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WETTING AND DRYING TREATMENTS WITH MESH ADAPTATION FOR

SHALLOW WATER EQUATIONS USING A RUNGE-KUTTA

DISCONTINUOUS GALERKIN METHOD

CAMILLE POUSSEL, MEHMET ERSOY, AND FRÉDÉRIC GOLAY

Abstract. This work is devoted to the numerical simulation of Shallow Water Equations involv-
ing dry areas, a moving shoreline and in the context of mesh adaptation. The space and time
discretization using the Runge-Kutta Discontinuous Galerkin approach is applied to nonlinear hy-
perbolic Shallow Water Equations. Problems with dry areas are challenging for such methods. To
counter this issue, special treatment is applied around the shoreline. This work compares three
treatments, one based on Slope Modification, one based on p-adaptation and the last one based on
eXtended Finite Element methods and mesh adaptation.

1. Introduction

This work is developed in the framework of interactions between the flow of water in sandy
beaches and the free surface flow above the sand. Simulating the flow of groundwater has been
done by Clement in 2021 [11] using the adaptive Discontinuous Galerkin method to solve Richards’
Equation (SWE). The present work aims to develop the hyperbolic part to couple it with the
parabolic one. The free surface flow over sandy beaches is modeled using the Shallow Water Equa-
tions (SWE). They are derived by considering the depth-averaged three-dimensional incompressible
Navier-Stokes Equations, assuming hydrostatic pressure distribution and neglecting vertical accel-
eration and viscous effects [16, 37].

Discontinuous Galerkin (DG) methods were introduced in 1989 by Cockburn [12] in the scope
of conservative laws. They combine the background of Finite Element (FE) methods and Finite
Volume (FV) methods since the solution is sought in a broken Sobolev space and is approximated
with discontinuous polynomials. Moreover, in the context of hyperbolic problems, numerical fluxes
are approximated, considering the problem’s physics. Due to the discontinuous approximation, the
DG methods are well adapted to non-conformal meshing. As in FV methods, increasing the DG
space approximation order introduces spurious oscillations of the numerical solutions[12, 42]. Slope
limiting [12] and moment limiting [34] can be used to counter this problem. More recently, such
methods were broadly used to solve SWE [20, 18]. DG methods can not natively treat flooding and
drying problems due to the loss of hyperbolicity on the shoreline. Consequently, a post-processing
is needed to preserve the positivity of the water height [58]. This work is devoted to analyzing three
different drying treatments for one-dimensional problems and shows the ability of a selected one for
two-dimensional problems. The first drying method is the most common one used for SWE with
dry areas and was introduced by Ern in 2007[20] and improved after that. It consists in modifying
the slope of the water height in order to remain positive. The second presented method is inspired
by work on hp-adaptation[52, 22]. It consists in doing FV methods around the shoreline. The last
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Stability Preserving Runge-Kutta; RKDG, Runge-Kutta Discontinuous Galerkin; TVD, Total Variations Diminishing;
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method is greatly inspired by the work on eXtended Finite Element (X-FE) methods[39, 32] and
mesh adaptation. It consists in virtually modifying the mesh to fit it on the shoreline. This paper
is organized as follows. In Section 2, we recall the expression of SWE in two dimensions with a
bathymetry source term. We detail the space discretization in Section 3. In Section 4, the fully
discretized DG formulation is given with modification to ensure the well-balanced property and
limit spurious oscillations. In Section 5, positivity-preserving procedures are introduced to treat
the moving shoreline. In Section 6, three one-dimensional test cases with a moving shoreline are
solved, and two two-dimensional problems with flooding and drying are solved.

2. Governing equations

The free surface flow over sandy beaches is modeled using SWE. They are derived by con-
sidering the depth-averaged three-dimensional incompressible Navier-Stokes Equations, assuming
hydrostatic pressure distribution and neglecting vertical acceleration. The reader may refer to the
original derivation in 1871 [16] and can also consider reading the derivation of viscous SWE in
[25, 37]. These two ways of derivation give the same system by neglecting viscous effects by the
end. This section recalls the expression of SWE with two different sets of variables and studies this
system’s hyperbolicity of non-linear equations.

Let us consider a finite domain Ω, a subset of R2, and consider T > 0 as the simulation time.
The gravitational acceleration is denoted by g, and zb : Ω → R is a smooth function representing
the bathymetry. The SWE can be written in its conservative way as follows:

∂th+ div(hu) = 0,

∂t(hu) + div(hu⊗ u + g h
2

2 I) = −gh∇zb,
Initial and Boundary conditions,

(1)

where the unknown are h : Ω × [0, T [→ R water height and u = (u, v)T : Ω × [0, T [→ R2 the
horizontal velocity. I denotes the identity matrix.

The three equations in System (1) express mass and momentum conservation laws. They are
driven by the fluxes

G1(U) =


qx

q2
x

h
+ g

h2

2qxqy
h

 and G2(U) =


qy
qxqy
h

q2
y

h
+ g

h2

2


and forced through the source

S(U, zb) =

 0
−gh∂xzb
−gh∂yzb


where U := (h,q)T : Ω × [0, T [→ R3 are the conservatives variables with q = hu = (qx, qy)

T the
horizontal discharge.

The System (1) can be rewritten in its vectorial form :{
∂tU + divG(U) = S(U, zb) in Ω×]0, T [,

Initial and Boundary conditions,
(2)

where G(U) = (G1(U),G2(U)). In addition, to have a correct transition between the conservative
form System (2) and its non-conservative form

J1(U) :=
∂G1(U)

∂U
and J2(U) :=

∂G2(U)

∂U
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Figure 1. Sketch of the water height (h), bathymetry (zb) and free-surface elevation
(ζ) in the context of SWE.

the Jacobian matrix of the fluxes are defined. Using the predefined variables h and zb, the free-
surface elevation ζ can be defined for all x := (x, y) in Ω and t in ]0, T [, ζ(x, t) = h(x, t) + zb(x).
Figure 1 shows a sketch of the water height (h), bathymetry (zb), and free-surface elevation (ζ) in
the context of SWE.

Understanding the hyperbolicity of System (2) is crucial as it provides valuable insights into this
conservation law system’s flow characteristics and numerical solutions. This knowledge is beneficial
when employing FV and DG methods. Additionally, the hyperbolicity of the system informs how
to handle boundary conditions effectively.

Only a condition on the water height arose by studying the hyperbolicity of SWE. This condition
will be necessary when dealing with dry areas if SWE is considered with emerging bathymetry. A
thorough study of SWE’s hyperbolicity in two dimensions can be found in [56].

We recall here that System (2) is strictly hyperbolic if the eigenvalues of

A(U) := αJ1(U) + βJ2(U)(3)

are real and distinct, with α, β ∈ R such that α2 + β2 = 1, (see [26] for further information about
hyperbolicity of systems of conservation laws). Moreover α and β can also be denoted by cos(θ)
and sin(θ) with θ ∈ R, so nθ = (cos(θ), sin(θ))T represents a certain direction in the x − y plane.
This view will be used later when approximating the fluxes at the cell interfaces.

3. Space discretization

Since the objective is to solve System (2) using a numerical scheme, defining a partition of the
computational domain Ω is mandatory. A thorough description of this mesh is described in the
following, and the way that the mesh can be adapted and modified during the simulation is also
presented.

3.1. Mesh description. The time duration [0, T ] is discretized in sub interval Tn := [tn, tn+1] for
all integer n, thus the corresponding time step is ∆tn := tn+1 − tn. Let us define En a partition of
the computational domain Ω valid for all t ∈ Tn. For the sake of simplicity, it is assumed that Ω is
a polygonal domain in two space dimensions so that En covers Ω exactly. The mesh En is composed
of quadrilateral and triangular elements not necessarily conformal.

For all elements E ∈ En, dE is its diameter defined as the ratio between its surface (sE) and
perimeter (pE) and dn := maxE∈En(dE).

The set of all open faces of all elements E ∈ En is denoted by F . Moreover, we can define two
subsets of F , F∂ for the boundary faces and F in for the interior faces:

F∂ :=
⋃

F∈∂Ω

F and F in := F\F∂ .

