, and

a list of segments 𝑙𝑖𝑠𝑡𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠 , storing information about the
linear segments of the accuracy functions of tasks.

Ensure: List of task execution times [𝑡1, ..., 𝑡𝑛].
1: 𝑙𝑖𝑠𝑡𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠.𝑜𝑟𝑑𝑒𝑟 () ⊲ Non-increasing order of slopes
2: for 𝑠𝑒𝑔 ∈ 𝑙𝑖𝑠𝑡𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠 do
3: 𝑗 ← 𝑠𝑒𝑔.𝑡𝑎𝑠𝑘

4: 𝑘 ← 𝑠𝑒𝑔.𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

5: 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 ← 𝑠𝑒𝑔.𝑡𝑜𝑡𝑎𝑙𝐹𝑙𝑜𝑝𝑠
𝑠

6: for 𝑖 > 𝑗 do ⊲ For all jobs after
7: 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 ←𝑚𝑖𝑛(𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛, 𝑑𝑖 −

∑
𝑘≤𝑖 𝑡𝑘 )

8: 𝑡 𝑗 ← 𝑡 𝑗 + 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 ⊲ Update processing time of job 𝑗
9: return [𝑡1, ..., 𝑡𝑛]

Theorem 1. Algorithm 1 presents a time complexity 𝑂 (𝑛2).

Proof. At line 1, the algorithm sorts the list of segments in
𝑂 (𝑛 log(𝑛)). Assuming a constant number of segments for each job,
the algorithm loops over all 𝑛 jobs at line 2 and, for each of them,
it loops over the following ones (at most 𝑛) at line 6. This gives a
complexity of 𝑂 (𝑛2). □

The optimality of Algorithm 1 is shown in the next section, con-
textually with the proof of optimality of the algorithm for multiple
machines (Theorem 2).

4.2 Algorithm for DSCT-EA-FR, multiple
machines

After dealing with a single machine, we now propose an algorithm
for solving DSCT-EA-FR in the multiple-machines scenario, where
energy budget is also taken into consideration.
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Intuitively, more energy efficient machines should be preferred
when we must respect some energy budget; indeed, for a unit of
energy, an efficient machine can execute more floating operations
than a less efficient one.

Following this intuition, let us define the naive energy profile
𝑝𝑛𝑎𝑖𝑣𝑒 of a system as the energy profile in which we use the most
efficient machines until the energy budget is met.

Although intuition might suggest otherwise, the naive energy
profile does not always lead to an optimal solution.

We propose an algorithm which computes the optimal energy
profile and solution forDSCT-EA-FRwhen usingmultiple machines.
It comprises two main steps:

• ComputeNaiveSolution: It computes the naive profile and the
optimal solution for this profile. This procedure is described
in Algorithm 2.
• RefineProfile: Check if changing the energy profile could lead
to a better solution. If so, update accordingly the energy pro-
file and the solution. Repeat this step until no better solution
can be found. This procedure is described in Algorithm 3.

ComputeNaiveSolution Algorithm 2 computes the optimal solu-
tion for the naive energy profile.

Firstly, the naive energy profile is derived from the energy budget
𝐸𝑏𝑢𝑑𝑔𝑒𝑡 . This is accomplished by sorting the set of machines𝑀 in
non-increasing order of energy efficiency 𝐸 and computing, for
each of them, the energy profile by selecting the minimum between
the maximal execution time for a machine (𝑑𝑚𝑎𝑥 ) and the time
needed to reach the energy budget 𝐵.

Then, the algorithm transforms the problem into an "equivalent"
one on a single-machine problem. This is done by checking for each
task and for each machine whether the deadline falls inside the
machine profile, in which case the machine can be fully used for
the task. Otherwise, only a fraction of the machine can be used to
process the job. Next, the algorithm uses Algorithm 1 to compute
an optimal solution for this single-machine scenario.

We then need to go back to the multiple-machines scenario. It
iterates through the tasks in non-decreasing order of deadlines
and checks if it’s possible to evenly distribute the tasks across the
machines, scheduling the same amount of time for each machine. If
energy profile limitations prevent this, the algorithm schedules the
maximum allowed time on the least energy-efficient machine and
repeats the process with the remaining machines. This procedure
is repeated for all tasks.
RefineProfile Once we have the optimal solution for the naive
energy profile, Algorithm 3 checks whether a better solution could
be found by tweaking the energy profile.

