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This article addresses ambiguities regarding the exis-
tence and definition of a phase correction term in phase
and amplitude optical field encoding techniques. We
present a generalized mixed Fourier-Taylor series ex-
pansion that is valid for any phase-wrapping interval.
Our theoretical analysis and numerical validations con-
firm that maintaining consistency within a given phase-
wrapping convention ensures equivalent results and
reconciles previously conflicting interpretations.
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Advancements in optical engineering have continually re-3

fined our ability to manipulate light at microscopic levels.4

Among these developments, the method introduced by Davis5

et al. [1] for encoding both amplitude and phase information6

onto phase-only filters stands out. This well-known approach7

employs a spatially-modulated blazed phase grating to tailor8

the diffraction efficiency in the first order. This technique has9

been applied for wavefront shaping tasks such as the gener-10

ation of vortex beams [2–4], Bessel beams [5, 6] and mode-11

matching for photonic structures excitation [7]. It has permitted12

advances in fiber communications [8], nonlinear fluorescence13

microscopy [9], imaging [10] and holographic data storage [11].14

It is also central for the creation and manipulation of high-15

dimensionality entangled states [12, 13] and more recently for16

optical skyrmions [14, 15]. Independent work [16] used a similar17

approach to achieve 1D phase and amplitude shaping using a18

phase-only 2D mask in the context of femtosecond laser pulse19

shaping using 4 f -lines.20

Subsequently, Karimi et al. [2] proposed improvements to the21

method proposed in [1] by accounting for a phase correction22

term. More recently, Clark et al. [17] conducted a comparative23

study of various complex amplitude encoding approaches, con-24

cluding that the method introduced by Davis et al. originally25

yielded superior results. However, confusion persists regard-26

ing the use of the phase correction term highlighted by Karimi27

et al. [2], its application being dependent on the conventions28

adopted in the Fourier series expansion.29

Our contribution addresses the apparent contradictions in30

the current literature. In particular, we demonstrate that these31

discrepancies are due to different phase-wrapping conventions,32

which are indeed equivalent provided that consistency is main-33

tained within a given convention across all the calculations re-34

quired to generate the blazed grating. For instance, one con-35

vention wraps the phase between [−π,+π] [17], while another36

wraps it between [0, 2π] [2]. Each convention has a correspond-37

ing correct expression for the phase correction term. Issues occur38

when expressions valid for one range are applied to another. We39

assert that any 2π range [α, α + 2π] can be used, provided that40

the specific expression for that wrapping interval is correctly41

derived. Furthermore, we present a generalized expression that42

depends on α, making it valid for any wrapping convention.43

Our work provides theoretical analysis and numerical examples44

to demonstrate the implications of these conventions, thereby45

resolving the ambiguities and enhancing the understanding of46

amplitude and phase encoding techniques.47

1. CLARIFICATION ON THE FOURIER CONVENTIONS48

We hypothesize that the contradictory conclusions observed in49

the works of Karimi et al. [2] and Clark et al. [17] stem from50

ambiguities concerning the valid range over which the expres-51

sions apply. Specifically, the phase correction term mentioned52

in [2] is applicable only when the phase-wrapping convention is53

[0, 2π]. Since many simulation tools typically wrap the phase in54

[−π,+π], it is crucial to be mindful of the conventions used.55

To substantiate our hypothesis, we present an analysis using56

a Fourier-Taylor expansion, akin to that in [1], but adapted to57

the phase convention in the [α, 2π + α] range, valid for any α.58

Additionally, we provide a straightforward example to clearly59

demonstrate the implications of these conventions.60

A. Derivation of the mixed series with [α, 2π + α] convention61

The transfer function of the SLM is written as:62

T(u) = eiM(u)φ(u) (1)

where M(u) represents the amplitude and φ(u) represents the63

phase of the shaping as a function of the position u. Following64

the work of [1], we propose to rewrite this function. We perform65

a Taylor series expansion of T with respect to M(u) around 0:66

T(u) =
+∞

∑
p=0

1
p!