3



E1 E2

E3 E4 E5

E7

E6

(a) Representation
of En, F∂ (dashed
lines) and F in (solid
lines)

• •

••

•

E5

E7

n⃗
E

7
,F

3

n⃗E7,F4

n⃗
E

5
,F

1
9

n⃗E5,F17

n⃗E5,F19

n⃗
E
5 ,F

18

(b) Description of
E5 and E7 and their
normal vectors

Figure 2. Exemple of a mesh

For a given element E ∈ En, there exists a set of face FE := {F ∈ F|F ∈ ∂E} which defines
boundaries of E. Then for all interior faces of E, i.e. ∀F ∈ FE ∩ F in, there exists a neighboring
element Er such that E∩Er = F . Consequently the normal unit vector ~nE,F := (nx, ny)

T pointing

from E to Er can be defined. Moreover for all boundary faces of E, i.e. ∀F ∈ FE ∩F∂ , there exists
E∂ a fictitious element such that E ∩E∂ = F . Consequently, the normal unit vector ~nE,F pointing
always from E to E∂ can be defined.

Figure 2a gives a graphical representation for an example mesh composed of triangles and quadri-
laterals. In this exemple the mesh is composed of 7 elements, i.e. En = {Ei, i ∈ 1, . . . , 7}. Thus
the set of faces F = {Fi, i ∈ 1, . . . , 19} is defined. It can be split into two subsets, the first one
F∂ = {Fi, i ∈ 1, . . . , 9} boundary faces of F , depicted with dashed lines on Figure 2. The second
one F in = {Fi, i ∈ 10, . . . , 19} interior faces of F . Figure 2b gives graphical representation for two
elements E5 and E7. Faces are also depicted with their normal vectors.

It was necessary to define a mesh En at a specific time level n because the mesh is modified
during the simulation. This is called adaptive mesh refinement and is described in the following
section.

3.2. Adaptive Mesh Refinement. Adaptive Mesh Refinement (AMR) methods are currently in
extensive use and have demonstrated their effectiveness on various types of meshes, whether they
are 2D or 3D, structured or unstructured, conforming or non-conforming, and whether domain
decomposition is employed or not, see e.g. [15].

This study focuses on applications involving intricate geometries and, potentially, the coupling of
models using hybrid meshes. Consequently, a non-conforming unstructured mesh is used, similar to
prior research [1]. Despite the potential increase in computational time compared to fully structured
Cartesian codes, we have adopted a Block-Based AMR strategy. This chapter exclusively presents
the AMR method in two dimensions but can be extended to the three-dimensional by considering
hexahedron and tetrahedron [28]. The approach adopted is illustrated in the Figure 3.

The unstructured mesh composed of quadrilaterals and triangular elements, where each one, as
in [1], defines a root element also named a block. See Figure 3a where every element is a non-
refined block illustrated with a thick contour. Then, a mesh refinement level is defined for each
block, initially by the user, and after that, according to the refinement criterion, see Figure 3b.
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Figure 3. Adaptive Mesh Refinement strategy

Coarsening and refinement are decided according to threshold values 0 < βc < βr. If β denotes the
local criterion computed on the block, three situations may occur:

• For βc < β < βr, the refinement level of the block remains unchanged;
• For βr < β, the refinement level of the block is increased, and the block is then refined;
• For β < βc, the refinement level of the block is decreased, and the block is then coarsened.

The limitations associated with this choice are discussed in detail in [45], along with the recom-
mended steps to address these limitations. The mesh refinement levels are also adapted according
to the rule that the difference of mesh refinement levels between two adjacent blocks is at most
equal to 1. This rule is illustrated in Figure 3c. As shown in [21], this constraint allows smooth
transitions between refined and unrefined regions. The mesh is then built using a quad-tree graph,
applicable to both quadrangles and triangles. It establishes clear and accurate connections between
neighboring elements for each face. This process continues until the desired level of mesh refinement,
as depicted in Figure 3d, is achieved. In dynamic or evolving problems, this necessitates frequent
re-meshing to track the phenomena under investigation. To minimize re-meshing frequency, the
stencil is expanded by considering a coarser root mesh, namely blocks. The local criterion β relies
on an error indicator, but determining the error of the numerical solution on each element can be
challenging. To address this issue, a posteriori error indicators are used. However, for complex
problems, obtaining these indicators can still be challenging. As a result, an intuitive criterion that
is independent of the problem is often employed. This criterion involves identifying areas where the
numerical approximation may fail, such as the free surface elevation gradient or numerical entropy
production in the case of SWE. The method for using this criterion is not discussed in this work,
but interested readers can refer to [28] for FV methods and [11] for DG methods.

4. Discontinuous Galerkin formulation

In this section, before presenting the weak formulation, we first define the solution space, referred
to as the DG space. Following this, we provide the semi-discrete weak formulation and then the
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presentation of the weak vectorial formulation well-suited for computation. Finally, ideas on how
to handle steady-state solutions and cancel spurious oscillations are given.

DG methods approximate the solution within a FE framework. These methods use trial and test
spaces defined by piecewise polynomial functions without explicitly enforcing continuity between
neighboring mesh elements. So, the first set to be defined is the set of polynomial functions of
degree p ∈ N over a mesh element E, Pp(E). Then, for all n ∈ N, the set of piecewise polynomials
functions on the mesh En is defined as

Vp(En) :=
{
v : Ω→ R

∣∣ v|E ∈ Pp(E), ∀E ∈ En
}
.(4)

Vp is the set where the solution of System (2) is sought. It is also called the DG space. For more
detailed and general definitions of the sets, see [44, chap. 1].

4.1. Semi-discrete Discontinuous Galerkin formulation. By multiplying System (2) by a
test function ϕ ∈ [Vp(En)]3, then by integration over Ω and finally using the divergence theorem,
it gives the semi-discrete weak formulation :

For all n ∈ N, find U := (h, qx, qy)
T ∈ [Vp(En)]3 such that ∀t ∈ Tn, ∀E ∈ En and ∀ϕ ∈ [Vp(En)]3,

∑
E∈En

∫
E
ϕ(x)∂tU(x, t)dE−

∑
E∈En

∫
E
∂xiϕ(x)Gi(U(x, t))dE +

∑
E∈En

∑
F∈FE

∫
F
ϕ(x)G∗F (U(x, t))dF

=
∑
E∈En

∫
E
ϕ(x)S(U(x, t), z̃b(x))dE

∑
E∈En

∫
E
ϕ(x)U(x, 0)dE =

∑
E∈En

∫
E
ϕ(x)U0(x)dE

(5)

where z̃b is the projection of the bathymetry onto Vp and G∗F is the numerical flux across any face
F and U0 is the initial data. Operations between two vectors in System (5) are the element-wise
product known as the Hadamard product. In System (5), if we look for the solution in the set
of piecewise constant functions, the volume contribution of the flux is null, and the semi-discrete
weak formulation becomes equivalent to the FV formulation. This previous volume contribution is
specific to DG methods while p is greater than 1 the polynomial degree.

The numerical flux is defined as follows: ∀F ∈ F ,∀x ∈ F,

G∗F (U)(x) =


G̃

(
U|E(x),U|Er(x), ~nE,F

)
, if F ∈ F in

G̃

(
U|E(x),U|E∂

(x), ~nE,F

)
, if F ∈ F∂

where G̃ : R3×R3×R2 → R3 is the numerical flux approximation. U|E∂
is used to enforce boundary

conditions weakly through the numerical fluxes. Moreover it is easy to check that G̃ is conservative
and consistent. Since the solution is not defined on a face F , it becomes necessary to recover its
value. In 1959, Godunov introduced the first approach to deal with this problem [27]. The method
involves solving the interface’s associated Riemann problem and using the computed intermediate
state in the flux on the interface. The Riemann problem can be solved using an exact solver,
which comes at the cost of an iterative root finder[24]. Moreover, there are numerous methods
to approximate the intermediate state of the Riemann problem. The Lax-Friedrichs flux and its
variant, the local Lax-Friedrichs flux, also known as the Rusanov flux [24], are simple methods.
Harten, Lax, Van Leer introduced HLL approximate Riemann solver in 1983 [31]. For further
details about approximate Riemann solvers, refer to [17].
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This work uses the local Lax-Friedrich approximate solver to evaluate G̃ at every F ∈ F . Its
selection is based on its suitability for multi-dimensional hyperbolic problems, where it is easy to
implement and yields good results for DG methods. The local Lax-Friedrichs flux, then G̃, is
defined as follows:

∀a, b ∈ R3 and ∀~n = (nx, ny)
T ∈ R2,

G̃(a, b, ~n) =
1

2

(
G(a) + G(b)

)
· ~n− c

2
(b− a) .

where c is the maximum of the characteristic speeds through the face F :

c = max
w∈{a,b}

{|spec(J1(w)nx + J2(w)ny)|} .

