
MDjeep
MDjeep is a software tool for Discretizable Distance Geometry (version 0.3.2).

Copyright (C) 2024, A. Mucherino, D.S. Goncalves, C. Lavor, L. Liberti, J-H.
Lin, N. Maculan

GNU General Public License v.3 (see below).

Discretizable Distance Geometry consists of a subclass of problems for which
the search space can be discretized and reduced to a tree. Given a graph
G = (V,E, d), with vertex set V , edge set E indicating whether the distance
between two vertices is known or not, and a weight function d providing the
numerical values for such distances, an instance of this problem (in dimension 3)
falls in the discretizable subclass where there exists a vertex order on V such
that:

1. the first 3 vertices in the order form a clique with exact distances;
2. for all other vertices with rank i > 3, there must exist three reference

vertices j1, j2 and j3, such that:
• j1 < i, j2 < i, j3 < i, (j1, i) ∈ E, (j2, i) ∈ E, (j3, i) ∈ E.

In this version, we suppose that only one of the three distances d(j1, i), d(j2, i)
and d(j3, i) can be represented by an interval, while the others are supposed to
be exact (ie, its lower and upper bounds are closer than the predefined error
tolerance).

Two methods are currently implemented in MDjeep for the solution of the
instances. The Branch-and-Prune (BP) algorithm is specifically designed to
solve instances satisfying the discretization assumptions given above. The
Spectral Projected Gradient (SPG) is an algorithm for local optimization, which
may be either run alone, or as a refinement step in BP. For more information
about these two algorithms, please refer to our list of publications below.

Since version 0.3.0, MDjeep is able to solve instances containing both exact and
interval distance values. Although initially written for problems arising in the
context of structural biology, MDjeep is a general solver capable to solve instances
from various applications.

Since version 0.3.2, MDjeep accepts in input MDfiles (with mdf extension).
These are text files containing some main specifications for loading the problem
instances, and for running the solution methods:

syntax: ./mdjeep [options] mdfile.mdf

The MDfile is supposed to contain the specifications for a certain number of
predefined “fields”. Every field key-word is followed by its name; key-word and
name need to be separated by a colon (:). Every value given in MDfiles appears
on a single line and needs to respect the following syntax (blank characters and
tabs cannot be included in names or values, as they both act as separators):

1

name [colon] value

After the definition of a field’s name, every new line starting with the key-word
“with” allows the user to set up one of the attributes of the field. Some attributes
may have default values, so that it is not strictly necessary to specify them in
the MDfile; other attributes are mandatory and their absence in the MDfile will
cause the termination of MDjeep with code 1.

In the MDfile, the first mandatory field is “instance”. Any string of characters (not
including blanks and tabs) is a valid name for the instance. The attributes “file”,
“format” and “separator” need to be specified in the MDfile in the subsequent
lines, starting with the key-word “with”:

• file: it’s the path and name of the distance file, where distances are arranged
line by line

• format: it’s the format that MDjeep expects to find for the distance file
• separator : this is the character that serves as a separator in the distance

file

The format can include the following elements:

• Id1 (nonnegative integer, mandatory), identifier of vertex 1 (in the line)
• Id2 (nonnegative integer, mandatory), identifier of vertex 2 (in the line)
• groupId1 (integer), group identifier of vertex 1
• groupId2 (integer), group identifier of vertex 2
• Name1 (char string), the name of vertex 1
• Name2 (char string), the name of vertex 2
• groupName1 (char string), the group name of vertex 1
• groupName2 (char string), the group name of vertex 2
• lb (double, mandatory), the lower bound for the distance between vertex

1 and 2
• ub (double, mandatory), the upper bound for the distance between vertex

1 and 2

Notice that:

• if the distance file contains additional information that MDjeep does not
need to load, the format element ignore can be used to skip this informa-
tion;

• the integer vertex labels need to be consecutive, but the smallest label is
not supposed to be equal to 0 (neither to 1); the only constraint for the
smallest label is that it needs to be nonnegative;

• the format compatible with MDjeep versions 0.1 and 0.2 is Id1 Id2 lb ub
Name1 Name2 groupName1 groupName2;

• the format introduced in MDjeep 0.3.0 is Id1 Id2 groupId1 groupId2
lb ub Name1 Name2 groupName1 groupName2;

• the separator is one single character, and it needs to be specified between
single quotes; blank characters and tabs are always separators, so if not
specified, the default separators are all blank characters and tabs.

