Adressage de modes d'ordre élevé dans une cavité photonique à l'aide d'une masque de phase programmable

Antoine Rouxel¹, Stéphane Calvez¹, **Antoine Monmayrant**¹, Olivier Gauthier-Lafaye¹

¹ LAAS-CNRS, Université de Toulouse, CNRS, France

coupleurs optiques

filtres

Adresser les modes spatio-spectraux supérieurs offrirait :

DOI:10.1364/OL.35.001989 | 10.1364/OE.20.009322 | 10.1049/el.2012.3058 | 10.1364/OL.44.005198 _

Adresser les modes spatio-spectraux supérieurs offrirait :

des coupleurs et des filtres sélectifs spatialement et spectralement (FMF)

Adresser les modes spatio-spectraux supérieurs offrirait :

des coupleurs et des filtres sélectifs spatialement et spectralement (FMF) le contrôle des modes laser transverses (laser larges mono-modes)

Adresser les modes spatio-spectraux supérieurs offrirait :

des coupleurs et des filtres sélectifs spatialement et spectralement (FMF) le contrôle des modes laser transverses (laser larges mono-modes) des interactions non-linéaires multimodes (SFM, DFM, SPDC, etc...)

Cavity Resonator Integrated Grating Filters _____

Multicouche : guide d'onde & antireflet @ λ_0

Cavity Resonator Integrated Grating Filters ____

Multicouche : guide d'onde & antireflet @ λ_0 2 DBRs formant une cavité Fabry-Pérot planaire Modes propres sont des ondes stationnaires

Cavity Resonator Integrated Grating Filters ____

Multicouche : guide d'onde & antireflet @ λ_0 2 DBRs formant une cavité Fabry-Pérot planaire Modes propres sont des ondes stationnaires Petit Réseau Coupleur (GC) perturbatif & 2 sections de phase (PS)

Cavity Resonator Integrated Grating Filters ____

Multicouche : guide d'onde & antireflet @ λ_0 2 DBRs formant une cavité Fabry-Pérot planaire Modes propres sont des ondes stationnaires Petit Réseau Coupleur (GC) perturbatif & 2 sections de phase (PS) Mode propre stationnaire couplé à

Cavity Resonator Integrated Grating Filters

Multicouche : guide d'onde & antireflet @ λ_0 2 DBRs formant une cavité Fabry-Pérot planaire Modes propres sont des ondes stationnaires Petit Réseau Coupleur (GC) perturbatif & 2 sections de phase (PS) Mode propre stationnaire couplé à un faisceau incident focalisé

Multicouche : guide d'onde & antireflet @ λ_0 2 DBRs formant une cavité Fabry-Pérot planaire Modes propres sont des ondes stationnaires Petit Réseau Coupleur (GC) perturbatif & 2 sections de phase (PS) Mode propre stationnaire couplé à un faisceau incident focalisé Filtre spectralement étroit et angulairement tolérant

CRIGFs : mono-modes quels que soient l'angle et la position d'incidence

CRIGFs : mono-modes quels que soient l'angle et la position d'incidence

CRIGFs : mono-modes quels que soient l'angle et la position d'incidence

L'histoire du grand CRIGF(2D) & du petit faisceau

GC de $53 \times 53 \mu m^2$ & Faisceau gaussien de quelques μm^2

L'histoire du grand CRIGF(2D) & du petit faisceau

Des modes spectraux plus ou moins bien excités

L'histoire du grand CRIGF(2D) & du petit faisceau

Un paysage spatio-spectral assez riche

Les modes d'ordre supérieurs sont dus à un effet de moiré

Modes du CRIGF \simeq modes Fabry-Pérot Ondes stationnaires entre les miroirs Nombre entier de **demi-périodes** $N \rightarrow N + 1$ rajoute **+1 demi-période**

Les modes d'ordre supérieurs sont dus à un effet de moiré

Mode N = 0:

Mode N = 0 : Adapté parfaitment au GC (période et phasage identiques)

Mode N = 0 : Adapté parfaitment au GC (période et phasage identiques) Front de phase découplé constant

Mode N = 1: 1 demi-période de plus que le GC Motif de moiré/battement 2 lobes de signes opposés Au centre : quadrature \rightarrow plan nodal