Here spec denotes the spectrum, i.e. the set of eigenvalues. It is easy to check that G̃ is conservative
and consistent.

4.2. Fully discrete Discontinuous Galerkin formulation. Using two-dimensional polynomial
basis functions, such as tensor product Legendre basis [34] for quadrangle or the Dubiner basis [19]
for triangles, the semi-discrete weak formulation can be written in a vectorial form. The solution on
each element can be written as a dot product between two vectors. One holds degrees of freedom of
the solution on E (UE), and the other holds the basis functions (Φ). Thus for any element E ∈ E
and for all t ∈ [0, T ], it can be written as follows:

∀x ∈ E, U(x, t) = Φ(x) ·UE(t).

Since the solution is sought in the DG space, it gives a matrix-vector system for each element.
Consequently, to get the solution on Ω, one must solve System (5) for all E ∈ E , for all t ∈ [0, T ]
it can be written by inverting the mass matrix :

Solve ∀E ∈ E , dUE(t)

dt
= HE(UE(t))(6)

where HE : R3NE
dof → R3NE

dof . The choice of the basis is essential since it drastically affects the
shape of the system; for instance, the tensor product Legendre basis makes it diagonal.

4.3. Time discretization. Since there is no analytical solution to the ordinary differential equa-
tion derived in Equation (6), it is necessary to discretize and solve the time derivative numerically.
This work will only consider fully explicit methods, which naturally introduce stability conditions.
It is essential to carefully select the time step to avoid producing numerical noise. Choosing the
time step is a critical concern because these instabilities can worsen over time and greatly diminish
the accuracy of the numerical approximation. The explicit Euler method can be firstly considered
while dealing with time discretization. Although using a basic first-order explicit time scheme may
seem like the quickest and easiest approach, it is essential to acknowledge its limitations in prac-
tice. To avoid spoiling the potential benefits of high-order methods in space, it is recommended
to implement more precise methods for advancing in time. As a result, our numerical examples
use high-order explicit Runge-Kutta (RK) algorithms. It is worth noting that these time-marching
methods can be considered as a combination of Euler schemes.

The time derivative in Equation (6) is discretized using the explicit RK method of order q = p+1
with p the polynomial degree in Vp. Let use the discretization of [0, T ] introduce in Section 3 and as a
reminder the time duration [0, T ] is discretized in sub interval Tn = [tn, tn+1] and the corresponding
time step is denoted by ∆tn = tn+1 − tn. Moreover, n = 0 is used to define the beginning of the
computation time and the initial condition:

∀x ∈ Ω, U(x, t0) = U(x, 0).
7



Using the initial condition the RK method computes the solution at Un+1(x) := U(x, tn+1) with
the solution Un(x) := U(x, tn) forall x ∈ Ω and some sub-iterate solutions between tn and tn+1.
The method reads :

(1) Set U
(0)
E = Un

E ,
(2) For i = 1, . . . , q compute the intermediate states:

U
(i)
E =

i−1∑
j=0

αijWij , Wij = U
(j)
E +

βij
αij

∆tnHE(U
(j)
E ),(7)

(3) Set Un+1
E = U

(q)
E .

Coefficients βij and αij of the RK method are chosen according to the work of Shu [50] and Tadmor
[49]. They give the classe of Strong Stability Preserving Runge-Kutta (SSP-RK) schemes. They
maintain the Total Variations Diminishing (TVD) property while striving for more precise time
discretizations. Their work on this topic also involved collaborations with Gottlieb, see [30]. Es-
sentially, these schemes can be viewed as combinations of first-order explicit Euler schemes, which
makes it possible to determine stability conditions straightforwardly based on the coefficients in-
volved.

Of course, because the time discretization is explicit, the time step ∆tn is limited by the Courant-
Friedrichs-Lewy (CFL) condition. Classically, in similar work solving the SWE using DG methods
with SSP-RK time discretization, the time step is given by the work of [14]:

max
E∈En

(
λnE
dE

)
∆tn ≤ 1

2p+ 1
,

with

λnE := max
F∈∂E

(
max

(x,y)∈F

((
u · ~nE,F ±

√
gh
)

(x, y, tn)

))
.(8)

This CFL condition is obtained by a von Neumann stability analysis of the Runge-Kutta Dis-
continuous Galerkin (RKDG) methods explained before but on a linear advection equation. It has
been proven for p = 1 in [13]. This results can be extended to non-linear problem as long as it can
be diagonalized, see[10]. However, in the case p ≥ 2, the number 1

2p+1 is insufficient and numerical

estimations must be used. See [14] for more details on these numerical coefficients.

4.4. Well balanced property and limiting procedure. Maintaining equilibrium states is de-
sirable for methods handling the SWE. Specifically, we will focus on preserving steady-states at
rest. These states are defined by the conditions h + zb ≡ C (a constant) and q ≡ 0 over the
whole domain Ω. If these conditions are not maintained, numerical waves can occur, as seen in
[20]. Schemes that prevent this situation are referred to as well-balanced schemes. Unfortunately,
the RKDG scheme defined in Section 4 does not exhibit well-balanced properties. This is because
achieving well-balancing necessitates compatibility between the numerical flux and the source term
discretization. Modification of System (5) can be found in [20] to achieve well-balanced properties.

System (5) can be rewritten as a matrix-vector system for each element:

Solve ∀E ∈ E , dUE(t)

dt
= Hwb

E (UE(t)),(9)

with Hwb the well balanced modified vector of the right hand side of Equation (6). Hwb has been
modified according to the work of Ern [20].

When dealing with hyperbolic conservation laws, it is crucial to consider the treatment of discon-
tinuities. High-order numerical methods may generate artificial oscillations close to discontinuities,
resulting in non-physical solutions, numerical instabilities, and unbounded computational outputs.

8
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Figure 4. Exemple in one dimension of a wetting-drying situations

In this work, we focus on applying the Krivodonova’s [34] method on a non-conformal mesh
made up of rectangular elements with ∆x (∆y) denoting the length of the rectangle along the
x (y) axis. However, it is worth noting that a moment limiter [19] can be applied to triangular
elements, representing a generalization for non-rectangular elements. A full description of the
limiting procedure can be found in [34].

As long as the water height remains far from zero, those modifications ensure that the method
is well-balanced and oscillations are limited. However, when considering water height is close to
zero, the DG scheme shows some difficulties.

5. Flooding and drying treatment

Simulating shallow water equations can pose a significant challenge due to dry areas with no
water. This is especially true for applications involving fast-moving interfaces between wet and
dry regions, such as dam breaks, flood waves, and run-up phenomena over shores and sea defense
structures. Conventional numerical approaches may fail near the dry/wet front without proper
consideration and yield undesirable negative water height. Since the computation domain is dis-
cretized with geometrical elements, the shoreline will likely cross an element, resulting in a partially
wet element. The wetting and drying treatment identifies the wet and dry elements and modifies
the numerical solution to avoid negative water height.

Figure 4 depicts a common problem when dealing with the shoreline using the DG space V1.
When the solution and the bathymetry are in this space, negative water height occurs unless the
edge of the element is precisely at the shoreline.

Several wetting and drying treatments are available for continuous Galerkin-based methods, as
referenced in [41]. One technique is the mesh adaption approach, which accurately tracks the dry
front by modifying the meshes; an example can be found in [29]. However, this method can be
computationally expensive. Another technique involves mesh reduction, where the dry elements
are removed and later restored once they become wet; in his work Balzano in 1998 [2] presents
a comparison of different methods. This approach may result in oscillation and loss of mass and
momentum, leading to conservation failure. Moreover there exists other methods based on a kinetic
approach, see [43, 51, 7].