∂pT(u)
∂M(u)p

∣∣∣∣∣
M=0

M(u)p (2)



We now consider the pth derivative of T with respect to M(u),67

which is written as:68

∂pT(u)
∂M(u)p = [iφ(u)]peiM(u)φ(u) (3)

Since the function φ is 2π-periodic and varies between α and69

2π + α, the pth derivative of T with respect to M(u) evaluated70

at M(u) = 0 is also 2π-periodic. Therefore, we expand it into a71

Fourier series with respect to φ(u):72

∂pT(u)
∂M(u)p

∣∣∣∣∣
M=0

=
+∞

∑
n=−∞

cn,peinφ(u) (4)

with cn,p being Fourier coefficients defined as:73

cn,p =
1

2π

∫ 2π+α

α

∂pT(u)
∂M(u)p

∣∣∣∣∣
M=0

e−inφ(u)dφ(u) (5)

Inserting equation Eq. (4) into equation Eq. (2) yields the follow-74

ing expression for T:75

T(u) =
+∞

∑
n=−∞

+∞

∑
p=0

Bn,p M(u)peinφ(u) (6)

with Bn,p coefficients defined as:76

Bn,p(u) =
1

2πp!

∫ 2π+α

α

∂pT(u)
∂M(u)p

∣∣∣∣∣
M=0

e−inφ(u)dφ(u) (7)

We rewrite equation Eq. (6) as:77

T(u) =
+∞

∑
n=−∞

Tn(u)einφ(u) with Tn(u) =
+∞

∑
p=0

Bn,p(u)M(u)p

(8)
From equation Eq. (3), we find:78

∂pT(u)
∂M(u)p

∣∣∣∣∣
M=0

= [iφ(u)]p (9)

Using this expression in Eq. (7) to rewrite the coefficients Bn,p79

yields:80

Bn,p(u) =
1

2πp!

∫ 2π+α

α
[iφ(u)]pe−inφ(u)dφ(u) (10)

The following expression is obtained for the coefficients Tn:81

Tn(u) =
+∞

∑
p=0

1
2πp!

∫ 2π+α

α
[iφ(u)M(u)]pe−inφ(u)dφ(u) (11)

By interchanging the integral and the sum, we can evaluate the82

following series:83

+∞

∑
p=0

1
p!
[iφ(u)M(u)]p = eiM(u)φ(u) (12)

and rewrite Tn as:84

Tn(u) =
1

2π

∫ 2π+α

α
eiM(u)φ(u)e−inφ(u)dφ(u) (13)

We do a change of variable ψ = φ − α − π and obtain :85

Tn(u) =
1

2π

∫ +π

−π
ei(ψ(u)+α+π)(M(u)−n)dψ(u) (14)

We get the constant term out of the integral and evaluate the86

integral between −π and +π :87

Tn(u) =
ei(π+α)(M(u)−n)

i2π(M(u)− n)
[eiπ(M(u)−n) − e−iπ(M(u)−n)] (15)

We use Euler formula to simplify the exponential terms in brack-88

ets and obtain the corrected Tn(u) formula :89

Tn(u) =
sin(π[n − M(u)])

π[n − M(u)]
eiΦc(u,α,n)

with Φc(u, α, n) = (π + α)[M(u)− n]
(16)

Examining expression Eq. (16), it becomes evident that the90

presence of the phase correction term is contingent on the spe-91

cific phase-wrapping convention used, specifically on the value92

of α. Notably, with α = 0, we obtain the correction term93

Φc(u, n) = π[M(u) − n] which is coherent with [2]. In con-94

trast, with α = −π, we obtain the correction term Φc(u, n) = 095

which is coherent with [17]. Our phase correction term Φc(u, n)96

is indeed a generalized phase correction term whose expression97

depend on the considered α, thus reconciling conflicting results98

presented in the literature.99

B. Numerical example100

To validate the implications of employing different Fourier con-101

ventions, we present a numerical example comparing the exact102

expression T with its mixed Fourier-Taylor series expansions Tα
103

for various arbitrary values of α = −π, 0, 3π
2 . These expansions104

are defined as follows:105

Tα =
N

∑
n=−N

eiΦc(α,n) sin(π(n − M))