Let us define the accuracy-per-Joule𝜓𝑠𝑒𝑔,𝑟 as the accuracy gained
per unit of energy by increasing the processing time of a linear
segment 𝑠𝑒𝑔 in machine 𝑟 . Note that this is equivalent to the energy
marginal gain discussed in Section 3, as accuracy-per-Joule is also
computed as𝜓𝑠𝑒𝑔,𝑟 = 𝑠𝑒𝑔.𝑠𝑙𝑜𝑝𝑒 · 𝐸𝑟 .

Firstly, Algorithm 3 generates a list of all pairs
(𝑠𝑒𝑔𝑚𝑒𝑛𝑡,𝑚𝑎𝑐ℎ𝑖𝑛𝑒), sorted in non-increasing order of accuracy-
per-Joule. The pairs at the top of the list offer the highest potential
for increasing accuracy.

Next, the algorithm iterates over the list and, for each pair (𝑠𝑒𝑔, 𝑟 ),
it computes how much the execution time of 𝑠𝑒𝑔 could be increased

Algorithm 2 ComputeNaiveSolution: Computes an optimal
scheduling for the naive energy profile
Require: List of segments 𝑙𝑖𝑠𝑡𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠 , the naive energy profile

𝑝𝑛𝑎𝑖𝑣𝑒 = [𝑝1, ..., 𝑝𝑚], the speeds [𝑠1, ..., 𝑠𝑚] and the energy
efficiencies [𝐸1, ..., 𝐸𝑚] of the machines. Deadlines [𝑑1, ..., 𝑑𝑛]
are in non-decreasing order.

1: 𝑀.𝑜𝑟𝑑𝑒𝑟 () ⊲ Order M in non-increasing order of energy
efficiency 𝐸

2: 𝐸𝑡𝑒𝑚𝑝 = 0
3: for 𝑟 ∈ 𝑀 do ⊲ Compute naive energy profile
4: 𝑝𝑟 ← min( 𝐵−𝐸𝑡𝑒𝑚𝑝𝑠𝑟

𝐸𝑟

, 𝑑𝑚𝑎𝑥 )

5: 𝐸𝑡𝑒𝑚𝑝 ← 𝐸𝑡𝑒𝑚𝑝 + 𝑝𝑟 · 𝑠𝑟𝐸𝑟
6: for 𝑗 ∈ 𝐽 do ⊲ Compute temporary deadlines
7: for 𝑟 ∈ 𝑀 do
8: 𝑑

𝑡𝑒𝑚𝑝

𝑗
← 𝑑

𝑡𝑒𝑚𝑝

𝑗
+𝑚𝑖𝑛(𝑠𝑟 , 𝑝𝑟 ·𝑠𝑟𝑑 𝑗

) · 𝑑 𝑗
9: 𝑡 ← Algorithm 1 (𝑑 = 𝑑𝑡𝑒𝑚𝑝 , 𝑠 = 1.0) ⊲ Computes solution in

single machine
10: 𝐾 ← 𝑀

11: for 𝑗 ∈ 𝐽 do ⊲ Distribute the task along machines
12: while 𝑡 𝑗 ≥ 0 do
13: 𝑘min ← argmin𝑘∈𝐾 (𝐸𝑘 )
14: if

∑
𝑗 ′≤ 𝑗 𝑡 𝑗 ′ +

𝑡 𝑗∑
𝑘∈𝐾 𝑠𝑘

> 𝑝𝑘𝑚𝑖𝑛 then ⊲ Schedule until
the machine energy profile

15: 𝑡 𝑗 ← 𝑡 𝑗 − 𝑠𝑘min (𝑝𝑘min −
∑
𝑗 ′≤ 𝑗 𝑡 𝑗 ′ )

16: 𝑡 𝑗𝑘𝑚𝑖𝑛 ← 𝑝𝑘min −
∑
𝑗 ′≤ 𝑗 𝑡 𝑗 ′

17: 𝐾 ← 𝐾 \ {𝑘min}
18: else ⊲ Same time for all machines
19: for 𝑘 ∈ 𝐾 do
20: 𝑡 𝑗𝑘 ←