Finally, the thin layer technique involves keeping a very thin layer of dry elements and incorpo-
rating them into the computation. The thin layer method has been commonly used in the context

9



Consider an element E

E is dry?

E is semi-dry?

Slope modification
P0-adaptation, or Ghost Cell

Return the element E

Drying:
hE = 0 and qE = 0

no

yes
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no

Figure 5. Flowchart of the thin layer approach

of FE methods [3, 41], FV methods [6] and DG methods [20, 8, 17] for solving shallow water
equations.

The three methods presented in the following will be based on the thin-layer approach where
the last one is part of the originality of this paper. Nevertheless, the post-treatment applied to
semi-dry elements differs for each method. The thin layer approach relies on fixing a water height
threshold, hdry, and using it to detect partially wet elements by looking at water height on the
mesh’s edges, nodes or integration points and comparing it to hdry. The thin layer method at a
time level n ∈ N can be summarized as follows:

• First, for each elements E ∈ En the quantity mn
E is computed. This is the minimum value

of the water height on the element E at a given time tn.

mn
E := min

x∈E
hnE(x).

• Second, if mn
E ≤ hdry and the average water height (h̄nE) is lower than the threshold,

h̄nE ≤ hdry then the element is considered dry. That is to say that the water height and the

discharge are set to 0 on the element E, i.e. Ũn(x) = 0, ∀x ∈ E. This is done to control
dry elements and avoid nonphysical phenomena.
• Third, if mn

E ≤ hdry and the average water height (h̄nE) is greater than the threshold,
h̄nE > hdry then the element is considered semi-dry. That is to say that the water height
and the discharge are modified on the element E to enforce the positivity of the water height.
This is done using positivity-preserving methods. In this work, the positivity-preserving
methods are only applied to piecewise linear solutions. Consequently, the solution on semi-
dry elements must be projected onto the piecewise linear space. This is done by a L2-
projection of the solution onto V1. Far from the semi-dry element, one can increase the
order of approximation by using p-adaptation.

Figure 5 depicts a flowchart for the thin layer approach.
10



The first method, the most commonly used for DG methods, is Slope Modification. Essentially,
this involves adjusting the slope of the water height while keeping the mean water height unchanged.
The second method, named P0-adaptation, draws inspiration from FV methods and assumes that
the solution and bathymetry are piecewise constant on semi-dry elements. The final method,
inspired by X-FE methods [39, 38, 23], maintains the concept of mesh adaptation and reduction
without altering the mesh itself. Named the Ghost Cell method, this technique involves modifying
the support of polynomial basis functions on semi-dry elements in order to calculate the solution
only where the water height is positive.

5.1. Slope Modification. The notion of Slope Modification in the context of DG methods was
initially introduced by Ern in 2007 [20]. This approach relies on using the thin layer technique to
identify partially wet elements and subsequently modify the slope. This method is summarized as
follows:

• On semi-dry elements, the slope of water height is modified to ensure that h = 0 at the node
below the threshold. Furthermore, the discharge is adjusted in these modified elements such
that q = 0 at nodes where h = 0. For further information regarding this approach, the
interested reader is referred to [20].

While enforcing the positivity of the water height, this method preserves mass conservation but
does not preserve momentum-conservative.

Building on the method mentioned above, Bunya introduced a new technique in 2009 [8] that
does not violate the positivity of mass and is momentum-conservative. However, in this method, a
special treatment for the flux computation is necessary to prevent instability. Furthermore, Xing
in 2010 and 2013 [58, 57], Zhang in 2012 [59], and Duran in 2014 [17] use a positivity-preserving
method similar to Bunya’s approach, but it is more straightforward to implement. This method
exhibits a CFL-like condition and Slope Modification technique of the water height and discharge.
It is designed to be both mass and momentum-conservative. For simplicity’s sake, we will only
consider piecewise linear solutions (p = 1) in this context.

Working with the positivity limiter of [58] implies using the β-point Gauss-Lobatto quadrature,
where β is the smallest integer such that 2β − 3 ≥ p with p the polynomial degree of the DG
space. This quadrature is used because it is designed to place quadrature points on the edge of the
element. In the following, let us denote SE , the set of points of this quadrature rule, and ŵ1, the
weight associated with the first quadrature point. The CFL-like condition has been derived so that
the mean water height on each element is always positive. In other words, for all n ∈ N and for all
elements E if h̄E(tn) ≥ 0 then h̄E(tn+1) ≥ 0. This condition is given by

max
E∈En

(
λnE
dE

)
∆tn ≤ ŵ1,(10)

with λnE having the same definition as in Equation (8). In the case of p = 1 the Gauss-Lobatto
quadrature points are exactly nodes of the element with a weight of ŵ1 = 1/3. The positivity
limiter is the enforced in two steps:

• First, for each elements E, the quantity m̃n
E is computed. This quantity is the minimum

value of the water height on the element E at the Gauss-Lobatto quadrature points at a
given time tn. It is given by :

m̃n
E := min

x∈SE

hnE(x).

• Second, hnE(x) ≥ 0, ∀x ∈ SE needs to be enforced because it is a sufficient condition to
ensure the positivity of the water height average under the CFL-like condition of Equa-
tion (10). This can be done using the positivity preserving limiter of [58]. We denote
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Figure 7. Exemple in one dimension of the Slope Modification method

Ūn
E = (h̄nE , q̄

n
E)T the mean value of U on the element E at a time level n. Assuming that

h̄nE ≥ 0, the modified solution Ũn is given by

Ũn(x) = θnE
(
Un(x)− Ūn

E

)
+ Ūn

E ,

where

θnE = min

{
1,

h̄nE
h̄nE − m̃n

E

}
.

It is easy to observe that h̃nE(x) ≥ 0, ∀x ∈ SE and that this method is mass-conservative and

momentum-conservative. Once the modified solution Ũn is computed, its polynomial decomposition
can be quickly recovered by a L2-projection of Ũn onto Vp. By construction this method is also
well suited for two-dimensional problems, see Figure 6.

Figure 7 shows how, in the context of Figure 4, the Slope Modification procedure modifies the
solution to enforce the positivity of the water height. The solution before the positivity-preserving
method is depicted in gray.

However, in the latter two methods, it is possible to observe very high fluid velocity values
(u = q/h) in nearly dry regions. Unfortunately, the rate at which h and q converge towards zero
is unknown. Those overshoots of the fluid velocity may produce nonphysical perturbations in the
shoreline area and degrade the solution. Moreover, they also lead to tiny time steps. To address
this issue, Ern has set a maximum value for the fluid speed and adjusted the discharge accordingly.
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Figure 8. Exemple in one dimension of the P0-adaptation method

Similarly, Xing suggests that u = 0 should be set if h ≤ 10−6. The fundamental idea behind both
strategies is that the fluid velocity in nearly dry areas should be equivalent to that in wet regions.
More recently, Vater [53, 54] has proposed a new approach that involves determining the maximum
velocity value based on the maximum velocity around semi-dry elements. It’s worth noting that
this method can alter the solution for the given problem since there is no way to predict whether
velocity is bounded.

Even though these methods are well-balanced in fully wet areas, they are not well-balanced in
partially wet areas. The free-surface elevation is also modified by modifying the water height slope
to eliminate negative water height. It degrades the lake at rest state and produces nonphysical
perturbations in the shoreline area.

5.2. P0-adaptation. In order to solve the issue of very large values of speed in the shoreline area,
the idea is to have a strategy close to what is done in FV methods. The idea is to consider that
the solution is piecewise constant on semi-dry elements. This idea is greatly inspired by works
where hp-adaptation is done in DG methods solving Euler Equations [40, 55] and solving SWE
[52, 35, 22]. In this work, only p-adaptation is applied to the shoreline treatment. It is observed
that in FV methods, the thin layer approach does not produce an overshoot in the fluid velocity.
So the idea is to consider the solution piecewise constant (p = 0) on semi-dry elements and not
modify the polynomial degree of the DG method on other elements. This is implemented into a
positivity preserving procedure called P0-adaptation. This method is quite short to describe:

• The polynomial degree on the semi-dry element E is set to 0, preserving the average water
height and discharge. Do not forget to modify the polynomial order of the bathymetry as
well.