π[n − M]
einφ (17)

In these equations, N represents the number of terms in-106

cluded in the expansion, and M is a constant amplitude value107

used for the comparison. The phase term φ is varied between108

−2π and 4π to comprehensively test the validity domains.109

As illustrated in Figure 1, with N = 100 and M = 0.33, the110

real and imaginary parts of T are compared with those of the111

mixed Fourier-Taylor series expansions Tα. The value M =112

0.33 is chosen arbitrarily and the number of terms N = 100 is113

selected to ensure a high level of accuracy in the series expansion,114

providing a sufficient number of terms to approximate the exact115

transfer function closely.116

The figures clearly show that the real and imaginary parts117

of the transfer function T align perfectly with their respective118

mixed Fourier-Taylor series expansions Tα
n only within the spe-119

cific phase-wrapping range [α, 2π + α], that repeats every 2π.120

Outside this range, indicated by the gray areas in the figure, the121

expansions do not align with the exact transfer function. This122

highlights the necessity for consistency in applying the correct123

phase term across various wrapping ranges and confirms the124

validity of the generalized expression that depends on α.125

2. ENCODING OF AMPLITUDE AND PHASE IN 2D126

To test our generalized expression Eq. (16) for 2D amplitude127

and phase modulation, we present simulations and experimen-128

tal results, based on the approach described in [1], where we129

generate a truncated sinusoidal pattern as described in [7]. The130

aim is to demonstrate the effectiveness of our generalized mixed131

Fourier-Taylor expansion expression for tailoring a 2D beam132

profile under various phase-wrapping conventions.133
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Fig. 1. Real and imaginary parts of the transfer function T and
its corresponding mixed Fourier-Taylor series expansions Tα

for different phase-wrapping conventions. Each row corre-
sponds to a different α value: (a) −π, (b) 0, and (c) 3π/2. The
grey areas indicate ranges where the expansions are not ex-
pected to align with the exact transfer function.

A. Experimental and Simulation Setup134

The setup is a 2 f optical system in which a phase-only mask135

is placed in the Fourier plane of a lens. The optical field Ei136

incident on the phase mask is a 2D Gaussian with a waist w =137

4.3 mm which is modulated by the phase mask, thus resulting in138

a modulated field Em as illustrated in figure 2. A lens with a focal139

length f = 300 mm is used to produce the Fourier transform140

of the modulated beam Em in the image plane. In practice, the141

phase mask is a Liquid Crystal Spatial Light Modulator (LCSLM)142

that accurately approximates a blazed phase grating, provided143

that the phase grating periodicity is large compared to the pixel144

size of the LCSLM.145

We aim at generating a truncated sinusoidal pattern with a146

period of 360 µm, as illustrated on the simulations presented in147

Figure 3. We follow the approach described in [1] and use our148

mixed Fourier Taylor expansion expression Eq. (16) to generate149

the appropriate phase masks.150

Fig. 2. Optical setup. The incident beam Ei phase is modu-
lated by the mask and the Fourier transform of the modulated
beam is obtained in the image plane. The targeted profile, a
truncated sinusoidal pattern, is generated in the first order of
diffraction as illustrated in both intensity and phase maps.

B. Results and Discussion151

We examine only the beam profile corresponding to the first152

order of diffraction in the image plane as it corresponds to the153

targeted sinusoidal profile. Figure 3 presents the resulting inten-154

sities for the truncated sinusoidal pattern under various phase-155

wrapping conventions and phase correction terms.

Fig. 3. Simulated profile intensities with different phase-
wrapping conventions and phase correction terms. Each row
corresponds to a different wrapping convention : (a) [−π,+π],
(b) [0, 2π], and (c) [ 3π

2 , 7π
2 ]. Each column applies the phase cor-

rection term Φc according to a different wrapping convention.