2

Another mandatory field of the MDfile is the “method”. Two method names
can be specified in the current version of MDjeep: either “bp”, or “spg” (see
above). In both cases, a predefined set of attributes can then be specified on the
subsequent lines of the MDfile through the key-word “with”. The reader can refer
to the examples of MDfile provided with our instances to discover the several
attributes that can be set up. Many of such attributes have default values: if not
specifed in the MDfile, the default value are automatically used. Other attributes
are mandatory: when using SPG as a main method, for example, the path and
name of the text file containing the starting point (attribute “startpoint”), as
well as the maximum number of iterations (attribute “maxit”), both need to
be specified. In this version of MDjeep, it is mandatory for the bp method to
have a refinement method: this can be specified via the field “refinement”. Since
only bp and spg are currently implemented in MDjeep, the only option for bp
for a refinement method is currently spg. The key-word “with” can be invoked
multiple times for the same attribute in the same MDfile: in such a case, the
last specified value is the one that will actually be considered.

Notice that it is possible to include comments in the MDfiles: very line starting
with the character # is ignored by MDjeep. Even if not specified as a separator,
blank characters and tabs cannot be part of attribute values. They basically
work as sort of “general separators”.

MDjeep options (you can access to this list by running MDjeep without argu-
ments):

-1 | the specified method stops at the first solution
(always true for SPG)

-l | specifies after how many solutions the method should stop
(applies only to BP)

-sym | only one symmetric half of the tree is explored (for BP,
argument may be 1 or 2)

-p | prints the best found solution in a text file
-P | prints all found solutions (in the same text file)

| (when using -1, options -p and -P have the same effect)
-f | specifies the output format (default is "xyz", may be changed

to "pdb")
-consec | verifies whether the consecutivity assumption is satisfied

-nomonitor | does not show the current layer number during the execution
to improve performance

-r | obsolete, resolution parameter can now be specified in MDfile
(method field)

-e | obsolete, tolerance epsilon can now be specified in MDfile
(method field)

-v | obsolete, file formats can now be specified in MDfile
(instance field)

Notice that the use of option -nomonitor can actually improve MDjeep perfor-
mances; moreover, it is recommended to use it when redirecting stdout to a

3

file.

Since the current version of MDjeep, part of the parameters can be specified
through the MDfile, another part through the input arguments. This separation
is supposed to keep on one side the parameters that are related to a specific
method (the method attributes in the MDfile) and on another side the parameters
that are generic (the MDjeep input arguments), such as the printing parameters.
As new methods will be included in MDjeep, this separation may be subject to
change: we’ll try our best to guarantee the compatibility for future versions of
MDjeep.

Example of use for solving protein instances with low precision distances (pro-
teinSet2) :

mdjeep -1 instances/0.3/proteinSet2/proteins.mdf

If MDjeep takes too long to solve your instance, you can terminate it with the
ˆC signal and verify the current partial solution in the output file (it will be
created before termination if one of the two options -p or -P were used).

Recent changes
Version 0.3.2 vs 0.3.1

Box expanding technique

The main novelty in version 0.3.2 is given by the strategy for generating and
updating the boxes used in the coarse-grained representation implemented in
the BP algorithm to deal with instances containing interval distances. First
of all, in the versions 0.3.x (with x < 2), the arcs that are used to define the
boxes for the current vertex v are computed by using only one possible position
for every reference vertex u. As a consequence, when the box is computed (in
a way to entirely contain the arc), it cannot be guaranteed that it actually
covers the entire portion of space for the vertex v where all reference vertices are
satisfied. If another position for some of the reference vertices u is considered,
then a “similar” arc can be computed, which however doesn’t “stand” in the
same position in space: it actually “moves” wrt the first computed arc.