𝑡 𝑗∑
𝑘∈𝐾 𝑠𝑘

21: 𝑡 𝑗 ← 0
22: return [𝑡 𝑗𝑟 : ∀𝑗 ∈ 𝐽 ,∀𝑟 ∈ 𝑀]

on machine 𝑟 , keeping track of the additional energy 𝐸𝑎𝑑𝑑 that
it would consume. To do this, it considers the minimum between
the energy required for the remaining floating operations of 𝑠𝑒𝑔
and the energy needed to fill the gap between the tasks that were
already scheduled and the deadline of 𝑠𝑒𝑔.𝑡𝑎𝑠𝑘 . For each pair ana-
lyzed, the algorithm iterates over the list of pairs in reverse order,
searching for tasks to be reduced. If a pair (𝑠𝑒𝑔′, 𝑟 ′) is found that
presents a smaller accuracy-per-Joule value than (𝑠𝑒𝑔, 𝑟 ), it means
that it would be beneficial to decrease the execution time of 𝑠𝑒𝑔′
in machine 𝑟 ′ and increase that of 𝑠𝑒𝑔 on 𝑟 . The amount of energy
𝐸𝑠𝑢𝑏 that can be saved by reducing the execution time of 𝑠𝑒𝑔′ is
computed, and finally the minimum value between 𝐸𝑎𝑑𝑑 and 𝐸𝑠𝑢𝑏
is the actual amount of energy that is "allocated" for 𝑠𝑒𝑔 in machine
𝑟 , and "deallocated" for 𝑠𝑒𝑔′ in machine 𝑟 ′.

Theorem 2. Algorithm 4 is optimal and has a time complexity
𝑂 (𝑛2𝑚2).

Proof. Optimality. At the end of the first phase, compute-
NaiveSolution, the execution times on all machines satisfy the first
set of KKT conditions given by Equations (11), (12) (non increasing
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Algorithm 3 RefineProfile: Adapts the naive profile in order
to find the optimal solution
Require: List of Segments 𝑙𝑖𝑠𝑡𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠 ; List of machines speed 𝒔

and energy efficiency 𝑬 ; List of task deadlines 𝒅
1: 𝑃 ← {} ⊲ Set containing the pairs (segment, machine)
2: for 𝑠𝑒𝑔 ∈ 𝑙𝑖𝑠𝑡𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠 do
3: for 𝑟 ∈ 𝑀 do
4: 𝑃 ← 𝑃 + {(𝑠𝑒𝑔, 𝑟 )}
5: 𝑃 .𝑜𝑟𝑑𝑒𝑟 () ⊲ Order P in non-increasing order of accuracy per

Joule
6: for (𝑠𝑒𝑔, 𝑟 ) ∈ 𝑃 do
7: 𝑗 ← 𝑠𝑒𝑔.𝑡𝑎𝑠𝑘

8: 𝐸𝑎𝑑𝑑 ← min( 𝑠𝑒𝑔.𝑡𝑜𝑡𝑎𝑙𝐹𝑙𝑜𝑝𝑠−𝑠𝑒𝑔.𝑢𝑠𝑒𝑑𝐹𝑙𝑜𝑝𝑠
𝐸𝑟

, (𝑑 𝑗 −∑
𝑘≤ 𝑗 𝑡𝑘𝑟 ) 𝑠𝑟𝐸𝑟 )

9: for (𝑠𝑒𝑔′, 𝑟 ′) ∈ 𝑃 .𝑟𝑒𝑣𝑒𝑟𝑠𝑒 () do
10: if 𝑟 > 𝑟 ′ and𝜓𝑠𝑒𝑔,𝑟 > 𝜓𝑠𝑒𝑔′,𝑟 ′ then ⊲ Check

accuracy-per-Joule for refining Profile
11: 𝐸𝑠𝑢𝑏 ←𝑚𝑖𝑛( 𝑠𝑒𝑔

′ .𝑓 𝑙𝑜𝑝𝑠
𝐸𝑟 ′

, 𝑡 𝑗 ′𝑟 ′
𝑠𝑟 ′
𝐸𝑟 ′
)