It is easy to check that this method is mass-conservative and momentum-conservative as long
as the average water height remains positive. To have this condition, the CFL-like condition in
Equation (10) needs to be used. Figure 8 shows how, in the context of Figure 4 the P0-adaptation
procedure modifies the solution to enforce the positivity of the water height. The solution before
the positivity-preserving method is depicted in gray.

Adjusting the polynomial order is a simple process thanks to the hierarchism property of the
Legendre or Dubiner basis. We can easily introduce modal coefficients to expand the modal space
while setting them to zero. Conversely, we can reduce the modal space by removing the corre-
sponding higher-order modal coefficients. It is noticeable that the difference in polynomial order
between adjacent elements does not exceed a value determined by the user, which is set to 1 in the
current investigation. Moreover, to be sure that potential issues due to the shoreline are avoided,
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one can decide to not only set semi-dry elements to P0 but also the elements adjacent to them in
a user-defined stencil.

This approach is designed to conserve mass and momentum while limiting high fluid velocities
near the shoreline through numerical diffusion via FV methods. It is a simple technique that
delivers reliable outcomes, although it can be unbalanced in the shoreline region. The positivity-
preserving technique is well-balanced when applied in fully wet regions since it is inactive in these
areas. Nevertheless, the positivity enforcing method can change free surface elevation and produce
nonphysical perturbations in the solution at the lake at rest state. This method may locally change
the bathymetry and may leads to spurious oscillations. A careful analysis has to be done in order
to capture the lake at rest state. The following method is designed to overcome these issues.

5.3. Ghost Cell. The present study highlights the inadequacy of Slope Modification and P0-
adaptation techniques in the shoreline region, as they can cause perturbations that significantly
alter the solution. These perturbations are particularly pronounced in areas of high fluid velocity,
leading to uncontrolled solutions and a potential computation shutdown. To overcome this issue, the
concept of Ghost Cell is introduced, which provides a well-balanced positivity-preserving method.
This approach is heavily inspired by the X-FE methods, which were first introduced by Belytschko
in 1999 [4] and have since undergone extensive development [39, 38, 32, 23]. The X-FE method is an
extension of FE methods that are designed to model smooth solutions. However, one can observe
that quantities may vary rapidly over a small scale, resulting in solutions exhibiting discontinuities,
singularities, high gradients, or other non-smooth properties. Such phenomena are common in
solid mechanics, where cracks, dislocations, and inclusions are prevalent, and in fluid mechanics,
where shocks and near interfaces in multi-phase flows are common. Two fundamental approaches
have been proposed to address this issue: modifying the mesh to conform with such singularities,
modifying the polynomial approximation space by adding special shape functions to the bases, or
replacing some shape functions. The latter approach is closely related to the concept of Ghost
Cell. The challenge with a semi-dry element is that one part is wet, and the other is dry. Since the
solution is considered linear on the element, having such a property without negative water height
is impossible. To overcome this challenge, two ideas have been proposed: splitting the element (into
two elements in 1D), which involves a meshing step and computation cost, or modifying the support
of the shape function. In the latter approach, the shape function is no longer defined on the entire
element but only on a sub-part, the wet part. The shape functions are considered null on the dry
part since the solution is null. The following provides a comprehensive explanation of the Ghost
Cell method. Figure 9 shows how, in the context of Figure 4, the Ghost Cell procedure modifies the
solution to enforce the positivity of the water height. The solution before the positivity-preserving
method is depicted in gray.

This approach involves dividing semi-dry elements into two distinct parts: the wet portion and
the dry portion. Let us consider a semi-dry element E ∈ En. From this element, we can create
two sub-elements: the wet sub-element Ewet = {x ∈ E | hnE(x) ≥ hdry} and the dry sub-element
Edry = {x ∈ E | hnE(x) ≤ hdry}.

The positivity procedure only considers the DG space V1, so determining where to split E is
straightforward. For a one-dimensional problem, the shoreline is represented by a point, denoted
as x∗. This point can be easily accessed by locating the crossing point between two lines: the linear
projection of the water height and the constant hdry. In a two-dimensional problem, the shoreline
is represented by a line, denoted as SnE = {x ∈ E | hnE(x) = hdry}. This line can be easily accessed
by locating the crossing line between two planes: the linear projection of the water height and the
horizontal plane hdry. In one dimension, the shapes of Ewet and Edry are simple: two segments.
In two dimensions, it is less obvious, therefore, more work needs to be done on the splitting. This
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Figure 9. Exemple in one dimension of the Ghost Cell method

work focuses on establishing the Ghost Cell procedure in one dimension, and extending it to two
dimensions is not trivial or addressed in this work.

Using the splitting of semi-dry elements and considering mappings are linear. Integration on the
physical element E and the reference element can be reworked. For a given function f : E → R
substitution theorem leads to a transformation of integral:∫

E
f(x, y)dE =

∫
Ewet

f(x, y)dEwet +

∫
Edry

f(x, y)dEdry

Moreover, if f is differentiable on E with the chain rule, it gives the transformation of integral:∫
E
∇f(x, y)dE =

∫
Ewet

∇f(x, y)dEwet +

∫
Edry

∇f(x, y)dEdry

Moreover, another modification to previous definitions made before can be done. Based on the
splitting of semi-dry elements and with the thin layer approach, the definition of U on the element
E can be rewritten as follows:

∀(x, t) ∈ E × Tn, UE(x, t) :=

{
Φ(x) ·UE(t) if x ∈ Ewet\F ∗
0 otherwise

(11)

where F ∗ is the common boundary face of Ewet and Edry, it is defined as F ∗ := FEwet ∩ FEdry .
One can notice that for all elements E ∈ En, if Ewet = E, previous modifications are inactive.

Consequently, these modifications applied to the well-balanced weak formulation are effective only
if a semi-dry element is considered. Therefore, the weak formulation on a semi-dry element E can
be rewritten as follows, noting that U|Edry

= 0 and U|F ∗ is continuous:∫
E
ϕ(x)∂tU(x, t)dE =

∫
Ewet

∂xiϕ(x)Gi(U(x, t))dEwet +

∫
Ewet

ϕ(x)S(U(x, t), z̃b(x))dEwet

−
∑

F∈FEwet\F ∗

∫
F
ϕ(x)Gwb

F (U(x, t), z̃b(x))dF −
∑

F∈FEdry\F ∗

∫
F
ϕ(x)Gwb

F (U(x, t), z̃b(x))dF.
(12)

This new expression in Equation (12) shows that variations of U|E rely only on the wet part of
the element and the boundary flux. Consequently, any integration is done on the dry part, so the
mapping between Edry and Êdry is useless. However, the faces of the dry part need to be tracked
since they are needed to compute boundary fluxes. In addition, the Ghost Cell method modifies
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discharge to enforce that q(x) = 0 for all x ∈ F ∗. It is done such that the average discharge is kept
unchanged.

The Ghost Cell method in one dimension on a semi-dry element can be summarized as follows:
Consider an element E = [xi, xi+1] and its corresponding length xi+1 − xi and middle xb = (xi +
xi+1)/2. Then denote x∗ the point such that hE(x∗) = hdry.

• First, compute x∗, such that hE(x∗) = hdry;
• Second,

– If h(xi) ≤ hdry the left node is dry, thus define the wet part as Ewet = [x∗, xi+1];
– If h(xi+1) ≤ hdry the right node is dry, thus define the wet part as Ewet = [xi, x

∗];
• Third, modify q such that q(x∗) = 0 and the average keeps unchanged.

One can see that this approach is well-balanced, mass conservative, momentum conservative, and
positivity preserving. Only considering the wet portion of the elements in the weak formulation
effectively prevents overshoots in fluid velocity, a common issue with Slope Modification and P0-
adaptation. However, it does not completely eliminate the possibility of large, nonphysical fluid
velocity that can alter the expected outcome. The Ghost Cell method’s overshoots of fluid velocity
on the shoreline depend on the convergence rates of h and q towards zero. To manage this issue,
it is necessary to control these rates.