Les modes d'ordre supérieurs sont dus à un effet de moiré

Mode N = 2 : 2 demi-périodes en plus moiré plus rapide +1 plan nodal ; +1 lobe

Profils théoriques des modes découplés

Mode découplé #N a une amplitude :

$$A_N(x,y) = \operatorname{rect}(\frac{x}{L}, \frac{y}{L}) \times \begin{cases} \cos\left(\pi y(N+1)/L\right) & \text{si } N \text{ est pair} \\ \sin\left(\pi y(N+1)/L\right) & \text{sinon} \end{cases}$$

où $L \simeq 53 \,\mu\text{m}$ est l'étendue du GC

Profils théoriques des modes découplés

Mode découplé #N a une amplitude :

$$A_N(x, y) = \operatorname{rect}(\frac{x}{L}, \frac{y}{L}) \times \begin{cases} \cos(\pi y(N+1)/L) & \text{si } N \text{ est pair} \\ \sin(\pi y(N+1)/L) & \text{sinon} \end{cases}$$

où $L \simeq 53 \,\mu\text{m}$ est l'étendue du GC

Comment générer de tels profils?

Faisceau en incidence normale

Modulateur 2D n'agissant que sur la phase SLM : Spatial Light Modulator

Faisceau en incidence normale Modulateur 2D n'agissant que sur la phase SLM : Spatial Light Modulator Réseau de phase blazé : faisceau diffracté

Faisceau en incidence normale Modulateur 2D n'agissant que sur la phase SLM : Spatial Light Modulator Réseau de phase blazé : faisceau diffracté Amplitude locale des dents : amplitude diffractée

Faisceau en incidence normale Modulateur 2D n'agissant que sur la phase SLM : Spatial Light Modulator Réseau de phase blazé : faisceau diffracté Amplitude locale des dents : amplitude diffractée Position locale des dents (phase) : phase diffractée

Faisceau en incidence normale Modulateur 2D n'agissant que sur la phase SLM : Spatial Light Modulator Réseau de phase blazé : faisceau diffracté Amplitude locale des dents : amplitude diffractée Position locale des dents (phase) : phase diffractée

Une référence bien connue depuis 1999¹

Faisceau en incidence normale Modulateur 2D n'agissant que sur la phase SLM : Spatial Light Modulator Réseau de phase blazé : faisceau diffracté Amplitude locale des dents : amplitude diffractée Position locale des dents (phase) : phase diffractée

Une référence bien connue depuis 1999¹ Une formulation alternative proposée en 2013²

Faisceau en incidence normale Modulateur 2D n'agissant que sur la phase SLM : Spatial Light Modulator Réseau de phase blazé : faisceau diffracté Amplitude locale des dents : amplitude diffractée Position locale des dents (phase) : phase diffractée

Une référence bien connue depuis 1999¹ Une formulation alternative proposée en 2013² Et une grande confusion en 2016³

Faisceau en incidence normale Modulateur 2D n'agissant que sur la phase SLM : Spatial Light Modulator Réseau de phase blazé : faisceau diffracté Amplitude locale des dents : amplitude diffractée Position locale des dents (phase) : phase diffractée

Une référence bien connue depuis 1999¹ Une formulation alternative proposée en 2013² Et une grande confusion en 2016^3 Nos calculs reconcilient les résultats antérieurs⁴

(in dB)

-10⁽¹⁾ Intensity ()

-20

(in dB)

-10⁽¹⁾ Intensity ()

-20

Excitation sélective 1D avec les profils optimisés $\Sigma_g c_g A_g$

Gain médian +3,4 dB

Analyser

 $|A_{1,2}|^2$

.

860

865

Excitation sélective 1D & 2D de modes d'ordre élevé dans des CRIGFs

Avec des faisceaux façonnés : https://github.com/a-rouxel/beamshapy Profils théoriques et optimisés

Excitation sélective 1D & 2D de modes d'ordre élevé dans des CRIGFs

Avec des faisceaux façonnés : https://github.com/a-rouxel/beamshapy Profils théoriques et optimisés

Contrôle modal

Réflecteurs, filtres et coupleurs sélectifs spatialement et spectralement

Excitation sélective 1D & 2D de modes d'ordre élevé dans des CRIGFs

Avec des faisceaux façonnés : https://github.com/a-rouxel/beamshapy Profils théoriques et optimisés

Contrôle modal

Réflecteurs, filtres et coupleurs sélectifs spatialement et spectralement

Excitation bi-mode de CRIGFs non-linéaires

De la SHG à la SFM, DFG, SPDC, ... Photons jumeaux ?

Merci pour votre attention !

Questions?

Des erreurs de profils théoriques

Centrage du profil

Largeur du profil