12: 𝐸𝑡𝑟𝑎𝑛𝑠 𝑓 ←𝑚𝑖𝑛(𝐸𝑎𝑑𝑑 , 𝐸𝑠𝑢𝑏 ) ⊲ Energy transferred
between machines

13: 𝑡 𝑗𝑟 ← 𝑡 𝑗𝑟 +
𝐸𝑡𝑟𝑎𝑛𝑠𝑓 ·𝐸𝑟

𝑠𝑟
14: 𝑠𝑒𝑔.𝑢𝑠𝑒𝑑𝐹𝑙𝑜𝑝𝑠 ← 𝑠𝑒𝑔.𝑢𝑠𝑒𝑑𝐹𝑙𝑜𝑝𝑠 + 𝐸𝑟 · 𝐸𝑡𝑟𝑎𝑛𝑠 𝑓
15: 𝑡 𝑗 ′𝑟 ′ ← 𝑡 𝑗 ′𝑟 ′ −

𝐸𝑡𝑟𝑎𝑛𝑠𝑓 ·𝐸𝑟 ′
𝑠𝑟 ′

16: 𝑠𝑒𝑔′ .𝑢𝑠𝑒𝑑𝐹𝑙𝑜𝑝𝑠 ← 𝑠𝑒𝑔′ .𝑢𝑠𝑒𝑑𝐹𝑙𝑜𝑝𝑠 + 𝐸𝑟 ′ · 𝐸𝑡𝑟𝑎𝑛𝑠 𝑓
17: 𝐸𝑎𝑑𝑑 ← 𝐸𝑎𝑑𝑑 − 𝐸𝑡𝑟𝑎𝑛𝑠 𝑓
18: return [𝑡 𝑗𝑟 : ∀𝑗 ∈ 𝐽 ,∀𝑟 ∈ 𝑀]

marginal gains on a machine) and Equations (8) and (10) (compa-
rable marginal gain for jobs not constrained by their deadline and
maximum execution time). Indeed, the procedure considers the
linear pieces of accuracy functions by decreasing slopes. It is thus
not possible to have a job with a lower marginal gain and an earlier
deadline, which is processed before one with a higher marginal
gain and a later deadline.

At the end of the second phase RefineProfile, they satisfy the
second set of KKT Conditions stated in the part Characteristics of
the Energy Profiles of Section 3.2: higher energy marginal gains on
more energy efficient machines and comparable energy marginal
gain for machines with non full energy profiles. We now argue that
the conditions of non-increasing marginal gains are maintained
following the RefineProfile phase, specifically after each iteration
of the for loop starting at line 5 of RefineProfile. Let’s first consider
machine 𝑟 ′, where we decrease the processing time of a job 𝑗 ′ (line
14 of the RefineProfile Algorithm). It’s important to note that 𝑗 ′
will always be the job on machine 𝑟 ′ with the lowest marginal loss.
Consider that the number of operations if 𝑗 ′, 𝑓𝑗 ′ , is in the linear
segment 𝑘 > 1 of its accuracy function. If we reduce its number of
operations, but not up to the breakpoint 𝑝 𝑗 ′𝑘 , it does not change its
marginal gain 𝛼 𝑗 ′𝑘 and loss 𝛼 𝑗 ′𝑘 , so the condition are still satisfied.
Now, if we pass the breakpoint 𝑝 𝑗 ′𝑘 , the marginal gain increases (by
concavity of the accuracy function) and is equal to 𝛼 𝑗 ′ (𝑘−1) . How-
ever, we are insured that it won’t become higher than the marginal
loss of a later job, say 𝛼𝑖𝑙 , with 𝑖 > 𝑗 ′. Indeed, if we decreased the
number of floating operations of 𝑗 ′, when it was at 𝑝 𝑗 ′𝑘 , it means

that it had the lowest marginal loss 𝛼 𝑗 ′ (𝑘−1) ≤ 𝛼𝑖𝑙 . So, the KKT
conditions (11) and (12) are still satisfied. A similar argument shows
that, when increasing the number of floating operations of job 𝑗 on
machine 𝑟 , we cannot decrease its marginal gain lower than the one
the marginal loss of a later job (not constrained by its maximum
number of floating operations).

The KKT conditions are necessary and sufficient conditions for
optimality as the problem is convex. Thus, the algorithm provides
on optimal solution.
Complexity. In computeNaiveSolution (Algorithm 2), from lines
6-8, the temporary deadlines are computed, which is done in𝑂 (𝑛𝑚).
In line 9, according to Theorem 1, it is done in𝑂 (𝑛2). In lines 11-21,
the algorithm iterates over every job and each machine.

In refineProfile(Algorithm 3), it iterates over each job
and each machine and orders the pair list, which is done in
𝑂 (𝑛𝑚 · 𝑙𝑜𝑔(𝑛𝑚)). Then, in lines 6-17, we iterate for each pair
(𝑠𝑒𝑔𝑚𝑒𝑛𝑡,𝑚𝑎𝑐ℎ𝑖𝑛𝑒) in a nested loop. Subsequently, Algorithm 3
has a time complexity 𝑂 (𝑛2𝑚2). Therefore, DSCT-EA-FR-Opt has
a time complexity 𝑂 (𝑛2𝑚2). □