For this reason, the bound expanding technique (already implemented in a
primitive version since MDjeep 0.3.0) is applied to every initially computed box
as soon as they are created. The initial box is related to the arc where the
current positions of the reference vertices u are considered, and where the middle
distance of the only reference interval distance is selected. The expansion of a
box is stopped only when the newly added positions in the box are not feasible
w.r.t. all reference distances. With this bound expanding technique, the boxes
are able to cover a larger portion of the space, where the selected positions
are freely to move during the refinement step of the BP algorithm. Of course,
the box is only a rough approximation of the true portion of space where the
positions for a vertex are feasible. For this reason, every time SPG is invoked to

4

perform the refinement step, and the vertex positions are “moved” inside the
boxes with the aim of reducing the overall error on the distances, all involved
boxes are subsequently recentered, so that this rough approximation provided
by the boxes is more accurate around the currently selected vertex position.

The box centering technique basically consists in creating a new box centered in
the new selected vertex position and having the same size of the previous box
over the 3 dimensions, and by intersecting it with this previous box. Then, the
bound expanding technique is applied again to the result of the intersection to
enlarge it until all reference distances can be satisfied.

Revision of DDF and BoxDDF

The DDF and BoxDDF functions have been revised so that they can also output
the current partial error. As a consequence, the verification of the constraints in
the BP algorithm is now performed after invoking such functions (the verification
is not performed anymore directly by these two functions). This modification
allowed to implement a new version of bp_exact where all possible triplets
of discretization vertices may be tested and the one leading to the least error
propagation is chosen. When the consecutivity assumption is satisfied, bp_exact
initially chooses the 3 immediate preceding vertices: in this case, the verification
of other triplets is performed only when it is detected that the triplet of immediate
preceding vertices forms a flat angle.

Using information about symmetric vertices

In bp_exact, the verification on the value of the omega cosine (which can reveal
that the angle is actually flat and therefore it is not necessary to branch at
this layer of the search tree) is replaced by a new implementation which is
mostly based on the symmetries of the search tree. Up to now, the symmetry
theory has been fully developed only for DDGP instances satisfying the so-called
“consecutivity assumption” (we say that these instances belong to the DMDGP
class). Given a vertex v, and for a given selection of its reference vertices u,
two new branches rooted at v can be defined: we know that both branches can
contain a valid realization only if the vertex v is symmetric. Therefore, if during
the exploration, in bp_exact, a valid realization was already found by exploring
the first branch rooted at v, then it is not necessary to explore the second branch,
unless it is symmetric (the verification of the symmetries is performed in the
main by invoking the function findSymmetries). However, for the vertices that
are symmetric, and for the instances which do not satisfy the consecutivity
assumption, this theoretical result cannot be exploited. In the current version of
MDjeep, when the information about the symmetries cannot be exploited, we
only use the information about cosine of omega, so that to prune the second
branch of the vertex v only if this cosine is smaller than a predefined value (0.05)
and if the exploration of the first branch had not led to the construction of any
valid realizations.

5

Introducing the MDfile

The MDjeep file (MDfile, with extension mdf) is introduced in MDjeep 0.3.2,
which allows us to provide, in one unique text file, the specifications necessary
to load a DDGP instance, as well as to select the method we wish to use to solve
it, with all its attributes. Apart from the instance name (that is subsequently
used by MDjeep to make reference to the instance), the text file containing the
distance list defining the instance can directly be specified in the MDfile, together
with the format for every line of this distance list. This format specification
allows us to identify in the distance list the several necessary elements, such as
the vertex identifiers, the lower and upper bounds for the distances, and others.