6. Validation and numerical results

The first four test cases were focused on validating RIVAGE , our in house code, in its one-
dimensional and two-dimensional form. In order to assess the accuracy of the numerical solutions
generated by the DG solver, we compared them with known analytical solutions, while for exper-
imental test cases, we compared the numerical solutions with data from the literature. Finally,
the last test case involves using RIVAGE to solve a real experimental problem, using the block
adaptation method.

6.1. Lake at rest. The first test case is aiming to verifying wether the DG formulation with drying
treatments preserve the still water steady state with a non-flat bathymetry containing a wet dry
interface. The computational domain is considered one-dimensional Ω = [0, 1] and the simulation
time T = 1.5s. The bathymetry is given for all x ∈ Ω:

zb(x) =


1.25(x− 0.25) if 0.25 ≤ x < 0.45,

0.25 if 0.45 ≤ x < 0.55,

1.25(x− 0.75) if 0.55 ≤ x < 0.75,

0 otherwise.

Two different initial datas are considered:

• Case 1 : the initial stationary solution is for all x ∈ Ω:

h(x, 0) = max(0.2− zb(x), 0) and q(x, 0) = 0.

• Case 2 : the initial stationary solution is for all x ∈ Ω:

h(x, 0) = max(0.16− zb(x), 0) and q(x, 0) = 0.

Moreover solid wall boundary conditions are considered.
Solutions of these two cases are computed with Ω discretized with 200 elements. It gives regularly

spaced elements of size ∆x = 0.05m. With this mesh for the Case 1, the shoreline fits the mesh
whereas for the Case 2 the shoreline lies between two nodes. In addition for these cases the solution
is considered piecewise linear (p = 1), SSP-RK of order 2 is employed, αCFL = 0.5 and hdry = 10−6.

For these two test cases the initial steady state should be preserved for the whole computation
time. Table 1 gives L2-error and L∞-error of the numerical solution compared with the initial data
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Table 1. Errors for the lake at rest test case with different flooding and drying
treatments.

L2-error L∞-error

Case Flooding and drying method h qx u h qx u

1 Slope Modification 6.90 10−9 0.00 0.00 1.19 10−8 0.00 0.00

− P0-adaptation 5.30 10−16 0.00 0.00 8.33 10−17 0.00 0.00

− Ghost Cell 5.29 10−16 0.00 0.00 8.33 10−16 0.00 0.00

2 Slope Modification 7.75 10−5 2.74 10−5 1.35 10−1 1.43 10−3 2.18 10−04 3.83 101

− P0-adaptation 4.07 10−4 2.01 10−4 2.88 10−2 3.45 10−3 8.22 10−4 4.27

− Ghost Cell 2.18 10−16 0.00 0.00 5.55 10−17 0.00 0.00

at t = 1.5s. It can bee seen that if the mesh coincide with the shoreline, the Case 1, the numerical
solution computed with any drying treatments preserve the lake at rest state. Nevertheless if the
shoreline does not fit the mesh only the Ghost Cell method is well balanced, the initial state is
preserved. Slope Modification and P0-adaptation methods are not well balanced if shoreline falls
between two nodes.

This test case enlighten that the the DG formulation is well balanced without dry areas. Nev-
ertheless if a problem with dry areas is considered the DG formulation is fully well balanced only
using Ghost Cell methods unless the mesh fits the shoreline position.

6.2. Carrier and Greenspan benchmark. The Carrier-Greenspan benchmark, created by Car-
rier and Greenspan in 1958 [9], features a periodic wave moving up and down on a sloping beach,
involving both wetting and drying in each period. This test case has been used in the context of
FV methods by Marche in 2007 [37], as well as in DG methods by Bokhove in 2005 [5] and Duran
in 20014 [18].

The solution of the SWE for this test case is the motion of a periodic wave of dimensionless
amplitude A∗ and frequency ω∗ traveling shoreward and being reflected out to sea generating
standing wave on a beach plane. This problem is one-dimensional, hence the computational domain
is Ω = [−l, l + 4] with l the typical length scale of this specific problem. Moreover α the beach
slope is introduced. Dimensionless variables are defined as follows:

x∗ = x/l, ζ∗ = ζ/(αl), u∗ = u/
√
gαl and t∗ = t

√
l/(αg).

The analytical solution is given by the following problem:

λ∗ = 2(t∗ + u∗)

σ∗ = 4
√
ζ∗ − x∗

ζ∗ =
ω∗A∗

4
J0(ω∗σ∗) cos(ω∗λ∗)− (u∗)2

2

u∗ =
−ω∗A∗J1(ω∗σ∗) sin(ω∗λ∗)

σ∗

(13)

where J0 and J1 are the Bessel functions of zero and first order respectively. This analytical solution
is commonly used to assess the model’s ability to handle run-up and run-down phenomena, as well
as to examine wave dynamics near a continental shelf. The equation is applicable when 0 ≤ A∗ ≤ 1,
and A∗/4 signifies the maximum vertical distance the shoreline can move. The initial condition
for t = 0 is provided, and the analytical variations of the surface elevation at the left boundary
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Table 2. L2-error, L∞-error and convergence rates for the Carrier and Greenspan
benchmark at t∗ = 4τ∗.

h qx u

Flooding and drying method ∆x L2-error r L2-error r L2-error r

Slope Modification 0.24 1.38 10−3 1.52 10−3 5.31 10−1

− 0.12 3.44 10−4 2.01 4.77 10−4 1.67 1.61 10−1 1.72

− 0.06 7.28 10−5 2.24 2.25 10−4 1.08 3.64 10−2 2.14

− 0.03 4.18 10−5 0.80 1.12 10−4 1.00 1.95 10−2 0.90

− Fitted 1.75 1.24 1.64

P0-adaptation 0.24 4.17 10−3 1.42 10−2 1.35 10−1

− 0.12 1.54 10−3 1.43 5.42 10−3 1.39 8.23 10−2 0.71

− 0.06 6.84 10−4 1.17 2.26 10−3 1.26 8.09 10−3 3.357

− 0.03 4.64 10−4 0.56 8.09 10−4 1.48 3.88 10−3 1.06

− Fitted 1.07 1.37 1.87

Ghost Cell 0.24 1.72 10−3 2.56 10−3 1.52 10−1

− 0.12 4.92 10−4 1.81 6.90 10−4 1.89 5.85 10−2 1.38

− 0.06 2.05 10−4 1.26 2.68 10−4 1.37 2.99 10−3 4.296

− 0.03 5.51 10−5 1.89 1.35 10−4 0.99 1.69 10−1 −5.82

− Fitted 1.62 1.41 0.38

serve as an offshore inlet boundary condition, allowing us to generate motion. For a comprehensive
explanation of the solution, please refer to Carrier and Greenspan’s original research [9].

In this test case, we compute the numerical solution using a dimensionless amplitude of A∗ = 0.6,
ω∗ = 1, a length scale of l = 20m, and a beach slope of α = 1/30. The solution is computed on
the domain Ω = [−20, 4] and until t∗ = 4τ∗, where τ∗ = 2π/ω∗ is the period. We perform four
computations using different mesh sizes, ∆x = {0.24, 0.12, 0.06, 0.03}, each composed of regularly
spaced one-dimensional elements. The solution is considered piecewise linear (p = 1), and we use
SSP-RK of order 2 with αCFL = 0.5 and hdry = 10−6. We also employ a stencil of 10 elements for
the P0-adaptation method. At t = 4τ∗, we present the L2-error, L∞-error, and convergence rates
in Table 2. For the three drying treatments, we find that the computed orders of accuracy are
between 1 and 2 for h and qx. However, convergence rates for u are not constant and are calculated
when u is null at the end of four periods.

By analyzing how well the numerical solution recovers the shoreline position, further insights can
be gained. The time series of the shoreline position for the three drying treatments in Figure 11
shows that the computational results are in phase with the analytical solution. During the run-up
phase, the drying treatments perform well, while the P0-adaptation method performs the worst and
the Ghost Cell method performs the best during the run-down phase. To compare the numerical
solutions to the analytical solution, Figure 10 shows a snapshot during the run-down phase, as it
has been observed that drying treatment does not perform equally during the run-up and run-down
phases. Non-physical results are obtained around the shoreline from the fluid speed. Additionally,
the Ghost Cell method produces few overshoots in the fluid speed, while the P0-adaptation method
produces the most.
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6.3. Roeber test case. The last benchmark for the one-dimensional variant of our DG solver
involves an experimental test case. This standard test case for Boussinesq-type equations [47, 46]
can also be applied to SWE [33]. The test examines wave transformation over an idealized fringing
reef and was conducted through laboratory experiments spanning from 2007 to 2009 at the O.H.
Hinsdale Wave Research Laboratory of Oregon State University.