Algorithm 4DSCT-EA-FR-Opt:Computes the optimal solution for
DSCT-EA-FR using Piecewise Linear function as accuracy function
Require: List of Segments 𝑙𝑖𝑠𝑡𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠 ; List of machines speed 𝒔

and energy efficiency 𝑬 ; List of task deadlines 𝒅
1: 𝒕 ← computeNaiveSolution() ⊲ Algorithm 2
2: 𝒕 ← refineProfile() ⊲ Algorithm 3
3: return [𝑡 𝑗𝑟 : ∀𝑗 ∈ 𝐽 ,∀𝑟 ∈ 𝑀]

5 APPROXIMATION ALGORITHM FOR
DSCT-EA

Here, we propose an approximation algorithm Deadline Sched-
uling with Compressible Tasks - Energy Aware - Approxima-
tion Algorithm (DSCT-EA-approx for short), which addresses the
DSCT-EA problem. We adapted the algorithm developed in [5]. For
addressing the energy budget constraints added to the problem, we
set that, for each machine, the energy profile found in the fractional
relaxation solution works as an upper bound of the load scheduled
in the machine. If the work in the machine is equal to the energy
profile, i.e.

∑
𝑗∈ 𝐽 𝑡 𝑗 = 𝑝𝑟 , the machine is no longer considered in

the scheduling. The pseudocode is described in Algorithm 5.
According to the Theorem 3 in [5], DSCT-EA-approx has an

absolute performance guarantee G:

𝑂𝑃𝑇 −𝐺 ≤ 𝑆𝑂𝐿 ≤ 𝑂𝑃𝑇 (13)
Where 𝑂𝑃𝑇 is the total accuracy for the optimal solution in

DSCT-EA-FR and 𝑆𝑂𝐿 is the total accuracy for the the solution pro-
vided by DSCT-EA-approx and the performance guarantee is given
by 𝐺 = 𝑚

∫ ∞
0 max𝑗,𝑟

𝜕𝑎 𝑗 (𝑠𝑟 𝑡 )
𝜕𝑡 𝑑𝑡 . . For piecewise linear accuracy

function, we have

𝐺 =𝑚(𝑎max − 𝑎min)
(
1 + ln

(
𝜃max
𝜃min

))
. (14)

Where 𝜃min = min𝑗∈ 𝐽 𝛼 𝑗0 and 𝜃max = max𝑗∈ 𝐽 𝛼 𝑗 |𝐾 | .
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Algorithm 5 DSCT-EA-approx: Approximation algorithm for the
scheduling problem on several machines

Input:[𝑑1, . . . , 𝑑𝑛], [𝑡max
1 , ..., 𝑡max

𝑛 ], [𝑠1, . . . , 𝑠𝑚], [𝐸1, ..., 𝐸𝑚]
Output: List of task processing times [𝑡 𝑗𝑟 : ∀𝑗 ∈ 𝐽 , 𝑟 ∈ 𝑀]

1: Sort the segments by non increasing order deadlines.
2: 𝒕𝒇 ,𝒘𝒎𝒂𝒙

𝒓 = DSCT-EA-FR-Opt( [𝑑1, . . . , 𝑑𝑛], [𝑡max
1 , ..., 𝑡max

𝑛 ],
[𝑠1, . . . , 𝑠𝑚], [𝐸1, ..., 𝐸𝑚]) ⊲ Compute the optimal fractional
solution 𝒕𝒇 , e.g. for piecewise, Algorithm 4.

3: for 𝑟 ∈ 𝑀 do
4: 𝑆𝑟 ← [] ⊲ List of tasks scheduled on machine 𝑟
5: 𝑤𝑟 ← 0 ⊲ 𝑤𝑟 amount of work on 𝑟
6: 𝐹 ← {} ⊲ Set with fully completed machines
7: for 𝑗 ∈ 𝐽 do ⊲ Schedule each task on the machine with the

least amount of work, 𝑟min
8: 𝑟𝑏𝑒𝑠𝑡 ← argmin𝑟 ∈𝑀\𝐹 𝑤𝑟
9: 𝑡 𝑗,𝑟𝑏𝑒𝑠𝑡 ←𝑚𝑖𝑛(∑𝑚𝑟=1 𝑡 𝑓𝑗,𝑟 ,𝑤𝑚𝑎𝑥𝑟 −𝑤𝑟 )
10: 𝑆𝑟𝑏𝑒𝑠𝑡 ← 𝑆𝑟𝑏𝑒𝑠𝑡 + [ 𝑗]
11: if 𝑤𝑟𝑏𝑒𝑠𝑡 = 𝑤