Together with the new parser, several verifications on the input files (both
MDfiles and distance lists) have been implemented. For the MDfiles, the precise
syntax described in the README file needs to be respected. For the text file
containing the distance lists (whose name can be specified in the MDfile), MDjeep
verifies first of all that every line of the text files contains a list of elements of the
same type (distinguishing among integer, real, and alphanumeric elements). It is
subsequently verified that the type list in every line of the file is compatible with
the format specified in the MDfile (for example, a string of alphabet characters
cannot be considered as a valid lower bound for the distances). It is also verified
that there are no different lines in the text file making reference to the same
pair of vertices (this would imply that we have two different distances for the
same pair of vertices). Before invoking the BP method, it is verified whether
the discretization assumptions are satisfied (prerequisite for BP). To this aim,
MDjeep verifies (in the given order) whether: 1. there are enough distances to
perform the discretization, 2. there are enough exact distances, 3. the first 3
vertices form a clique of exact distances, 4. the DDGP assumptions are satisfied,
5. there exists at least one triplet of vertices for every vertex that forms a
non-flat angle, 6. and (finally, only if it is detected that all distances are exact
and precise) it is verified whether the consecutivity assumption is satisfied.

Launching SPG alone

With the idea to implement in the future other distance geometry methods inside
MDjeep (as a main method or as a refinement method), it is now possible to
launch with MDjeep the execution of the spectral projected gradient method
(SPG), already implemented since MDjeep 0.3.0 but used then only as a refinement
method. The selected solution method can be specified in the MDfile, together
with its list of attributes (many attributes have their own default values, which
will be used in case they won’t be specified). The attributes startpoint (name of
the file containing the starting point) and maxit (maximum number of iterations)
are mandatory when using SPG as a main method.

New and old options

A new option (which can be specified through MDjeep input arguments) has

6

been added, which allows to specify the maximum number of solutions that the
selected method should find (it currently applies only to BP, as SPG can provide
one solution only). This option comes as an alternative to option -1, where
the number of solutions is limited to 1; with the new option -l, the number of
solution can be limited to any specified value. The default maximum number of
solutions is set to 10 in MDjeep 0.3.2.

The options -e, -r and -v are now obsolete. The values of the tolerance eps
(option -e) and the resolution parameter (option -r) can now be set up directly
in the MDfile (which is read by MDjeep before verifying the other command line
options). As for the option -v, the previous file formats used in MDjeep versions
0.1 and 0.2 can now be explicitly specified in the MDfile (the format is: Id1 Id2
lb ub Name1 Name2 groupName1 groupName2).

Version 0.3.1 vs 0.3.0

Verification on problem instances

The verification of the discretization assumptions is now performed by using
external functions (functions of C file “vertex”), the functions are initialClique,
isDDGP and isDMDGP. For MDjeep 0.3.1 to solve the input instance, it is necessary
that the function isDDGP gives a positive answer; if the result of isDMDGP is
negative, MDjeep can still solve the instance (this verification is in fact now
optional, and performed automatically only when the instance is composed only
by exact distances).

The verification of the existence of the symmetric vertices is also now performed
by an external function of the “vertex” C file (function findSymmetries). The
new implemented method has a lower complexity wrt the method implemented
directly in the main of version 0.3.0 (old complexity: |V |3, new worst-case
complexity: |V | ∗ |E|, where V is the instance vertex set, and E is its edge set).

Preselection of reference vertices

The computation of the reference vertices to be used in the BP algorithm is
performed only once, and the triplets of reference vertices are kept in memory
for the several recursive calls to BP. When more than one reference triplet can
be selected, the optimal one is searched (basically, when all distances are exact,
we avoid to select triplets leading to the definition of angles close to a multiple
of π; whereas if one distance is an interval, we simply take the triplet with two
exact distances and the interval with the smallest range).