The problem at hand involves a channel that measures 83.7m in length and 2.5m in depth. The
shallow water assumption is upheld, with the vertical length scale being smaller than the horizontal
length scale. At one end of the flume, a solid wall is present. The flume’s bathymetry involves a
reef with an exposed crest and a flat section after the crest. The crest is 0.065m above the free
surface, with both sides of the crest having a slope of 1/12. The flat section is 0.14m deep. The
problem can be viewed as a one-dimensional problem dealing with SWE. The initial condition is
a simulated solitary wave, which is a first-order solution of the Boussinesq equation centered on
x0 = 17.6m. The wave has a dimensionless amplitude of A/h0 = 0.3, with h0 = 2.5m. It is given
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by :

ζ(x) =
A

cosh
(√

3A
4h30

(x− x0)
)2 and q(x) =

√
g(h0 +A)ζ(x).

For this problem, variables denoted with a star are dimensionless: ζ∗ = ζ/h0 and t∗ = t
√
g/h0 +

55.3. Experimental results are captured by 14 wave gauges placed in the middle of the flume. 8
gauges are placed before the crest and 6 after the crest.

For our numerical simulation, the one-dimensional computational domain Ω = [0, 83.7] is used,
and the simulation is carried until T = 93.3s. Solid wall boundary conditions are applied on both
sides of the flume. Two different meshes are used: one with 200 regularly spaced elements of size
∆x = 0.4185m, and the other with 2000 regularly spaced elements of size ∆x = 0.04185m. With the
first mesh, the solution is considered piecewise linear (p = 1) and use a SSP-RK of order 2. For the
Slope Modification drying treatment, numerical parameters are set αCFL = 0.8 and hdry = 10−3.
With Ghost Cell and P0-adaptation methods, numerical parameters are set to αCFL = 0.9 and
hdry = 10−6. The stencil for the P0-adaptation method is 10. With the second mesh, the solution
is considered piecewise constant using the FV method. The high-resolution mesh solution of FV
methods is labeled P0-HR in the figures.

In Figure 12, we can see the numerical solution at various times before and after the wave
breaks over the crest. This solution was computed using the Ghost Cell method. While the
computed solution aligns well with experimental data, there are still some discrepancies, particularly
at t∗ = 67.05. At this time, the wave starts to break and develop a plunging breaker. While
SWE replicates this phenomenon by creating a vertical-faced propagating bore, the wave height
is underestimated, though the total water mass remains preserved. As the wave breaks over the
crest, it travels down the back slope of the reef crest, creating a flow that displaces the previously
stagnant water and a hydraulic jump off the back reef. Laboratory observations have confirmed
the generation of the hydraulic jump. Numerically solved SWE correctly predict the phase and
amplitude of the discontinuities of the hydraulic jump after the crest.

Displayed in Figure 13 are numerical solutions and experimental data for two selected wave
gauges. The first one is before the crest and the second one is after the it. For the first gauge,
all three drying treatments perform comparably and align with the high-resolution FV solution.
Additionally, as previously mentioned, the initial wave pass is accurately captured despite a slight
underestimation of its height. Furthermore, waves reflected by the wall are also well-predicted al-
beit with a slight delay. However, the SWE model does not account for dispersive effects, thus free
surface oscillations are not accurately represented. Fot the second gauge, the three drying treat-
ments have also equivalent performance and align with the high-resolution FV solution. Secondly,
it reinforces previous findings regarding the accurate prediction of the hydraulic jump’s height and
phase. Lastly, it is worth noting that while the reflected waves between the wall and the crest
are accurately predicted in height, there is a notable phase delay. To address this delay, a differ-
ent model than SWE is required. Kazolea and Roeber used a Boussinesq model that considers
dispersive effects, which yielded better results than SWE.

The final one-dimensional test case has been completed and the results indicate that the SWE
solved using the DG formulation performs exceptionally well across all benchmarks. While the
convergence rates align with expectations, they fall slightly below the optimal order of accuracy
of 2 for a piecewise linear solution. Interestingly, all three drying treatments produced similar
outcomes, but the Ghost Cell method proved to be the most resilient, particularly when dealing
with non-physical fluid speeds.

6.4. Two-dimensional parabolic bowl. This test case is the second one using a parabolic bowl
as bathymetry. However, this time, the problem is two-dimensional. It allows to assess the capacity
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Figure 12. Roeber test case, numerical solution at different times compared to
wave gauges data with ∆x = 0.4185m, p = 1, SSP-RK method of order 2 and with
the Ghost Cell method
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Figure 13. Roeber test case, time series of the normalized free surface at the wave
gauges number 3 and 11 with ∆x = 0.4185m, p = 1, SSP-RK method of order 2
and with the Ghost Cell method

of the two-dimensional DG solver to handle wetting and drying. The bathymetry is given by:

zb(x, y) = αr2
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with r =
√
x2 + y2 and α a given positive constant. At the initial time the water is also is a

parabolic shape with a zero velocity. The exact solution is given by:

ζ(r, t) =
1

A+B cos(ωt)
+ α(B2 −A2)

r2

(A+B cos(ωt))2
,

and (
u
v

)
(x, y, t) = − Bω sin(ωt)

A+B cos(ωt)

(
A/2
B/2

)
where ω2 = 8gα and A and B are given constant such that A > 0 and |B| < A.

For this test case, we are using the same parameters set by Ern in 2007 [20]. Our constants
are set to α = 1.6 10−7m−1, A = 1m−1, and B = −0.41884m−1. The computational domain
is a square with a side length of 8000m, which is denoted as Ω = [−4000, 4000] × [−4000, 4000].
The solution is considered piecewise linear (p = 1) and a SSP-RK of order 2 is used. In this
method, numerical parameters are set to αCFL = 0.9 and hdry = 10−6. Four different meshes
are considered, each composed of quadrilaterals of the same size. The size of the elements are
∆x = ∆y{100, 200, 400, 800}. Finally, the Slope Modification is used for the drying treatment.

Figure 14 shows the free surface elevation at different times. The L2-error is also displayed,
with the color of the surface elevation indicating the error. These results are extracted from the
computation with a grid size of ∆x = 100m. It can be noticed that the error on ζ is always below
10−3 across the the selected times.

In Table 3, we can observe the L2-error values for h, qx, and qy at various times. These times
have been carefully selected to showcase the variations in the drying treatment behavior during
both the run-up and run-down phases. The time t = 6/4τ is the moment when the water is at the
bottom of its course, just before it moves up, while t = 2τ refers to when the water is at the top
of its course, just before it moves down. Additionally, t = 5/4τ is during the run-up phase while
t = 7/4τ is during the run-down phase. Notably, during the run-up phase, there is no difference in
convergence rate for h, but the DG solver performs better for the discharge. The most significant
difference is between t = 6/4τ and t = 2τ . As expected, the convergence rates are good at t = 6/4τ
just after the run-up phase but are significantly degraded after the run-down phase. Indeed, this
is due to the fact that the solution is not regular at the wet boundary, as displayed on Figure 15.

Remark 1. Far from the dry and flood areas, in the case of smooth solution, classical space and
time convergence rates are recovered, namely p if p is even and p+1 otherwise, using the appropriate
time integration, as in [20].

This test case confirms observations done on one-dimensional test cases. The run-down phase
is more challenging to solve than the run-up phase. The DG solver converges better during the
run-up phase than during the run-down phase. Moreover, the DG solver cannot predict the fluid
speed u during the run-down phase.