𝑚𝑎𝑥
𝑟𝑏𝑒𝑠𝑡

then
12: 𝐹 ← 𝐹 + [𝑟𝑏𝑒𝑠𝑡 ]
13: for 𝑟 ∈ 𝑀 do ⊲ Cut tasks violating their deadlines and shift

the following ones.
14: for 𝑗 ∈ 𝑆𝑟 do
15: if 𝑡 (𝑖 )

𝑗,𝑟
+ 𝑡 𝑗𝑟 ≥ 𝑑 𝑗 then

16: 𝑣 𝑗 ← 𝑡
(𝑖 )
𝑗,𝑟
+ 𝑡 𝑗𝑟 − 𝑑 𝑗

17: 𝑡 𝑗,𝑟 ← 𝑡 𝑗,𝑟 − 𝑣 𝑗 ⊲ Cut task
18: for 𝑖 > 𝑗 ∈ 𝑆𝑟 do ⊲ Shift the following tasks
19: 𝑡

(𝑖 )
𝑖,𝑟
← 𝑡

(𝑖 )
𝑖,𝑟
− 𝑣 𝑗

20: return [𝑡 𝑗𝑟 : ∀𝑗 ∈ 𝐽 , 𝑟 ∈ 𝑀]

6 RESULTS
In this section, we evaluate the approximation algorithm DSCT-EA-
approx (see Algorithm 5). We first show that the lower bound of
Eq. (13) is only reached in very specific scenarios: in most cases,
DSCT-EA-approx achieves solutions that are almost optimal. We
then discuss the execution time of our algorithm and demonstrate
that DSCT-EA-approx provides results within a reasonable time
frame. Next, we compare the performance of our algorithm with
state-of-the-art methods that either do not employ compression or
utilize only limited discrete levels of compression. We show that
it can achieve large energy gains with only a small impact on the
task accuracy. Lastly, we consider a scenario with 2 heterogeneous
machines to investigate the energy profile and the computational
contribution of each machine, i.e., the number of floating operations
performed.
Hardware Settings. For the experiments, we used a laptop
equipped with an Intel Core i9-12900H CPU and an NVIDIA RTX
A2000 GPU.
Experiments. We generate synthetic sets of tasks using the Once-
For-All [3] approach applied to ResNet [10], with 1000 classification
classes.

We set the minimum task accuracy to 𝑎min = 1/1000, the accu-
racy of a random guess, and the maximum accuracy to 𝑎max = 0.82.
These values were chosen based on our tests of ofa-resnet on the

ImageNet-1k [6] dataset. We denote as 𝜃 𝑗 the "task efficiency" of a
task 𝑗 ∈ 𝐽 , representing the slope of its first segment.We fix themin-
imum value of task efficiency to 𝜃min = 0.1. In our experiments, we
modeled the accuracy function of a task 𝑗 as piecewise linear func-
tion, constructed by performing a linear regression with 5 segments
over an exponential accuracy function of parameter 𝜃 𝑗 (Figure 2
provides an example, although with more than 5 segments).

We considered machine speeds that are uniformly distributed be-
tween 1 TFLOPS an 20 TFLOPS, and energy efficiencies uniformily
distributed between 5 GFLOPS/W and 60 GFLOPS/W. These values
were selected based on research findings presented in [7].

We define the deadline tolerance level, denoted by 𝜌 , as 𝜌 =
𝑚2 ·𝑑max∑

𝑗 ∈ 𝐽 (𝑓𝑚𝑎𝑥𝑗
·∑𝑟 ∈𝑀 𝑠𝑟 ) . The higher the value of 𝜌 , the more time is

allocated for the tasks.
We build scenarios with varying (i) task heterogeneity and (ii)

energy budget ratio levels. To this end, we define the task hetero-
geneity ratio 𝜇 as 𝜇 def

=
𝜃max
𝜃min

, which reflects the similarity between
the accuracy functions of the different tasks. Task efficiencies are
uniformly distributed between 𝜃min an 𝜃max, and the value 𝑓𝑚𝑎𝑥

𝑗

for each task is computed so to have 𝑎 𝑗 (𝑓𝑚𝑎𝑥𝑗
) = 𝑎max.

We also define an energy budget ratio 𝛽 , which describes how
strict is the energy budget. Formally, we have 𝛽 = 𝐵∑

𝑟 ∈𝑀 𝑑𝑚𝑎𝑥 ·𝑠𝑟
,

where 𝑑𝑚𝑎𝑥 = max𝑗∈ 𝐽 (𝑑 𝑗 ). The closest 𝛽 is to zero, the stricter the
energy budget constraint becomes.
Baselines.We benchmark the performance of DSCT-EA-approx
against 3 different solutions:

- DSCT-EA-UB: an upper bound provided by DSCT-EA-FR-
Opt, which solves the fractional relaxation DSCT-EA-FR.