Resolution parameter

The resolution parameter is now disabled when stepping from a symmetric side
to the other of the search tree (when the option -sym is not used). In this way,
solutions obtained from both symmetric parts of the search tree will be contained
in the solution set.

7

A new pruning device

A new pruning device, named BoxDDF, is integrated in MDjeep 0.3.1 in order to
compute the distances between pairs of boxes “enveloping” pairs of vertices with
known distance: if the available distance cannot be satisfied by the two boxes,
then it is not necessary to call SPG in the attempt to refine the current solution
(because the infeasibility cannot be eliminated as long as the vertex positions are
constrained to be in these boxes). This improvement was suggested by Douglas
S. Gonçalves.

A separated implementation for precise distances

In order to avoid lowering the performances (w.r.t. the performances that MDjeep
0.2 is able to give) when dealing with instances consisting of only exact (and
very precise) distances, MDjeep 0.3.1 follows two separated paths for the solution
of instances containing or not interval distances. The function bp_exact was
therefore included, which is strongly inspired by the version of bp given in
MDjeep 0.2. We also point out that the resolution parameter is now disabled
when the instance at hand only contains exact distances.

Bug report
From the most recent to the oldest.

WARNING: The very last bug fix made MDjeep slower when exploring the
entire search tree for certain instances.

MDjeep 0.3.2 (current version)

Since the version 0.3.0, MDjeep attempts avoiding to generate solutions that are
too close to other found solutions. This is regulated by the resolution parameter.
However, the comparisons were actually performed too early, i.e. at tree levels
where potentially the two compared solutions could still consistently diverge.
This bug was discovered by Therese Malliavin and was fixed in the commit
“version 0.3.2 patch 2”.

The arclength in splitOmegaIntervals was not properly computed. The strategy
for expanding the boxes is probably responsable for alleviating the negative
impacts of this bug. This bug was fixed in the commit “version 0.3.2 patch 2”.

The method implemented in the main function for the identification of triplets of
reference vertices was raising a false warning. This warning is supposed to warn
the user about the collinearity of the reference vertices. The bug was discovered
by Wagner Rocha and has been fixed in the commit “version 0.3.2 patch”.

The cosomega function could have been stuck in an infinite loop in some particular
conditions. This bug was discovered by Simon Hengeveld and has been fixed in
the commit “version 0.3.2 patch”.

8

MDjeep 0.3.0

The method implemented for the computation of the boxes was giving wrong
results in some particular cases. The bug was probably not detected during the
development of MDjeep 0.3.0 because SPG had just been included in order to
“correct” a potential error propagation.

The use of the bound expansion feature in SPG was allowing the generation of
solutions that were not included in the original set of boxes.

Both bugs have been fixed for the release of MDjeep 0.3.1.

References
If you use and refer to this sofware in your publications, please cite the appropriate
paper(s). Follows a list of main publications:

1. A. Mucherino, J-H. Lin, An Efficient Exhaustive Search for the Discretiz-
able Distance Geometry Problem with Interval Data, IEEE Conference
Proceedings, Federated Conference on Computer Science and Informa-
tion Systems (FedCSIS19), Workshop on Computational Optimization
(WCO19), Leipzig, Germany, 135-141, 2019. PDF.

2. A. Mucherino, D.S. Gonçalves, L. Liberti, J-H. Lin, C. Lavor, N. Maculan,
MD-jeep: a New Release for Discretizable Distance Geometry Problems
with Interval Data, IEEE Conference Proceedings, Federated Conference
on Computer Science and Information Systems (FedCSIS20), Workshop
on Computational Optimization (WCO20), Sofia, Bulgaria, 289-294, 2020.

3. A. Mucherino, J-H. Lin, D.S. Gonçalves, A Coarse-Grained Representation
for Discretizable Distance Geometry with Interval Data, Lecture Notes in
Computer Science 11465, Lecture Notes in Bioinformatics series, I. Rojas
et al (Eds.), Proceedings of the 7th International Work-Conference on
Bioinformatics and Biomedical Engineering (IWBBIO19), Part I, Granada,
Spain, 3-13, 2019.