156

Each row represents a different phase-wrapping convention157

used in the simulations: row (a) uses the wrapping convention158

[−π,+π], similar to the convention used in [1], row (b) uses159

the wrapping convention [0, 2π], corresponding to what is pro-160

posed in [2], and row (c) uses the arbitrary wrapping convention161

[ 3π
2 , 7π

2 ]. Each column shows the application of the phase cor-162

rection term Φc from Eq. (16) according to a specific wrapping163

convention: column (i) applies the phase correction term for164

α = −π, column (ii) for α = 0, and column (iii) for α = 3π
2 .165

The results illustrate that when using the [−π,+π] conven-166

tion, i.e α = −π, no phase correction term is needed, as the167

phase naturally aligns within this range. For other conventions,168

as illustrated by the red frames, applying the appropriate phase169

correction term according to the selected wrapping range en-170

sures accurate phase shaping and avoids discrepancies. Specifi-171

cally, the intensity profiles show that the target beam profile is172

correctly formed only when the phase correction term matches173

the phase-wrapping convention used in the beam shaping simu-174

lation.175

This validation further confirms the robustness of our gener-176

alized mixed Fourier-Taylor expansion expression for phase cor-177

rection across different phase-wrapping conventions. It enables178

precise amplitude and phase shaping in optical beam shaping179

applications, ensuring that the desired 2D beam profile is accu-180

rately achieved regardless of the phase-wrapping convention181

employed.182

Note the crucial difference between the wrapping convention183
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Fig. 4. Experimental profile intensities with different phase-
wrapping conventions and phase correction terms. Each row
corresponds to a different wrapping convention : (a) [−π,+π],
(b) [0, 2π], and (c) [ 3π

2 , 7π
2 ]. Each column applies the phase cor-

rection term Φc according to a different wrapping convention.

used to calculate the phase mask that defines the blazed grat-184

ing and the effective phase modulation range of experimental185

systems used to actually implement this blazed grating. The186

wrapping convention impacts the position of the grating grooves187

relative to the amplitude modulation envelope, thus affecting188

the generated profile. However, once this profile is generated,189

the actual phase modulation range [γ, γ+ 2π] of the device used190

experimentally does not matter.191

To illustrate, we present experimental results obtained with192

the setup described at the beginning of section A. Our LCSLM193

used for the phase mask induces phase delays over a range194

[γ, γ + 2π] with γ � 1. However, the generated profile for the195

blazed grating is the same but for a global phase constant applied196

uniformly to the diffracted shaped wavefront. The quality of197

the generated profiles, highlighted in red in Figure 4, provides198

experimental proof that the effective phase modulation range199

does not need to correspond to the phase-wrapping convention200

used to calculate the mask.201

3. CONCLUSION202

This study addresses and resolves ambiguities in the phase cor-203

rection term for optical field encoding by analyzing different204

Fourier conventions. We have shown that discrepancies in the lit-205

erature arise from varying phase-wrapping conventions, which,206

when consistently applied, yield equivalent results. Our the-207

oretical analysis and numerical validations demonstrate the208

importance of selecting and adhering to appropriate Fourier209

conventions.210

We presented a generalized expression for the phase correc-211

tion term that is valid for any phase-wrapping convention. This212

expression allows for consistent and accurate phase encoding,213

crucial for the effective implementation of phase-only filters214

across various optical systems. Our approach was validated215

through simulations and experiments of 2D beam shaping, illus-216

trating the robustness of our method in achieving precise ampli-217

tude and phase modulation regardless of the phase-wrapping218

convention used.219

We hope this clarification work will help enhance the un-220

derstanding of amplitude and phase encoding techniques, pro-221

viding a clearer theoretical framework and helping to resolve222

existing ambiguities. We expect it will pave the way for more re-223

liable wavefront shaping and advance the capabilities of optical224

engineering at microscopic levels.225
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