- EDF-NoCompression: here, no compression is applied, i.e.,
tasks are always fully processed, performing 𝑓𝑚𝑎𝑥 floating
operations. We use the EDF (Earliest Deadline First) strategy
combined with scheduling on the machine with the least
amount of work [29] to determine where tasks should be
scheduled. Scheduling is performed until the energy budget
is reached, at which point no further tasks are scheduled.

- EDF-3CompressionLevels: this algorithm considers a dis-
crete number of compression levels for neural networks.
Three compression levels are used, corresponding to accu-
racy levels of 27%, 55%, and 82%. A strategy based on prior
research [11] is implemented. Like the previous approach,
tasks are scheduled until the energy budget is reached.

Performance guarantees To assess the performance of our al-
gorithm, we analyze the optimality gap for solutions provided by
DSCT-EA-approx, which indicates the deviation from optimality.
We consider a set of 𝑛 = 100 tasks and 𝑚 = 5 machines, with
deadline tolerance 𝜌 = 0.35 and energy budget ratio 𝛽 = 0.5.

We vary the task heterogeneity ratio 𝜇 between 5.0 and 20.0,
conducting 100 experiments for each value of 𝜇, and collect the
mean, maximum, and minimum accuracy values.

Figure 3 illustrates the results of these experiments. It can ob-
served that, on average, we are quite far from reaching the pes-
simistic lower bound of Eq. 13, which may only be achieved in very
specific and rare scenarios.
Execution time analysisWe compare the execution time ofDSCT-
EA-approx with that of an optimal solution for DSCT-EA, denoted
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Figure 3: Optimality gap (average accu-
racy difference between DSCT-EA-UB and
DSCT-EA-approx) over 100 experiments
with varying task heterogeneity.

(a) Execution time over
number of jobs

(b) Execution time over
number of machines

Figure 4: Execution times of DSCT-EA-approx vs
DSCT-EA-Opt [1] for instances with increasing
(a) numbers of tasks, with𝑚 = 5 and (b) number
of machines, with 𝑛 = 50.

Figure 5: Average task accuracy
for DSCT-EA-approx and the base-
lines over energy budget ratio 𝛽,
for𝑚 = 2 and 𝑛 = 100.

by DSCT-EA-Opt, which is computed using the cvx-MOSEK soft-
ware [1], a widely used commercial solver for solvingMixed-Integer
Programs (MIP). We considered 2 distinct scenarios: (i) when in-
creasing the number of tasks from 𝑛 = 10 to 𝑛 = 500, keeping fixed
𝑚 = 5 machines, and (ii) when increasing the number of machines
from 𝑚 = 2 to 𝑚 = 10, fixing 𝑛 = 50 tasks. We considered an
average over 10 instances for each experiment analyzed and a time
limit of 60𝑠 .

The results are shown in Figs. 4a and 4b respectively. We can
observe that the solver (DSCT-EA-UB) could handle for only small
instances before reaching the time limit (for experiments 1 and
2, respectively, 𝑛 = 30 and𝑚 = 4). On other hand, our approach,
DSCT-EA-approx, was capable of managing large instances with
hundreds of tasks and several machines.

We also evaluated the execution time of DSCT-EA-FR-Opt
against the Mosek solver applied to DSCT-EA-FR, varying the num-
ber the tasks from 100 to 500, fixing𝑚 = 5. The results are described
in Table 1. We observe that the developed algorithm DSCT-EA-FR-
Opt provides faster results for all instances tested, even with a
non-optimized python implementation.

Table 1: Comparison of Execution Times for DSCT-EA-FR-Opt
and DSCT-EA-FR [Mosek]

Number of tasks 100 200 300 400 500

DSCT-EA-FR-Opt (s) 1.05 2.66 7.75 13.52 26.2
DSCT-EA-FR [Mosek] (s) 1.11 4.26 11.01 21.23 38.07

Comparison with the State-of-the-Art In this section, we com-
pare the performance of DSCT-EA-approx against several state-of-
the-art approaches under different energy constraints. We tested
DSCT-EA-approx against EDF-NoCompression, EDF-3Compres-
sionLevels, as well as the optimal solution DSCT-EA-UB.