6.5. Swingler and Lynett test case. Swingler and Lynett [36] performed laboratory experiments
in the O.H. Hinsdale Wave Research Laboratory of Oregon State University, to study specific
phenomena, that are known to occur when solitary waves approach a shoreline, such as shoaling,
refraction and breaking for model validation [46, 48]. The flume is 48.8m long and 26.5m wide with
a water depth of 0.78m. A three dimensional bathymetry is built in this flume. It is composed of
a triangluar shelf with the apex at x = 12.6m and centered on the middle of the flume. The shelf
has a slight positive slope until x = 25.5m. On the shoreward on the shelf the bathymetry contains
a beach of a 1 : 30 slope until x = 31m. After the beach slope, the beach is flat until the end of
the flume. The beach slope intersects the free surface level at x = 25.75m. On the offshore side of
the triangluar shelf, the bathymetry bluids up at x = 10.2m to reach the shelf altitude. It gives a
variating slope from the side of the flume to the apex af the shelf. The slope becomes steeper as
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Figure 14. Two-dimensional parabolic bowl, free surface elevation with L2-error(ζ)
coloring with ∆x = 100m, p = 1, SSP-RK method of order 2 and with Slope
Modification

the distance from the apex decreases. Finally, on the triangular shelf, a conical island is centered
at x = 17m and y = 0m. The island apex is 0.45m above the free surface level and the basis radius
is 3m long.

Moreover, for the experiments wave and advection gauges were placed in the flume. Wave
gauges WG1, WG2, WG3 and WG7 are placed on the centerline of the flume and respectively at
x = 7.5m, 13m, 21m and 25.5m. WG4, WG5 and WG6 are placed at y = 5m and respectively at
x = 7.5m, 13m and 21m. WG8 and WG9 are place at x = 25m and respectively at y = 5m and
10m. Advection gauges ADV1 and ADV2 are placed at y = 0m and respectively at x = 13m and
21m. The last advection gauge ADV3 is placed at x = 21m and y = −5m.

The problem is a two-dimensional problem when solved with SWE. Hence, the computational
domain is Ω = [−5, 48.8]×[−13.25, 13.25]. The computational time is T = 50s. The initial condition
is a simulated solitary wave, which is a first-order solution of the Boussinesq equation centered on
x0 = 5m. The wave has a dimensionless amplitude of A/h0 = 0.5, with h0 = 0.78m. It is given by
:

ζ(x) =
A

cosh
(√

3A
4h30

(x− x0)
)2 and q(x) =

√
g(h0 +A)ζ(x).
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Figure 15. Two-dimensional parabolic bowl, cross section of the free surface ele-
vation (left), the fluid speed (top right) and discharge (bottom right) at t = 7

4τ with
∆x = 100m, p = 1, SSP-RK method of order 2 and with Slope Modification

For the numerical simulation, solid wall boundary conditions are aplied at each side of the
domain. The mesh is composed of 60× 40 quadrilaterals blocs along respectively the x and y axis.
The mesh can be refined up to a level 3. The refinement criteria is based of the gradient of the
free surface and thresholds are fixed to βc = βr = 0.01. The solution is considered piecewise linear
(p = 1) and a SSP-RK of order 2 is used. The DG method is used to solve the SWE and the Slope
Modification drying treatment is used with αCFL = 0.9 and hdry = 10−4. Moreover the fluid speed
on the shoreline is bounded between −100m/s and 100m/s.

The water surfaces at various times are displayed in Figure 16. At the beginning, the wavefront
steepens as the solitary wave approaches. By t = 6.5s, the surge resulting from this completely
overtops the cone, while the wave along the basin’s sides continues to shoal. By t = 8.5s, the
refracted and diffracted waves collide on the shelf. Around t = 11s, the water withdraws from the
cone, and the bore-front from the diffracted wave moves onshore and reinforces the refracted waves
from the reef edge. As time passes, the water advances up the slope and reaches the flat area. At
around t = 14.5s, a new bore is created from the draw-down of the water on the slope and collides
with the refracted waves, while water propagates on the flat area.

In Figure 17, we observe the recorded surface elevation measurements at WG1, 3 and 8 over
time. WG1 indicates an accurate prediction of the wave’s arrival and height on the centerline of
the domain and before the crest. However, the model successfully computes the cone overtop with a
slight delay and without over-predicting the wave height, leading to a collision of the refracted and
diffracted waves, as seen in the results at WG3 around time t = 8s. On the north side of the shelf
WG8 shows that the numerical model reasonably predicts wave shoaling, refraction, and breaking.
After t = 40s the numerical results begin to deviate from the measurements due to the late arrival
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Table 3. L2-error and convergence rates for the two-dimensional parabolic bowl
at different times.

h qx u

t ∆x L2-error r L2-error r L2-error r

5/4τ 800 3.43 10−1 1.78 1.79
− 400 2.68 10−1 0.36 9.33 10−1 0.93 9.31 10−1 0.94
− 200 2.01 10−1 0.41 5.10 10−1 0.87 5.09 10−1 0.87
− 100 1.47 10−1 0.46 3.23 10−1 0.66 3.23 10−1 0.66
− Fitted 0.41 0.83 0.83

6/4τ 800 7.65 10−1 8.48 10−1 8.23 10−1

− 400 3.73 10−1 1.04 3.91 10−1 1.12 3.26 10−1 1.34
− 200 1.94 10−1 0.94 1.47 10−1 1.41 1.46 10−1 1.16
− 100 1.53 10−1 0.34 1.36 10−1 0.11 1.36 10−1 0.11
− Fitted 0.79 0.93 0.90

7/4τ 800 4.24 10−1 1.63 1.66
− 400 5.15 10−1 −.28 8.38 10−1 0.96 8.60 10−1 0.95
− 200 2.68 10−1 0.94 4.49 10−1 0.90 4.60 10−1 0.90
− 100 1.90 10−1 0.49 4.19 10−1 0.10 4.19 10−1 0.13
− Fitted 0.44 0.68 0.69

2τ 800 1.39 2.86 10−1 2.83 10−1

− 400 9.46 10−1 0.55 9.59 10−1 −1.74 1.12 −1.99
− 200 4.98 10−1 0.93 5.46 10−1 0.81 5.26 10−1 1.09
− 100 3.76 10−1 0.41 3.43 10−1 0.67 3.44 10−1 0.61
− Fitted 0.66 0.00 0.02

of the numerical reflected waves from the extended computational domain. Consequently, time
series are not displayed after t = 40s.

In Figure 18, the velocity time series measurements are compared with the numerical ones at
various advection gauges locations. The SWE model performs reasonably matching the u velocities
by accurately predicting the peak velocities and entire time trend in the u profiles. However, in
ADV1, there are some u overshoots at t = 6s and t = 14s, but fortunately, they don’t affect the
fluid speed time series since it matches experimental data after the event. Moreover, the numerical
model accurately predicts the production of v at the ADV3 location.

7. Conclusions

In this paper, Shallow Water Equations with dry areas and bathymetry are numerically solved
using a Rung-Kutta Discontinuous Galerkin method modified to be well-balanced and Total Vari-
ations Diminishing in the Means. Nevertheless, the ability to solve problems with dry areas is
not straightforward for such a method. Thus, three ways to treat flooding and drying areas are
introduced and implemented. The first is based on Slope Modification, the second is based on
p-adaptation, and the last, the least common, is at the interface between eXtended Finite Element
and mesh adaptation. These positivity-preserving methods are compared on one-dimensional cases
through numerical and experimental benchmarks, and a selected one is extended to two-dimensional
problems. It can be concluded using numerical results that the Ghost Cell method performs the
best, but its two-dimensional extension is not straightforward. P0-adaptation performs the worst
but is easy to implement. Lastly, Slope Modification performs well and can be easily applied to
two-dimensional problems. Its performance is suitable for solving problems involving a moving
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(c) t = 11sand with 10968 elements (d) t = 14.5sand with 8877 elements

Figure 16. Swingler and Lynett test case, free surface representation at different
times with p = 1, SSP-RK method of order 2 and with Slope Modification
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Figure 17. Swingler and Lynett test case, time series of the free surface compared
to experimental data (WGs) with p = 1, SSP-RK method of order 2 and with Slope
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Figure 18. Swingler and Lynett test case, time series of the fluid speed compared
to experimental data (ADVs) with p = 1, SSP-RK method of order 2 and with Slope
Modification

shoreline in two dimensions. Based on its performance, the Ghost Cell method should be extended
in two dimensions and compared to the Slope Modification method.
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