4. D.S. Gonçalves, A. Mucherino, C. Lavor, L. Liberti, Recent Advances on
the Interval Distance Geometry Problem, Journal of Global Optimization
69(3), 525-545, 2017.

5. D.S. Gonçalves, A. Mucherino, Discretization Orders and Efficient Com-
putation of Cartesian Coordinates for Distance Geometry, Optimization
Letters 8(7), 2111-2125, 2014.

6. V. Costa, A. Mucherino, C. Lavor, A. Cassioli, L.M. Carvalho, N. Mac-
ulan, Discretization Orders for Protein Side Chains, Journal of Global
Optimization 60(2), 333-349, 2014.

7. L. Liberti, C. Lavor, N. Maculan, A. Mucherino, Euclidean Distance
Geometry and Applications, SIAM Review 56(1), 3-69, 2014.

9

8. D.S. Gonçalves, A. Mucherino, C. Lavor, An Adaptive Branching Scheme
for the Branch & Prune Algorithm applied to Distance Geometry, IEEE
Conference Proceedings, Federated Conference on Computer Science and
Information Systems (FedCSIS14), Workshop on Computational Optimiza-
tion (WCO14), Warsaw, Poland, 463-469, 2014.

9. A. Mucherino, C. Lavor, L. Liberti, N. Maculan (Eds.), Distance Geometry:
Theory, Methods and Applications, 410 pages, Springer, 2013.

10. C. Lavor, L. Liberti, A. Mucherino, The interval Branch-and-Prune Al-
gorithm for the Discretizable Molecular Distance Geometry Problem with
Inexact Distances, Journal of Global Optimization 56(3), 855-871, 2013.

11. A. Mucherino, On the Identification of Discretization Orders for Distance
Geometry with Intervals, Lecture Notes in Computer Science 8085, F.
Nielsen and F. Barbaresco (Eds.), Proceedings of Geometric Science of
Information (GSI13), Paris, France, 231-238, 2013.

12. A. Mucherino, C. Lavor, L. Liberti, The Discretizable Distance Geometry
Problem, Optimization Letters 6(8), 1671-1686, 2012.

13. A. Mucherino, C. Lavor, L. Liberti, Exploiting Symmetry Properties of the
Discretizable Molecular Distance Geometry Problem, Journal of Bioinfor-
matics and Computational Biology 10(3), 1242009(1-15), 2012.

14. C. Lavor, L. Liberti, N. Maculan, A. Mucherino, The Discretizable Molec-
ular Distance Geometry Problem, Computational Optimization and Appli-
cations 52, 115-146, 2012.

15. C. Lavor, L. Liberti, A. Mucherino, On the Solution of Molecular Distance
Geometry Problems with Interval Data, IEEE Conference Proceedings,
International Workshop on Computational Proteomics (IWCP10), Inter-
national Conference on Bioinformatics & Biomedicine (BIBM10), Hong
Kong, 77-82, 2010.

16. A. Mucherino, L. Liberti, C. Lavor, MD-jeep: an Implementation of a
Branch & Prune Algorithm for Distance Geometry Problems, Lectures
Notes in Computer Science 6327, K. Fukuda et al. (Eds.), Proceedings
of the 3rd International Congress on Mathematical Software (ICMS10),
Kobe, Japan, 186-197, 2010.

The complete list of publications can be found on this page.

Licence
This program is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABIL-

10

https://www.antoniomucherino.it/en/publications.php

ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

You should have received a copy of the GNU General Public License along with
this program. If not, see https://www.gnu.org/licenses/.

11

https://www.gnu.org/licenses/

	MDjeep
	Recent changes
	Version 0.3.2 vs 0.3.1
	Version 0.3.1 vs 0.3.0

	Bug report
	MDjeep 0.3.2 (current version)
	MDjeep 0.3.0

	References
	Licence