We varied the energy budget ratio from 𝛽 = 0.1 to 𝛽 = 1.0
to explore a wide range of energy constraints. Additionally, we
considered 𝑛 = 100 tasks,𝑚 = 2machines, and a deadline tolerance
value 𝜌 = 1.0. All tasks were assumed to be uniform with 𝜃 = 0.1.

Fig. 5 illustrates the average accuracy under varying energy bud-
get ratios. We can observe that, for 𝛽 close to zero, the average

accuracy is low due to the stringent energy budget. In general,
DSCT-EA-approx presents a near optimal average accuracy, which
almost matches DSCT-EA-UB and clearly outperforms other solu-
tions. For 𝛽 = 1.0, the average accuracy for all methods converges
to 𝑎max, since the energy budget allows the tasks be fully processed.
Energy Gain. Note, that, using our solution, DSCT-EA-approx,
70% of the energy can be saved up while only reducing by 2% the
average task accuracy, compared to a scenario without compression,
achieving a high energy sobriety.
Workload Balancing with Heterogeneous Machines and
Tasks. Lastly, we explore howDSCT-EA-approx balanced the work-
load across machines with different energy efficiencies and speeds.
We consider a simple scenario with𝑚 = 2, where machine 1 has
speed 𝑠1 = 2 TFLOPS and energy efficiency 𝐸1 = 80 GFLOPS/W,
while for machine 2 we have 𝑠2 = 5 TFLOPS and 𝐸2 = 70GFLOPS/W.
These values were chosen according to [7]. Essentially, machine 1
is slower but more energy efficient than machine 2.

We used 𝑛 = 100 tasks and looked at two 2 distinct scenarios. In
the first one (Uniform Tasks), we used a batch of sets with efficiency
value 𝜃 uniformly distributed between 0.1 and 4.9. In the second
scenario (Earliest High Efficient Tasks), we divide tasks into two
sets: the earliest 30% of tasks (according to their deadline) have
high efficiency (4.0 ≤ 𝜃 ≤ 4.9), while the remaining ones are not
very efficient (0.1 ≤ 𝜃 ≤ 1.0). All the experiments used a deadline
tolerance value 𝜌 = 0.01, indicating very strict deadlines.

Figs. 6a and 6b display the final energy profile computed by
DSCT-EA-approx for both machines, with varying energy budget
ratios 𝛽 , for scenarios Uniform Tasks and Earliest High Efficient
Tasks, respectively. Recall that by energy profile we mean how
the workload (in seconds) is distributed across the two machines
by DSCT-EA-approx, which considers energy constraints during
scheduling. Fig. 6a shows that, unsurprisingly, the computed profile
for scenario Uniform Tasks is very close to the naive one. The same
cannot be said about the Earliest High Efficient Tasks scenario,
as Fig. 6b shows a behavior that sensibly deviates from the naive
profile.

For 𝛽 ≤ 0.4, there’s a notable difference between the energy pro-
files of machines 1 and 2 compared to the last deadline 𝑑𝑚𝑎𝑥 . This
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(a) Uniform Tasks (b) Earliest High Efficient Tasks

Figure 6: Energy profile of 2 machines when varying the
energy budget ratio. Machine 1 is more energy efficient than
machine 2.

difference arises because there’s a significant refinement in the pro-
file caused by tasks with high efficiency values 𝜃 being constrained
by the deadline on machine 1. Consequently, the refinement in
the profile increases the workload on machine 2 to accommodate
these tasks. For example, for 𝛽 = 0.4, the naive profile indicates
𝑝𝑛𝑎𝑖𝑣𝑒1 = 1.96s and 𝑝𝑛𝑎𝑖𝑣𝑒2 = 0.0. However, the final profile yields
𝑝1 = 1.26s and 𝑝2 = 0.25s. Thus, the profile was refined during
the optimal algorithm, leading to an increase of the workload of
machine 2.

7 CONCLUSION
In this paper, we introduced a novel scheduling system for deep
learning inference tasks, incorporating neural network compres-
sion, deadlines, and energy constraints. We formulated the problem
as a Mixed-Integer Program and developed an exact algorithm for
its fractional relaxation and an approximation algorithm for the
original problem.

Our evaluations demonstrate that our algorithm outperforms
traditional scheduling methods under various energy budgets and
nearly achieves optimal performance. Looking ahead, we identify
the integration of renewable power sources into the scheduling
problem as promising avenues for future research. Moreover, we
intend to consider in the problem model the energy consumption
resulted from communication of devices.
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